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Accurate traffic flow parameters are the supporting data for analyzing traffic flow characteristics. Vehicle detection using traffic
surveillance pictures is a typical method for gathering traffic flow characteristics in urban traffic scenes. In complicated lighting
conditions at night, however, neither classical nor deep-learning-based image processing algorithms can provide adequate detection
results. This study proposes a fusion technique combining millimeter-wave radar data with image data to compensate for the lack of
image-based vehicle detection under complicated lighting to complete all-day parameters collection. The proposed method is based on
an object detector named CenterNet. Taking this network as the cornerstone, we fused millimeter-wave radar data into it to improve
the robustness of vehicle detection and reduce the time-consuming postcalculation of traffic flow parameters collection. We collected a
new dataset to train the proposed method, which consists of 1000 natural daytime images and 1000 simulated nighttime images with a
total of 23094 vehicles counted, where the simulated nighttime images are generated by a style translator named CycleGAN to reduce
labeling workload. Another four datasets of 2400 images containing 20161 vehicles were collected to test the proposed method. The
experimental results show that the method proposed has good adaptability and robustness at natural daytime and nighttime scenes.

1. Introduction

Traffic flow parameters are the most fundamental and
critical physical factors that characterize traffic flow char-
acteristics. In recent years, an increasing number of traffic
video surveillance systems along the metropolitan curbside
have been deployed to collect traffic flow parameters. Vehicle
detection based on video images can achieve satisfactory
detection results under normal daylight conditions. How-
ever, the precision of this method is reduced at nighttime
due to the lack of natural light. Furthermore, streetlights and
other light sources such as automobile lights are interlaced
and complicated, resulting in an uneven image brightness
distribution, poor image visibility and contrast, and a lack of
required details and context. As a result, this study offers a
millimeter-wave radar and camera fusion sensing approach
for achieving improved detection results throughout the day
and collecting more precise traffic flow parameters.

Generally speaking, data fusion can be categorized as
original-data level, feature level, and decision level, based on
the multiple abstraction levels of input data. Data layer
fusion offers the advantage of retaining source domain in-
formation to the highest degree possible. It does, however,
have stringent data transmission requirements, limited real-
time efficiency, and significant processing costs. Although
decision level fusion can successfully reduce transmission
capacity, it does so at the expense of some of the original
information. Feature layer fusion can fuse features extracted
from multiple sensors while keeping data integrity and
processing complexities.

Microwave radar, LiDAR, and cameras are the most
popular sensors used to detect long-term and short-term
traffic. Each sensor has its benefits and drawbacks. Although
a camera is one of the most commonly utilized sensors, its
detection capability deteriorates at night and in inclement
weather [1]. The distance is calculated by measuring the time
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between the laser pulse and its reflection and scattering by
the target in a LIDAR system. It has a wide range and angular
resolutions, but poor weather degrades its performance. The
receiving antenna of a millimeter-wave radar radiates
electromagnetic waves, which are collected by the receiving
antenna, and the target information is acquired by pro-
cessing a sequence of signals. A millimeter-wave radar has a
longer wavelength than a camera or a LIDAR, allowing it to
operate in adverse weather situations such as rain, snow, and
fog [2].

The integration of data from multiple sensors has been
demonstrated to increase a system’s ability to perceive the
outside world. Advanced Driving Assistance System
(ADAS) [3] incorporates this technology. In numerous
research articles, such as [4-8], millimeter-wave radar was
coupled with a camera for vehicle detection. A few systems
[9, 10] combined LiDAR and camera. In [11], the authors
combined three sensors. While the combination of camera
and LiDAR can produce outstanding detection results, it
adds to the computational complexity, and both sensors’
detection performance will be harmed in bad weather. As a
result, for fusion detection in this study, we use millimeter-
wave radar and a camera. Despite the fact that there has been
a lot of study on sensor fusion, the most of it has been
focused on vehicle onboard sensor data. The two techniques
are not fully consistent in vehicle detection algorithms due to
the difference in viewpoint between vehicles and roadside.

For fusion detection, this research utilizes millimeter-
wave radar and a camera positioned on the roadside to
increase the accuracy of traffic flow information collecting
throughout the day. To unify the representation of the two
sensors, the first step in accomplishing fusion is to map the
observed points in millimeter-wave radar to pixel coordi-
nates. Furthermore, the radar detection point must be linked
to the appropriate item. In this work, we present a data
association technique based on 3D areas of interest for this
purpose. The modified Deep Layer Aggregation (DLA) [12]
is used as the backbone to extract the picture characteristics,
with CenterNet [13] as the baseline. Using the CycleGAN to
transfer style and generate synthetic nighttime pictures from
daytime photos, the annotation effort is reduced during
training. Finally, the image and radar characteristics are
combined to produce additional object properties.

Using the millimeter-wave radar and camera positioned
along the roadside for the whole day, a new dataset is
collected to validate the proposed technique. We manually
label each vehicle at daytime and fake nighttime images to
train the proposed model. Comparative tests are conducted
using two standard image processing approaches and a deep
learning method. The findings demonstrate that when
compared to the three approaches previously stated, the
proposed method can accomplish superior detection in
various scenarios.

In this paper, the system structure of our proposed
CenterNet-based framework has been described, and its
feasibility and effectiveness are tested and analyzed. The rest
of the paper is organized as follows: a literature review is
illustrated in Section 2. Data fusion alongside traffic flow
parameters collection methodology is elaborated in Section
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3. Section 4 presents the experimental settings and results
and then is followed by a conclusion with some future work
in Section 5.

2. Related Work

The research state of existing work is examined in this part
for the four categories of computer vision-based vehicle
identification during the day and night, millimeter-wave
radar and camera fusion method, and traffic parameters
collecting.

2.1. Computer Vision-Based Vehicle Detection. Traffic videos
play a crucial role in monitoring the current situation of
roads and provide an efficient means of collecting traffic flow
parameters on urban roads. Thanks to the rapid progress of
deep learning in image processing, picture-based object
recognition has seen encouraging outcomes in recent years.
A contemporary detector typically comprises of two parts:
(1) a backbone that extracts characteristics from pictures,
and (2) a head that detects the object’s class and bounding
box. Furthermore, newly developed detectors place a layer
called the neck between the backbone and the head. The neck
gathers features from different scales and fuses them and
fully uses all the features extracted from the backbone to
achieve better detection performance.

(i) Backbone: VGG [14], ResNet [15], and ResNeXt
[16] can serve as the backbone of detectors oper-
ating on a GPU platform. MobileNet [17] or
ShuffleNet [18, 19] can be the backbone for de-
tectors operating on CPU platforms.

(ii) Head: The head part is mainly divided into one-
stage and two-stage object detectors. The R-CNN
[20] series, including the Fast R-CNN [21], Faster
R-CNN [22], R-FCN [23], and Libra R-CNN [24],
are the most representative two-stage object de-
tectors. A two-stage object detector can also be
converted into an anchor-free object detector, such
as RepPoints [25]. As for the one-stage object de-
tector, YOLO [26-29], SSD [30], and RetinaNet [31]
are the most representative versions. In recent years,
anchor-free detectors have been created for one-
stage objects. CenterNet [32], CornerNet [33],
FCOS [34], and so on are detectors of this kind.

(iii) Neck: A neck is usually composed of several bot-
tom-up and top-down paths. Function Pyramid
Network (FPN) [35], Path Aggregation Network
(PAN) [36], BiFPN [37], and NAS-FPN [38] are
networks fitted with this mechanism.

2.2. Computer Vision-Based Vehicle Detection at Nighttime.
Most techniques, according to Chen et al. [39], cannot
consistently monitor traffic conditions at night. To achieve
vehicle detection, Kosaka and Ohashi [40] retrieved the
brightness, geometric information, and color characteristics
of the front or tail lighting and categorized them using
Support Vector Machine (SVM). At night, however,
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complicated light reflection may impair feature extraction.
Inside the cars of interest, Vancea et al. [41] initially
identified and searched for suitable taillight pairings. The
authors then segmented taillights using deep learning.
Different end-to-end deep learning frameworks for identi-
tying items of interest were created by Ruimin [42] and Yu
et al. [43]. Deep learning-based approaches, according to
these researches, can minimize false positive and false
negative detection errors and are more accurate in com-
plicated real-world situations than standard image pro-
cessing methods. These investigations, on the other hand, are
reliant on image processing technology and have difficulty
providing accurate monitoring in a complicated lighting
environment. Therefore, multisensor detection can be used
to compensate for the uncertainty present in image
detection.

2.3. Millimeter-Wave Radar and Camera Fusion Algorithm.
In recent years, millimeter wave and camera fusion research
has made tremendous progress. To decrease the image
detection area, Kadow et al. [44] employed millimeter-wave
radar, followed by the AdaBoost algorithm to detect road
targets. Wang et al. [45] reported an experiment and cal-
culations for millimeter-wave radar and vision point
alignment for obstacle detection that were simple to execute.
For millimeter-wave radar and monocular vision fusion, the
authors developed a three-level fusion method based on
visual attention mechanisms and the driver’s visual con-
sciousness. To integrate image and radar data, Nobis et al. [5]
proposed the CRF-net architecture. Its design can auto-
matically figure out what amount of sensor data fusion is
best for detecting outcomes. Jiang [8] first defogged the
image captured by the camera in foggy weather and filtered
the effective target using millimeter-wave radar. The authors
then mapped the result to the camera image to get the
corresponding Rol region and finally used the weighted
method to combine the two findings. To convert radar
measurements to camera pictures and classify radar mea-
surements using camera image datasets, Lekic and Babic [6]
utilized Generative Adversarial Networks. Following that,
the authors utilized radar to improve the camera’s resilience
and used camera to improve the radar precision.

2.4. Traffic Parameter Collection. As stated in [46], a variety
of devices and techniques are frequently used to gather
traffic flow characteristics. Loop detectors, video cameras,
unmanned aerial vehicles (UAVs), radio frequency identi-
fication (RFID) detectors, Bluetooth, GPS devices on ve-
hicles, float cars, light detection and ranging sensors, and
other devices are common examples. The aforementioned
equipment and technologies may extract a number of traffic
flow characteristics, including speed, density, and quantity.
The high-precision traffic flow parameters gathering tech-
nique based on video [42] is being applied with the rapid
advancement of computer vision. However, because of the
difference in light between day and night, vehicle identifi-
cation accuracy would be significantly reduced if a daytime
detection model was simply applied to nighttime. As a result,

in a night environment, vehicle recognition and exact traffic
flow data collecting are required. In this paper, the traffic
flow parameters are collected by integrating millimeter-wave
radar and camera data.

3. Methodology

In this section, we present a traffic flow parameters collection
method based on millimeter-wave radar and camera fusion.
We first construct a fusion detection framework and then
unify the representation and alignment acquisition times of
the two sensors. Afterward, a 3D region-of-interest-based
target association method is proposed, and the fusion de-
tection is completed. Finally, the traffic flow parameters
collection method is presented.

3.1. Framework. The metrics of traffic flow are gathered via
sensor fusion. In sensor fusion, the primary goal should be to
unify the object representations of two sensors. After
temporal alignment, the millimeter-wave radar detection
data should be converted to pixel coordinates. It is worth
noting that the radar return points used in this experiment
are the object preliminary detection results instead of the
radar point cloud. By directly obtaining the radar detection
results, the information bandwidth can be minimized, and
the anti-interference ability is more robust. Subsequently,
the 3D region of interest method is proposed to achieve one-
to-one object association between the radar and the image.
The pillar expansion is introduced during object association
to address the inaccurate height information problem. Based
on the above processing steps, the available radar features
map can be generated. As for image processing, CenterNet is
adopted as a baseline network that uses keypoint estimation
to find the center point and then regresses to other attributes
of the object. In addition, it avoids screening all possible
bounding boxes of the object by modeling the target as the
center point of the bounding box. The first image processing
step is annotating original images under normal lighting
during the daytime. Second, CycleGAN is applied to transfer
the annotated images for simulating the nighttime lighting
environment and reducing the annotation workload. Third,
the DLA is adopted as the backbone to extract image features
and concatenate the extracted image features with the
generated radar features. Fourth, the head is used to regress
other object attributes to complete vehicle detection. Last,
the required traffic flow parameters can be collected. Figure 1
shows the pipeline of the method proposed in this paper.

3.2. Data Calibration

3.2.1. Time Alignment. In order to accomplish temporal
fusion, the millimeter radar and camera acquisition timings
must be synchronized. The sample frequencies of the radar
and camera, on the other hand, are not usually the same, but
they are about 13 and 20 frames per second, respectively. The
measurement time of millimeter-wave radar is used in this
study to make camera data backward compatible, and radar
and camera time registration is used to choose the picture
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FIGURE 1: Pipeline of the proposed method. For image processing, the CycleGAN is used first to generate fake nighttime images based on
annotated daytime images. Then, the features of images are extracted by the DLA backbone. For radar processing, the 3D region of interest is
utilized for associating the radar detection points with the corresponding object after pillar expansion. Last, the image features are
concatenated with the radar features and regressed to other object attributes.

that is closest to the radar acquisition time. Because the data
collecting area’s traffic speed restriction is 70km/h, this
study limits the sampling time difference between the two
sensors within 20 ms to avoid errors. The associated pair of
data points will be discarded, if the sample time between the
nearest camera and the radar exceeds 20 ms.

3.2.2. Millimeter Wave Radar Coordinate Projection.
Camera calibration is usually a time-consuming procedure
that involves multiple variables. The final calibration result
will include additional errors due to the complexity of co-
ordinate translation using the traditional approach. There-
fore, we adopt a calibration method similar to [45].

The target position perceived by the millimeter-wave
radar and the pixel position of the target are represented as
(x,,y,) and (u,v), respectively. The relationship between
the two is as follows:

u Xy tyy Ty L |[ X,

R
vI=Tr| x| =|ta tn by || | (1)
1 1 ts1 ty t33ll 1

where TR is a 3 x 3 transformation matrix. The above ex-
pression can be used to directly convert radar coordinates
into pixel coordinates. The transformation matrix can be
calculated based on the following calculations:

Ti=[ty ta ts],

U=[u v, ... u,],

V=[v v ...v],

V=[v v, ... v,]

, (2)

La=[11...1],

Xy 1
p= ,

X ¥y 1

where # is the number of aligned points, and (xi, yZ) with
j=1,2,...,n(n>4) represents the position of the aligned

point in the radar coordinate system. The transformation
matrix TX = [T| T, T3]’ is obtained using the linear least
squares (LS) method as follows:

T, =(P'P) 'P'U,
T, =(P'P) PV, (3)
T, =(P'P) 'P'I,,.

Using the above expression, the conversion can be
completed, and the mapping point of the radar detection in
the pixel coordinate can be obtained. Ten groups of data with
each group containing 20 pairs of points are selected to
obtain accurate TX. These groups are used to calculate
different matrices and subsequently calculate the average
value.

3.3. Center Point Detection. For preliminary image detec-
tion, we utilize the CenterNet [12] detection network, which
was suggested in 2019. This network was chosen since the
radar’s return result is usually a point. For anticipating the
object’s center point, the CenterNet employs keypoint de-
tection. The usage of CenterNet facilitates the fusion of data
from these two sensors. The step of removing multiple
overlapping prediction bounding boxes using Non-Maxi-
mum Suppression (NMS) can be avoided by simplifying the
object to a single point.

LetI € RV*H>3 be an image input to the CenterNet, which
generates a keypoint heatmap Y € [0, 1]"/®H/RC where W
and H are the width and height of the image, respectively, R is
the output stride, and C is the number of object types. The
prediction from an input image is indicated by ?x,y,c’ where
Y., =1 corresponds to a detected keypoint; otherwise, it
corresponds to the background. For each ground truth
keypoint p € R? of class c in the input image, downsampling
is used to obtain a low-resolution equivalent p = [P/R]. A
ground truth keypoint heatmap Y € [0, 1]"/RH/R<C

erated using the Gaussian kernel Y . = exp (= ((x - o)+

is gen-

(y - 13},)2 )/ 20;), where o is an object size-adaptive standard

deviation. The maximum value of keypoint heatmap Y is
taken if two Gaussian distributions of the same class overlap.
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A fully convolutional encoder-decoder network is used to
predict Y from the input image. Given the annotated objects
Do P1 - - - in an image, the training objective based on the focal
loss is defined as follows:

1o [T Tog(Te).

N (1 - nyc)ﬁ(f/xyc)a log(l - ?xyc), otherwise.
(4)

The image features are extracted by a fully convolutional
encoder-decoder backbone network during the process of
center point extraction based on an image. We follow
CenterNet and adopt the modified Deep Layer Aggregation
(DLA) network as the backbone. Then, the extracted image
features are used to predict the center points and finally
return to other object attributes, as well as the object’s 2D
size, i.e., width and height, and center offset.

Y, =1,

3.4. Style Transfer from Daytime to Nighttime. Generally
speaking, for object detection and recognition, it is necessary
to label datasets, and these labeling workloads are often labor
intensive. In this study, our data collection equipment is
fixed in one place, and the shooting angle of the image data
and the resolution of the image data are all the same. The
different places mainly focus on the characteristics of same
objects reflected in the image data in different time period
(for example, daytime and nighttime). Therefore, we choose

a cycleGAN of the GAN network to convert the labeled
daytime dataset into a nighttime dataset to reduce the
workload of manual annotation.

The aim of the work presented in this subsection is to
achieve image-to-image conversion between the daytime
source domain S and the nighttime target domain T. In this
conversion, a training set of aligned image pairs is generally
used to learn the mapping between the input and the output
images. However, as paired training data will not be available
for many tasks, this paper introduces a method proposed by
Zhu et al. [47] in 2017 that learns to translate images from
source domain X to target domain Y.

The goal of this method is to learn a mapping
G: X — Y. Itintroduces the adversarial loss to differentiate
the data distribution of the actual ¥ domain image from the
data distribution of the image G(X) converted from the X
domain, which provides the foundation for creating the
antagonistic network. An inverse mapping F: Y — X is
added, because this mapping is highly underconstrained,
and cycle consistency loss is introduced to strengthen
F(G(X)) = X. This means that after the image of X domain
is mapped to Y domain and then mapped back to X domain,
it should be consistent with the original image as much as
possible, and vice versa. The Y domain image mapped to the
X domain should also be consistent with the original image.

The total loss function in the style transfer architecture is
defined as

Z(G,F,Dy,Dy) = Zan (G, Dy, X, Y) + Zapn (F: Dy, Y, X) + A%, (G, F), (5)

where A, Z,. and Z,y are the balanced weight, cycle
consistency loss in the cycle architecture, and the adversarial
training loss, respectively. The cycle consistency loss is used

to regularize the GAN training. The two losses are defined as
follows:

Foan(G:Dy X,Y) = By 108 Dy (0] + vy, olog (1~ Dy (GOO)],
Lo (GF) =E, . o[IFG) = xll] +E,p ) [IGE) - Il ].

The following expression should be solved to train these
generators and discriminators:
G*,F" = argmin max Z (G, F, Dy, Dy).
g CF Do ( x> Dy) (7)
To solve equation (7) during training, the network pa-
rameters of the two generators are updated alternately, and
the ADAM optimization algorithm is used in two
discriminators.

3.5. Fusion Methodology. The center point detection net-
work utilizes the object’s center feature to regress to other
characteristics of the object, as shown in Section 3.1. Instead
of using the original radar point cloud, this article uses object
detection findings, which minimizes the amount of data

(6)

processing and therefore reduces information transmission
bandwidth while improving anti-interference capabilities.
The description of radar point cloud processing is beyond
the scope of this paper, and it will not be elaborated here.

In order to make full use of radar data during the target
detection process, we first need to associate the radar de-
tection results with the objects on the image. Data associ-
ation via 2D bounding boxes is not a reliable approach.
When there is occlusion between items, for example, it is
difficult to differentiate them using simply 2D plane in-
formation. Inspired by the frustum-based association
method that is proposed by Nabati and Qi [7] and con-
sidering the difference of collection perspective, we propose
the 3D region of interest (Rol) to complete the associated
task. These Rols are generated from the 2D ground truth of



the object and the estimated depth §, as shown in Figure 2,
where § is defined as follows:

Id
5= (8)
where d is the distance measured by the millimeter-wave
radar, h is the height of the equipment, and [ is the height of
ground truth. They are all pixel values. The conversion factor
¢ between real-word distance and pixel value is defined as
follows:

1000 x I
=

w

(9)

where [, and [ are real-world and image-world lengths in
millimeters and pixels, respectively. The value of ¢ only needs
to be calculated once in advance. The corresponding values
of [, and ] can be obtained when the size of an image remains
unchanged.

To achieve more accurate and rapid data association, a
processing step called pixel expansion is introduced, where
each radar point is expanded to a pillar. The pillars create a
better representation of the physical objects detected by the
radar, as these detections are now associated with a di-
mension in the 3D space. Based on this new representation,
the radar detection point is considered available when the
whole or a portion of the pillar is within the 3D Rol.

Using these techniques, we can solve the problem of
association overlap owing to occlusion between objects in an
improved manner. The radar feature map is created using
the available radar detection points and then combined with
image features. The head is used to regress to other attributes
of the objects.

3.6. Traffic Flow Parameter Collection. The three most im-
portant parameters that can describe the traffic are volume,
speed, and density in the traffic flow theory. Their rela-
tionship is given by the following equation:

Q=VxK, (10)

where Q denotes the volume in the same direction, V de-
notes the velocity, and K denotes the density, and K is
defined as vehicle counts in the designated road section. As
shown in Figure 3, we only collect traffic parameters in the
red bounding box due to the comprehensive consideration
of obstacle occlusion and limited device perception field of
view. The total length of the experimental area is 130 meters.

Detailed bounding boxes of vehicles in each frame can be
obtained according to the object detection result based on
the image. The density can be obtained by counting the
vehicles in a certain segment as follows:

N
K=—, 11
I (11)
where N and L are the number of vehicles in the road
segment and length of the road segment in kilometers,
respectively.
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There are two methods for obtaining speed in the
suggested technique in this article, which are obtained from
millimeter-wave radar and camera. We utilize the speed
obtained by the millimeter-wave radar as the object speed for
objects that can be detected by millimeter-wave radar, but
we use the speed measured by the camera if the millimeter-
wave radar does not detect the object.

The radar system sends out a series of continuous fre-
quency modulation millimeter waves and receives the re-
flected signal from the target. According to the modulation
voltage law, the frequency of the transmitted wave varies
with time. The modulation signal is usually a triangle wave
signal. The reflected wave has the same form as the trans-
mitted wave, but there is a temporal delay. The frequency of
the intermediate frequency signal generated by the mixer is
proportional to the frequency difference between the
transmitted signal and the reflected signal at a given instant,
and the target distance is proportional to the intermediate
frequency output by the front end. The reflected signal
contains a Doppler shift induced by the relative movement
of the target when it originates from a relatively moving
object. The target distance and relative speed of the target
may be determined using the Doppler principle. Millimeter-
wave radar is one of the tools used in this article that can
directly output object speed.

For camera speed measurement, we use the same target’s
pixel transformation between each frame for speed calcu-
lation. We assume d; ) and d (; ,, as the pixel changes of the
i-th target in the horizontal and vertical directions. The
overall motion magnitude d; of the i-th motion vector in
pixels/frame can be calculated by the following equation:

—2 _—2
A 12
dy=\dix +dgy) » (12)

where d, donates the pixel transformation value of the target
between two frames. It can be converted into a unit of
measurement of length in the real world using equation (9).

The speed refers to the space mean speed (SMS) that is
the average speed of all vehicles driving within a certain
length of road at a certain moment. It is used to evaluate the
service level of the road and is defined as follows:

1

R AT) "

where n denotes the number of times traveled over the
length of the road segment, and v; is the travel speed of the
i-th vehicle that is provided by the millimeter-wave radar.
The volume can be calculated using equation (10) once the
density and speed are available.

4. Experiments

In this section, the traffic dataset and experimental pa-
rameter settings are first used to test the proposed approach.
Subsequently, the object detection performance is compared
on two traditional algorithms and a deep learning method.
Finally, we present and discuss the experimental results.
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2D ground truth

(®)

FIGURE 2: 3D Rol association. (a) Annotated ground truth. (b) 3D region generated using the estimated value §. The orange area is the

estimated Rol.

FIGURE 3: Selected area of experiment in this paper.

4.1. Dataset. The data is collected using self-developed
equipment in this study. To accomplish dual-sensor sensing,
this device combines millimeter-wave radar with a camera.
The equipment is mounted on a tripod on the pedestrian
bridge, which is 6.73 meters above the ground. As illustrated
in Figure 4, we collect data throughout the day. We record
from all angles and are committed to the restoration of the
data acquisition process.

The dataset of this paper is comprised of the millimeter
wave-radar data at 4400 moments and the corresponding
4400 images. The image resolution is 2288 x 1712. The
dataset is grouped into training and testing sets. The training
set includes 2000 manually labeled traffic images in the
daytime and simulated traffic images in the nighttime. There
are 31708 vehicles in total. In this experiment, the unlabeled
nighttime traffic images are defined as the Target Domain T,
and the labeled daytime traffic images are defined as the
Source Domain S. We use the CycleGAN described earlier to
transfer the labeled daytime images and simulate the
nighttime images in order to minimize the labeling work-
load. Each image in the testing set is manually labeled for
performance evaluation purposes only. The testing set has
data for four scenarios including 2400 images in total. It is
divided into four subsets, each subset containing 600

pictures, which are divided into daytime traffic 1 (less ve-
hicles), daytime traffic 2 (more vehicles), nighttime traffic 1
(more vehicles), and nighttime traffic 2 (less vehicles).
Table 1 gives the details of our dataset. Figures 5 shows the
sample pictures from four testing sets.

4.2. Experimental Settings. This experiment consists of two
parts: vehicle detection and traffic flow parameters collec-
tion, which are both used to validate the accuracy of the
proposed method. Two different methods are considered
separately in the vehicle detection experiment:

(1) Method I: The images and manually labeled ground
truth are used to train a CenterNet model on the
training dataset. The learned model is then tested on
Scenario I (less vehicles at daytime) and Scenario IV
(less vehicles at nighttime).

(2) Method II: The proposed method fuses the data
from camera and millimeter-wave radar. The
images, points detected by millimeter-wave radar,
and manually labeled ground truth are used to
train the proposed model on the training dataset.
The learned model is then tested on Scenario I (less
vehicles at daytime) and Scenario IV (less vehicles
at nighttime). The information detected by the
millimeter-wave radar is used as a supplement to
the image information, which can compensate for
the performance loss based on image detection at
nighttime. Besides, the trained CenterNet men-
tioned in method I is taken as the comparison
methods.

In addition, two classical image processing algorithms
for vehicle recognition based on background removal are
used as comparative approaches. Multi-Layer background
subtraction method (MultiLayer) [48] and Mixture of
Gaussians algorithm based on Adaptive Gaussian Mixture
Model (MOG) [49] are the two algorithms in question. In
the tests, CenterNet [12] is used as a comparison tech-
nique. To reflect the sensor fusion effectiveness, all the
images are used directly after labeling, without any self-
defined preprocessing. The experiments are conducted
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(d)

FIGURE 4: Taken during (a) nighttime and (b) daytime, respectively, (c) shooting the process of image acquisition from a closer perspective,

and (d) composition diagram of the equipment.

using Python 3.6, PyTorch 1.1, and Cuda 10.1 in Windows
10 system. The batch size and training epoch are set as four
images and 140 in the experiments. All these experiments
are conducted on a workstation with a CPU of 2.6 GHz,
and a NVIDIA GTX 2080 TI GPU with 12 GB memory. Six
metrics are used to evaluate the detection performance of
the aforementioned methods, including mean Average
Precision (mAP), Precision, Recall, F-measure, Number
of False Positives per image (Npp error/image), and
Number of False Negatives per image (Npy error/image).
The definitions of Precision, Recall, and F-measure are as
follows:

. TP
Precision = ———,
TP + FP
TP
Recall = ———, 14
T TPy EN (14)

2 X Precision x Recall

F — measure = -
Precison + Recall

where TP, FP, and FN refer to true positive, false positive,
and false negative, respectively. The F-measure is an overall
metric combining precision and recall; therefore, we use it to
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TaBLE 1: Details of the collected dataset in the experiments.

Training set Image number Vehicle number Date

Daytime-training 1000 11547 11/20/2020
Fake nighttime-training 1000 11547 11/20/2020
Daytime-testing 1 600 5856 01/10/2020
Daytime-testing 2 600 7690 01/12/2020
Nighttime-testing 1 600 4023 01/10/2020
Nighttime-testing 2 600 2592 01/12/2020

FIGURE 5: Sample pictures of four testing sets. (a) Daytime-testing 1. (b) Daytime-testing 2. (c) Nighttime-testing 1. (d) Nighttime-testing 2.

report the overall performance. The mAP (%) metric is the
precision value averaged across all recall values between 0
and 1 for the vehicles, which is considered a comprehensive
metric to effectively demonstrate the detection performance.
For all the methods, the performance evaluation uses a
uniform threshold of 0.5 for the Intersection over Union
(IoU) between the predicted bounding box and the ground
truth.

In the experiment on traffic flow parameters collection,
the vehicle speed is provided by the millimeter-wave radar,
and vehicle count is evaluated. Accuracy is used as a metric
to evaluate the vehicle count. The mean absolute error
(MAE) is taken as the metric to evaluate the count of vehicle.
It is the average value of the absolute error, which can well
reflect the actual situation of the predicted value error and
can be calculated using the following equation:

1 N
MAE:NZU,»—;V,»L (15)
i=1

where f; is the estimation value and y; denotes the ground
truth value. Smaller value of MAE indicates better
performance.

4.3. Results. The improved vehicle detection performance
can provide more accurate traffic flow parameters in
practical applications. This study offers a technique based on
the combination of millimeter-wave radar and camera to
address the performance loss of vehicle detection at night
using just traffic surveillance. The performance loss of im-
age-based vehicle detection may be mitigated in the com-
plicated illumination environment at night using
millimeter-wave radar’s all-weather operating features. We
employ millimeter-wave radar to get object representations
before performing the fusion in our detection solution. A
uniform threshold of 0.5 is determined for the IoU between
the predicted bounding boxes and ground truth, and the
experimental results in this paper will be displayed in this
section. The experimental results of vehicle detection of four
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methods mentioned above will be compared in the per-
formance evaluation in this paper.

The CycleGAN is used to achieve image-to-image
conversion between the daytime source domain S and the
nighttime target domain T. The result of a thousand rounds
of transfer processing is stored, and the best result is dis-
played in Figure 6.

The findings of the complete detection performance
evaluation are provided in Table 2. This table shows that, in
terms of these six criteria, deep learning techniques to ve-
hicle recognition outperform standard image processing
methods. The detection performance of two classic image
processing approaches, MOG and MultiLayer, is much
worse when compared to deep-learning-based methods.
Traditional image processing algorithms also perform worse
at night than during the day in terms of detection. The
possible explanation may be that, at night, the light spot
formed by the lights of the vehicle on the ground will be
recognized as a foreground object. Despite the fact that
conventional approaches have a significantly lower recall
than deep learning techniques, MultiLayer has out-
performed another old method. On the average of four
testing sets, MultiLayer receives 78.40% of accuracy and
71.29% of F-measure.

Deep learning performs better than the traditional
method due to the strong discriminative feature extraction
capabilities of the Convolutional Neural Network (CNN)
framework. Out of all detection methods, our proposed
method performs the best with the values of Precision and F-
measure achieving 88.03% and 91.10%, respectively. fol-
lowed by CenterNet, which achieves 86.17% and 89.97% on
these two evaluation indicators. The proposed method and
CenterNet are comparable and similar. Nevertheless, the
proposed method has slightly better efficiency on our testing
dataset.

Only the results based on MultiLayer, CenterNet, and
the proposed approach for scenarios I and IV are given in
Figure 7, which illustrates the visual results for vehicle
recognition on actual daylight and nighttime pictures.
During the night, the MultiLayer method displays several
missed detections. CenterNet does a better job, but it still has
a lot of false positives and false negatives. The proposed
method gets the least false positive and false negative errors,
which demonstrates improved vehicle detection in the
nighttime. This improvement is achieved thanks to the
proposed method’s compensation of the image-based target
detection by the millimeter-wave radar.

As CenterNet is the baseline model chosen for the ex-
periments, we only compare it with the proposed method
during traffic flow parameters collection. The performance
of the two methods is similar during the daytime. The recall
values of CenterNet at the daytime are 92.75% and 91.65%,
respectively, while those of the proposed algorithm are
93.26% and 94.34%, respectively. Both methods have similar
performance in the daytime. However, the proposed method
improves the performance of collecting the number of ve-
hicles at nighttime. Table 3 shows that, in the presence of
vehicles at nighttime, the accuracy provided by proposed
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method increases by almost 8% and 5% in the two nighttime
scenarios, respectively, compared with CenterNet.

As mentioned above, the testing set is divided into
daytime traffic 1 (less vehicles), daytime traffic 2 (more
vehicles), nighttime traffic 1 (more vehicles), and nighttime
traffic 2 (less vehicles). It can be seen from Table 3 that,
compared with CenterNet, the estimation accuracy of the
proposed method of the counts of vehicles in the four
scenarios is increased by 0.51%, 2.69%, 7.96%, and 3.98%,
respectively. From this set of data, we can see that, in terms
of the estimation accuracy of the counts of vehicles, the
increase in the daytime is lower than that in the nighttime,
and the increase in the sparse vehicle scene is lower than that
in the dense vehicle scene. The possible reason is that the
lighting environment at night is complicated, and other light
sources such as street lights and car lights are interlaced and
complicated, resulting in irregular image brightness distri-
bution, poor image visibility and contrast, and lack of re-
quired details and context, resulting in a decrease in the
accuracy of target detection based on image. The accuracy of
vehicle counts estimation will also decrease. For the dif-
ference between the sparse vehicle scene and the dense
vehicle scene, in the data collection method of this article,
one possible explanation is that when the density of vehicles
is high, the vehicles will overlap to a greater extent, which is
not conducive to image-based target detection. For radar,
radar relies on echoes for target judgment. When targets
overlap, the loss of detection performance is smaller than
that of the image.

The proposed method achieved a satisfactory perfor-
mance in the vehicle count collection in daytime and
nighttime as shown in Table 3. In this study, the deep
learning model we trained did not use any nighttime manual
labels as supervisions, and the great accuracy improvement
during nighttime is quite promising.

Figure 8 shows the visual results of the estimated and
ground-truth counts for the whole day traffic conditions.
The position and internal parameters of our device are fixed
during the data collection. It can be intuitively observed that
the proposed method improves the vehicle counting accu-
racy. The experimental results show that the significant
accuracy increases by the proposed method compared to
CenterNet especially at nighttime.

Table 4 displays the vehicle speed estimation findings for
the four scenarios in the collected dataset. We compared
CenterNet and the proposed method with ground truth.
During the daytime, the average MAE of the CenterNet is
1.63, and the average MAE during nighttime is 4.04. The
proposed method has a MAE of 0.995 during the daytime
and 1.295 during nighttime. Compared with CenterNet, the
proposed method improves by 0.64 and 2.745 during the
daytime and nighttime, respectively.

In addition, we were able to deduce the density and
volume estimated by the proposed method in the selected
road section in the collected dataset, which is shown in
Table 5. It can be seen from Table 5 that when the number
and density of vehicles are small, the vehicle speed is higher.
The traffic flow is quite different during the day and night,
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FIGURE 6: Image-to-image conversion between the daytime and nighttime by CycleGAN.

TaBLE 2: Results of detection performance evaluation on the testing sets. On average of four testing subsets, the mean values of [Precision, F-
measure] obtained by different methods are as follows: MOG [76.94%, 14.93%], MultiLayer [78.40%, 71.29%], CenterNet [86.17%, 89.97%],
proposed method [88.03%, 91.10%].

Daytime-testing 1

Method Precision Recall F-measure Npgp/image Ngn/image mAP
MOG 83.27% 9.83% 16.76% 0.13 47.21 74.86%
MultiLayer 85.66% 78.29% 77.42% 6.59 15.62 79.93%
CenterNet 96.32% 92.75% 94.36% 0.95 2.79 97.57%
Proposed 97.37% 93.26% 93.21% 0.83 2.46 98.1%
Daytime-testing 2
MOG 86.18% 9.33% 17.14% 0.55 50.73 73.24%
MultiLayer 85.37% 69.86% 74.36% 7.48 17.23 87.4%
CenterNet 94.79% 91.65% 97.6% 0.58 2.49 98.2%
Proposed 96.3% 94.34% 96.83% 0.73 2.52 97.93%
Nighttime-testing 1
MOG 73.49% 7.28% 11.45% 1.90 43.69 58.42%
MultiLayer 74.28% 61.16% 62.13% 3.51 2.24 54.03%
CenterNet 77.21% 87.48% 83.93% 2.23 0.85 75.99%
Proposed 79.10% 95.44% 86.82% 1.89 0.75 88.39%
Nighttime-testing 2
MOG 64.81% 6.72% 14.36% 2.13 50.73 52.56%
MultiLayer 68.27% 64.62% 71.26% 2.87 2.62 51.78%
CenterNet 76.36% 89.14% 83.97% 1.81 1.10 75.37
Proposed 79.33% 93.12% 87.54% 1.34 1.82 86.27%

FIGURE 7: Detection results in Scenarios I and IV. The order from left to right is MultiLayer, CenterNet, and the proposed method.
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TaBLE 3: Results of vehicle counting accuracy during daytime and nighttime.

Method Scenario 1 (%) Scenario 2 (%) Scenario 3 (%) Scenario 4 (%)
CenterNet 92.75 91.65 87.48 89.14
Proposed 93.26 94.34 95.44 93.12
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TABLE 4: Results in vehicle speed estimation of four scenarios in the collected dataset. MAE is the metric to evaluate the count of vehicle,
which is mentioned in section 4.2.

Method Metric Scenario 1 Scenario 2 Scenario 3 Scenario 4
CenterNet MAE 1.56 1.69 3.36 4.72
Proposed MAE 0.96 1.03 1.36 1.23
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TaBLE 5: Summary of the estimated traffic flow parameters by the
proposed method in four scenarios in the collected dataset. Pc
donates passenger cars.

Iraffic Scenario 1 Scenario 2 Scenario 3 Scenario 4
parameter

Count (pc/ 13.6 152 7.2 5.1
frame)

Speed (km/h) 46.9 37.5 42.6 46.3
Density (pc/km) 104.6 116.9 55.4 39.2
Volume (pc/h) 4905.74 4383.75 2360.04 1826.72

showing a low-density high-speed overall at nighttime, and a
high-density and vulgar flow during the daytime.

5. Conclusion

In this paper, a method for combining millimeter-wave
radar and picture data is provided. The CenterNet serves as
the baseline for our proposed approach, which is then
augmented with millimeter-wave radar data. A set of data
was obtained to train the suggested technique, and four
more sets of data were collected to verify and analyze the
method. The experimental results show that the proposed
method improves the accuracy of vehicle detection and
traffic flow parameters collection during the whole day.

In the future, we will concentrate on the following topics.
First, various weather characteristics, such as rain, snow, and
fog, will be considered during the traffic flow parameters
collection. Second, based on the detection results, the next
step of vehicle tracking and trajectory extraction will provide
more data for road management and control. Last, using
actual traffic flow parameters to maximize traffic efficiency in
the face of mixed traffic flow will be considered in the
coming era of autonomous vehicles.
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