
Research Article
Research on Abnormal Behavior Recognition of Buses Based on
Improved Support Vector Machine

Yong Pan ,1,2 Xiangmo Zhao,1 Zhigang Xu,1 Junwei Li,2 Yifei Li,2 and Li Liu2

1School of Information Engineering, Chang’an University, Shaanxi, Xi’an 710064, China
2CHECC Data Co., LTD, Beijing 100089, China

Correspondence should be addressed to Yong Pan; 54820517@qq.com

Received 6 April 2021; Accepted 3 July 2021; Published 27 July 2021

Academic Editor: Qi-Zhou Hu

Copyright © 2021 Yong Pan et al. .is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

.e abnormal driving behavior of buses brings about greater security threat. How to effectively identify the abnormal driving
behavior of buses has become one of the problems of cracking public transportation safety. .is paper constructs an abnormal
behavior recognition model of buses based on improved support vector machine. .rough the verification, the model has a high
recognition rate, which provides an important means for further improving the safety of public transportation operations.

1. Introduction

.e abnormal driving behavior of buses not only seriously
affects the comfort and safety of passengers in the vehicle but
also brings about great security risks to the surrounding
vehicles. .erefore, through the research of abnormal
driving behavior of buses, analyzing the temporal and spatial
distribution characteristics of various behaviors, and
establishing an effective mathematical model according to
the characteristics of the corresponding driving data anal-
ysis, in this paper, through the training and identification of
driving data, it can effectively identify the abnormal driving
behavior of the bus and promptly remind the drivers of the
bus and surrounding vehicles, so as to reduce the occurrence
of traffic accidents and ensure the safety of road traffic.

.e sudden acceleration and sudden braking behaviors
of buses are the most common abnormal driving behavior
[1]. In the relevant laws and regulations of the transportation
industry, sudden acceleration and sudden braking behaviors
are not clearly illegal. .erefore, the existing literature has
less research on the sudden acceleration and sudden braking
behavior. Literature [2, 3] proposed that the sudden ac-
celeration and sudden braking behaviors of the vehicle
belong to the abnormal longitudinal driving behavior, and
its main data features are shown in the sudden change of

instantaneous longitudinal velocity and acceleration. Lit-
erature [4] studies the abnormal left-turning and right-
turning behavior of buses, which is mainly reflected in the
turning action at a relatively high speed when the vehicle is
running, which results in the vehicle’s posture to tilt to the
left or right. Literature [5] investigates the abnormal left and
right lateral driving behavior of buses, which is mainly
reflected in the transformation of the vehicle’s acceleration
and roll angle. Literature [6, 7] extract features of vehicle
speed information, including vehicle speed, GPS informa-
tion, and triaxial acceleration information, so as to describe
changes in vehicle position and driving status during
operation.

.is paper first introduces support vector machine al-
gorithm; second, it builds an abnormal behavior recognition
model of buses based on the improved support vector
machine on this basis; finally, the model is verified, analyzed,
and summarized by an example.

2. Support Vector Machine

SVM (support vector machine) is a machine learning al-
gorithm for classification proposed by Corinna Cortes and
Vapnik in 1995. Because it has shown many unique ad-
vantages in solving small sample and nonlinear problems, it
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has been popular for more than ten years, and its classifi-
cation ability can even surpass neural networks on some
problems, and it is widely used in the classification and
recognition of data samples..e principle of SVM is to find a
hyperplane, in which as many data points as possible are
correctly distributed on both sides of the hyperplane [8, 9].
According to the complexity of samples and the difficulty of
classification, SVM can be considered as three types: linear
separable SVM, approximately linear SVM, and nonlinear
SVM.

2.1. Linear Separable Support Vector Machine. As shown in
Figure 1, a simple sample set (x1, y1), (x2, y2) . . . (xn, yn) 

is constructed, and two kinds of sample data sets that need to
be classified are represented by two kinds of graphs. .e
classified plane is set as H, and the selected hyperplanes are
set as H1 and H2. In addition, H1 and H2 must be parallel to
H and have the closest distance to the two types of sample
data sets. When the classified plane H can allow the max-
imum distance between H1 and H2, the best classification
hyperplane H is calculated at this time.

.e purpose of the calculation of SVM is to make the
value of all sample points from the classification hyperplane
greater than or equal to a value, which means that all sample
points are located at their own type of support vector. .is
principle can be expressed by the following formula:

max c �
y w

T
x + b 

‖w‖2

s.t yi w
T
xi + b  � c′

(i) ≥ c′, (i � 1, 2, . . . m).

(1)

In general, simplify the operation and set c’ as 1, so that
the optimization function can be defined as

max
1

‖w‖2

s.t yi w
T
xi + b ≥ 1, (i � 1, 2, . . . m).

(2)

.e meaning of formula (2) is to make the objective
function 1/‖w‖2 get the maximum value within the specified
target of yi(wTxi + b)≥ 1, (i � 1, 2, . . . m). In addition, be-
cause the maximum value of objective function 1/‖w‖2 is
equal to the minimum value of (1/2)‖w‖22, the optimization
function of SVM is equivalent to

min
1
2
‖w‖

2
2

s.t yi w
T
xi + b ≥ 1, (i � 1, 2, . . . m).

(3)

Because the shape of the objective function (1/2)‖w‖22 is
a convex function and its specification requires an accurate
representation to be an affine function, it can be obtained
from the principle of convex optimization that the opti-
mization requirement can be changed into an unspecified
optimization function according to Lagrange function. To be
precise, the optimization function is transformed into

L(w, b, α) �
1
2
‖w‖

2
2 − 

m

i�1
αi yi w

T
xi + b  − 1 

s.t αi ≥ 0.

(4)

Due to the introduction of Lagrange multiplier, the
optimization goal of SVM has become

min√√
w,b

max√√
αi≥0

L(w, b, α).
(5)

It can be found from formula (5) that if we want to
solve the optimization objective, we can first find the
minimum value of the optimization function for W and B
and then continue to find the maximum value of
Lagrange multiplier α. For the minimum value of W and
B, namely, min√√

w,b

L(w, b, α), this extreme value can be

obtained by spherical partial derivatives of W and B,
respectively:

zL

zw
� 0⟹w � 

m

i�1
αiyixi,

zL

zb
� 0⟹ 

m

i�1
αiyi � 0.

(6)

From formula (6), the relationship between w and α can
be obtained, so the parameters can be substituted into
L(w, b, α) to eliminate w, and ψ(α) is defined as a function of
α:

ψ(α) � min√√
w,b

L(w, b, α) �
1
2
‖w‖

2
2 − 

m

i�1
αi yi w

T
xi + b  − 1 .

(7)

.rough the definition of norm and the operation of
vector, W can be eliminated and the functional relationship
between ψ(α) and α can be obtained:
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Figure 1: Linear separable support vector machine model.
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ψ(α) � 
m

i�1
αi −

1
2



m

i�1,j�1
αiαjyiyjx

T
i xj. (8)

It can be seen from formula (8) that the optimization
function ψ(α) only has α vectors as parameters, so as long as
we can maximize ψ(α), we can find the corresponding α at
this time, and then w, b can be obtained. .e mathematical
expression for maximizing ψ(α) is as follows:

max√√
α

−
1
2



m

i�1


m

j�1
αiαjyiyj xi · xj  + 

m

i�1
αi

s.t. 
m

i�1
αiyi � 0, αi ≥ 0, i � 1, 2, . . . , m.

(9)

Formula (9) is the problem of the extreme value of the
quadratic function under the requirements of the inequality,
and its optimal solution is set as α∗ � (α∗1 , . . . , α∗n ). .e
initial optimal solution of the problem is w∗ and b∗, and
w∗ � 

n
i�1 α
∗
i yixi is required at the same time. In addition,

because α∗ is a Lagrange multiplier under the original op-
timization requirement, according to Kuhn–Tucker’s
requirement,

α∗i yi w · xi(  + b
∗

  − 1(  � 0, i � 1, . . . , n. (10)

Because most of samples α∗i are equal to 0 and the only
condition that makes it not equal to 0 is to make the samples
(support vectors) on both sides of the optimal classification
surface equal to each other, the mathematical expression of
maximizing ψ(α) is brought into Kuhn–Tucker condition to
get

b
∗

� yj − 
n

i�1
yiα
∗
i xixj . (11)

.erefore, the optimal hyperplane of the linear dis-
criminant function in the two-dimensional space can be
obtained by the following formula:

f(x) � sgn w
∗
x + b
∗

  � sgn 
n

i�1
α∗i yi xix(  + b

∗⎧⎨

⎩

⎫⎬

⎭.

(12)

Because the value of the nonsupport vector is 0, formula
(12) requires the calculation of the support vector.

2.2. Approximate Linear Support Vector Machine. As shown
in Figure 2, there are some complex sample points that make
the former linearly separable problem change into an ap-
proximate linearly separable problem. .erefore, the com-
plex sample points can be regarded as noise points, which
are similar to the behavior of turning left and changing lanes
in the process of identifying abnormal driving behaviors of
buses, and the degree of similarity is relatively high, which
will lead to little difference between data samples when
reflected in the data.

.e existence of noise points will give rise to the data not
to be completely linearly separable, so it is necessary to

transform the problem to be approximately linearly sepa-
rable. .e relaxation variable β should be added to make the
classification interval less than 1; then the optimal hyper-
plane problem can be transformed into

max
1

‖w‖2

s.t. yi w
T
xi + b ≥ 1 − β, (i � 1, 2, . . . m).

(13)

.e constraint condition of adding β can be transformed
into

min
1
2
‖w‖

2
2 + C 

m

i

βi

s.t. yi w · xi(  + b ≥ 1 − βi, βi > 0 i � 1, 2, . . . , n.

(14)

If the difference between the representative nonlinear
sample point and the set of the same categories is set as
relaxation variable β, the distance will become larger and
larger as the difference increases; and the missing difference
between the outlier sample points and the objective function
will increase with the increase of the penalty factor C.
Among them, the penalty factor C will be obtained in the
program of continuous optimization of all parameters. .e
first step is to specify a value to match the classifier, and then
the test sample will be experimented. If the result is poor,
change C and repeat the above process. .is problem still
belongs to the optimization problem, and its handle is the
same as the previous optimization problems.

2.3. Linear Indivisible Support Vector Machine. In the above
linear separable support vector machines and approximate
linear separable support vector machines, their data di-
mensions are not high, so the data set can be classified by
using a low-dimensional hyperplane. However, the abnor-
mal bus driving behavior data set contains a variety of
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Figure 2: Principle of approximate linear support vector machine.
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collected data and statistically calculated moral data, and the
dimension of the data is significantly higher than that of the
two-dimensional. .ere may not be a good hyperplane to
separate the data set, so it is necessary to map the original
data space to a high-dimensional space. If there is a hy-
perplane that can classify data in a high-dimensional space, it
can solve the problem of identifying and confirming ab-
normal bus driving behavior.

.e process of transforming the initial space Rd into the
high-dimensional space H is set as x⟶Φ(x); then the
data set (x1, y1), . . . , (xn, yn)  in the initial space will be
transformed into (Φ(x1), y1), . . . , (Φ(xn), yn) , so the
problem of obtaining hyperplane is equivalent to

max
α



m

i�1
αi −

1
2



m

i,j�1
αiαjyiyj Φ xi( Φ xj  , C≥ αi ≥ 0, i � 1, . . . , m

s.t. 

m

i�1
αiyi � 0.

(15)

.e equivalent classification function is converted into

f(x) � sgn 
n

i�1
α∗i yi Φ xi( Φ(x)(  + b

∗⎧⎨

⎩

⎫⎬

⎭. (16)

Suppose that ϕ is an Η mapping from low-dimensional
input space χ (a subset or discrete set of Euclidean spaces) to
the high-dimensional Hilbert space. .en if there is a
function K(x, z), for any x, z ∈ χ, there is

K(x, z) � ϕ xi(  · ϕ xj . (17)

.en, K(x, z) is called kernel function. .e advantage of
this function is that it can transform features from low
dimension to high dimension, and this kind of function can
be calculated by relying on low dimensionality, and then the
real classification results (after the inner product process) are
displayed in high dimensionality. .is approach can elim-
inate the difficulty of calculation in high-dimensional space
and completely eliminate the difficulty of inseparable line-
arity of support vector machine. .e commonly used kernel
functions are shown in Table 1.

3. Abnormal Behavior Recognition Model of
Buses Based on Improved Support Vector
Machine Algorithm

Different abnormal driving behaviors of buses have different
levels of complexity. As an example, changes in data
characteristics of bus rapid acceleration behavior are mainly
reflected in changes in vehicle speed and acceleration, and
the duration of the change is short, mostly completed in two
seconds. However, the abnormal lane-changing behavior of
buses may be embodied as continuous lane-changing, and
data feature changes are embodied in multidimensional data
such as speed, X-axis acceleration, and Y-axis acceleration
roll angle, which lasts for a long time, up to more than ten
seconds. .is leads to the inconsistency of the complexity
and quantity of different types of samples when collecting

samples of abnormal bus driving behaviors. When the SVM
algorithm classifies data with a large number of samples, the
classification error is small; and when classifying data with
fewer data samples, the error will be larger. Moreover, if
there is a large amount of the same sample data, it will be
regarded as new sample data to be calculated again, and the
difficulty of calculation will increase greatly, which will lead
to a significant increase in the time consumption of the
algorithm. .erefore, this research adopts an improved
support vector machine algorithm, weighted support vector
machine algorithm. Compared with the traditional support
vector machine algorithm, this algorithm increases the
weight of data samples, reduces the impact of category
differences, and speeds up the speed and accuracy of al-
gorithm training.

.e optimization problem of weighted support vector
machine algorithm is described as

min
w,b,ξi

�
1
2
‖W‖

2
+ C 

m

i�1
sidiξ

2
i , ξi ≥ 0, i � 1, . . . , m

s.t.yi 〈W, Xi + b〉( ≥ 1 − ξi.

(18)

In formula (18), si represents the weight added to each
sample, and di represents the repetition factor of data points,
so the term sidiξi is the error loss of the misclassification of
the data. .e coefficient si is a constant between 0 and 1,
which can be assigned different values according to the
importance of the data samples. .e coefficient si tends to 1
for the more important samples, and the coefficient si tends
to 0 for the samples that need to be discarded, so as to
overcome the impact of the algorithm on the imbalance of
the number of samples in different categories.

Similar to the general support vector machine algorithm,
the weighted support vector machine algorithm also applies
the Lagrange multiplier method to obtain the best optimi-
zation plane:

max
α



m

i�1
αi −

1
2



m

i,j�1
αiαjyiyj Φ xi( Φ xj  ,

Csidi ≥ αi ≥ 0, i � 1, . . . , m

s.t. 
m

i�1
αiyi � 0.

(19)

.e corresponding decision function is

f(x) � sgn 
n

i�1
α∗i yi Φ xi( Φ(x)(  + b

∗⎧⎨

⎩

⎫⎬

⎭. (20)

.rough the comparison of the process of solving the
optimal hyperplane of the support vector machine algo-
rithm, it is found that although the results of the two cal-
culation methods are similar, the limitation of weighted
support vector machine algorithm requires that the maxi-
mum value of αi be changed to the multiplier of C and sidi.

Since the support vector machine algorithm is essentially
a two-category algorithm but the problem of abnormal
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driving behavior recognition of bus is a multicategory
problem, in this research, the support vector machine al-
gorithm and binary tree algorithm are combined to convert
the multicategory problem into a series of two-category
problems, so as to realize the recognition of various ab-
normal driving behaviors. As shown in Figure 3, in the
binary tree algorithm, firstly, the vehicle motion is divided
into longitudinal motion and lateral motion according to the
direction of the change of the vehicle operating state. In the
longitudinal motion, the vehicle motion is divided into
reverse and forward according to the forward direction of
the vehicle; in the forward motion, the vehicle motion is
divided into constant speed and variable speed according to
the change of the vehicle speed; in variable speed motion, it
is divided into acceleration motion and braking according to
the change of acceleration. In the lateral movement, it is
divided into leftward movement and rightward movement
according to the lateral movement direction of the vehicle
and divided into left turn and left tilt and right turn and right
tilt according to the change of vehicle posture.

4. Model Validation

In the experimental verification, the data acquisition device
integration module (composed of GPS, gyroscope, three-
axis accelerometer, magnetometer, and other sensors) is
fixed at the center of mass of the bus, and the measurement
coordinate system of the sensor is matched with the running
direction of the vehicle, so that the positive direction of the
accelerometer and gyroscope is consistent with the heading
direction of the vehicle. After the module is installed, the
parameters of each sensor need to be calibrated to reduce the
impact of data error.

In the data collection link, the bus is driven to contin-
uously perform operations such as starting, going straight,
turning, changing lanes, and braking, as well as collecting the
various sensors’ data for the vehicle’s acceleration, decel-
eration, left turn, right turn, left lane change, and right lane
change. .rough the collection of data, a large number of
data samples of various abnormal driving behaviors were
obtained. In this research, 200 sets of various abnormal
driving behavior data were intercepted as the training data
set, and each data segment was marked as a certain kind of
abnormal driving in the training data set. For the label of the
behavior, 100 groups are used as verification data, the
verification data does not need to be labeled, and it is a data
fragment directly intercepted from the collected raw data.

After using LIBSVM, the computing power of support
vector calculation method is increased. LIBSVM is a flexible
and efficient support vector machine software package

developed by National Taiwan University. It provides exe-
cutable files and source code, which can solve various
support vectormachine algorithms and algorithm expansion
problem. 200 sets of training data are used to train the built
support vector machine algorithm to stabilize the various
parameters of the algorithm, and then 100 sets of verification
data are used to verify the improved support vector machine
algorithm to test the recognition rate of the algorithm.
During the verification process, the receiver operating
characteristic (ROC) curve was drawn as shown in Figure 4.

By analyzing the ROC curve graphs of nine different
behaviors, it can be found that each curve can reach the top
quickly, and the area under the curve is much higher than
the area under the diagonal. It shows that the improved
support vector machine algorithm has a better ability to
discriminate abnormal bus driving behavior. Among them,
the real experimental results are presented in Table 2.

.rough the analysis of the experimental results, it can
be concluded that the improved support vector machine
algorithm has high recognition rate for driving behaviors
with long duration and large data variation (such as re-
versing, acceleration, uniform speed, and deceleration) and
poor recognition rate for driving behaviors with short du-
ration and no obvious data variation (such as left leaning and
right leaning).

5. Summary

.is paper selects the data that best reflects the abnormal
driving behavior as the research data and then studies the
support vector machine algorithm in the machine learning
algorithm, analyzes the structure of the algorithm, and
improves the support vector machine algorithm according
to the characteristics of the abnormal driving behavior of
public transportation vehicles. Finally, a bus abnormal
driving behavior data set containing 200 sets of training data

Table 1: Common kernel functions.

Name Expression Parameter
Polynomial kernel K(xi, xj) � xT

i xj

Gaussian kernel K(xi, xj) � (xT
i xj)

d d≥ 1 is polynomial degree
Linear kernel K(xi, xj) � exp(− (‖xi − xj‖

2/2σ2)) σ > 0 is the bandwidth of Gaussian kernel
Laplace kernel K(xi, xj) � exp(− (‖xi − xj‖/σ)) σ > 0
Sigmoid kernel K(xi, xj) � tanh(βxT

i xj + θ) β> 0, θ< 0, tanh is a hyperbolic tangent function

Speed up Brake

Uniform Speed
change

Turn le� Right
leaning

Turn
right

Astern Forward Moving to the le� Moving to the right
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Vehicle operating parameters

Le�
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Figure 3: Binary tree algorithm.
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Figure 4: Continued.
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Figure 4:.e ROC curves are verified by algorithm. (a) Reverse moment. (b) Acceleration moment. (c) Uniformmoment. (d) Deceleration
moment. (e) Left turn moment. (f ) Right turn moment. (g) Brake moment. (h) Left leaning moment. (i) Right leaning moment.

Table 2: Bus driving behavior identification results.

Vehicle behavior
moment

Total number
of samples

Number of
error samples

Recognition
rate (%)

Results of area under
curve (AUC)

Reversing 100 15 85 0.929
Accelerating 100 11 89 0.946
Uniform speed 100 14 86 0.935
Slow down 100 8 92 0.970
Turn left 100 12 88 0.956
Turn right 100 13 87 0.950
Braking 100 22 78 0.901
Left leaning 100 19 81 0.904
Right leaning 100 21 79 0.894
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and 100 sets of verification data was established, and the
improved support vector machine algorithm was used to
train and recognize the data set. .e experimental verifi-
cation results prove that the improved support vector ma-
chine algorithm has high recognition rate for driving
behaviors with long duration and large data variation (such
as reversing, acceleration, uniform speed, and deceleration),
which will help to enhance the safety supervision of bus
drivers and improve the safety management level of public
transport.
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