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(e traditional methods for multi-focus image fusion, such as the typical multi-scale geometric analysis theory-basedmethods, are
usually restricted by sparse representation ability and the transferring efficiency of the fusion rules for the captured features.
Aiming to integrate the partially focused images into the fully focused image with high quality, the complex shearlet features-
motivated generative adversarial network is constructed for multi-focus image fusion in this paper. Different from the popularly
used wavelet, contourlet, and shearlet, the complex shearlet provides more flexible multiple scales, anisotropy, and directional
sub-bands with the approximate shift invariance. (erefore, the features in complex shearlet domain are more effective. With of
help of the generative adversarial network, the whole procedure of multi-focus fusion is modeled to be the process of adversarial
learning. Finally, several experiments are implemented and the results prove that the proposed method outperforms the popularly
used fusion algorithms in terms of four typical objective metrics and the comparison of visual appearance.

1. Introduction

(e target information may display the differentiation for
the lengths of the focus during the imaging procedure, that
is, the closer the object to the focus is, the clearer the image
is. On the other hand, it is difficult to synchronously get the
full-focus image by only one imaging device [1]. A common
method to deal with this problem is to fuse multiple images
of the same scene into images of different focal lengths,
which is called the multi-focus image fusion and has been
widely used in military monitoring, image analysis, and
transportation [2]. For example, in modern wars, the multi-
focus images can be used to monitor important targets and
facilities of the enemy, and in the transportation domain, the
multi-focus images can be used to track logistics and vehicle
information and even penalize violations.

Nowadays, there are mainly four kinds of strategies for
the fusion of multi-focus images: the spatial domain
methods, the early transform domain methods, the multi-
scale geometric analysis theory-based methods, and the deep

learning theory-basedmethods.(e spatial domainmethods
usually directly implement the linear computation on the
image pixel, for example, the averaging method, maxing
method, and weighted method. (e early transform domain
methods include the Laplace pyramid-based method,
wavelet-based method, etc.

In these methods, the multi-focus images are decom-
posed into different scales and each scale is with a limited
number of sub-bands. (en, the features in different levels
can be obtained for fusion. For example, in reference [3], the
authors proposed a fusion method by using the extremum of
the wavelet coefficients in different sub-bands. Dou et al. [4]
proposed a fusion method by using the region energy in
different high-pass sub-band coefficients by considering
their distributions. Due to the limited number of high sub-
bands, some block artifacts of edges may appear in these
methods. To deal with these problems, multi-scale geometric
analysis theory-basedmethods have been popularly reported
in recent years. (e curvlet transform, contourlet transform,
non-subsampled contourlet transform (NSCT), and the
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shearlet are the typical decomposition tools in this period.
For example, Li and Yang [5] proposed a fusion method by
combining the wavelet and curvelet to overcome the dis-
advantages of the wavelet. He et al. [6] proposed a multi-
focus image fusion method based on the improved con-
tourlet package. Qu et al. [7] proposed the spatial frequency-
motivated PCNN model in NSCT domain, and the spatial
frequency was used to implement the firing mapping in the
method. Liao et al. [8] proposed a shearlet-based fusion
method by employing the statistical information of the
shearlet coefficients. Considering the fusion procedure of the
aforementioned methods, it is obvious that the fusion results
are highly determined by the performance of the decom-
position abilities.

From the viewpoint of fusion rules, the fusion proce-
dure of the multi-scale geometric analysis theory-based
methods can be modeled to be the classification problem of
the multi-scale transformation coefficients. (ere are also
three typical categories for the fusion rules: the active level
metric-based rule, the kernel learning-based fusion rule,
and the neural network-based fusion rule. For the former,
the algebraic operations, such as averaging and maxing, are
popularly used. (e second one includes the ICA, SVM,
and PCA. In literature [9], the principal component
analysis (PCA) is implemented in dictionary training to
reduce the dimension of transform coefficients. In litera-
ture [10], the cartoon components and the texture com-
ponents are combined by ICA. (e artifacts are easy to
produce for the classification determined by the simple
computations for the single coefficient. (e neural net-
work-based rule has been popularly reported in recent
years, and some good results have been obtained. For
example, in literature [11], the PCNN model is used to be
the fusion rule by combining the NSCT together. (ough
good results have been obtained, these models are not
abstract enough, which means the features are all in low
levels. So, advanced neural network models should be
further developed.

Compared with the traditional neural networks, the
deeply coupled neural network is the breakthrough in this
domain and has been popularly applied in image denoising,
image recognition and classification, and in image fusion
[12]. For example, a novel image fusion method for the
multi-focus image was proposed based on the support value-
motivated deep convolutional neural network model in
literature [13]; a general multi-focus image fusion frame-
work, called IF-CNN, was developed based on the deeply
convolutional neural network in literature [14]. (e MFF-
GAN and Pan-GAN, under the mechanism of the unsu-
pervised generative adversarial network, are proposed in the
literature [15] and [16], respectively, and detail preserving
adversarial learning model is proposed in literature [17, 18].
Specially, according to some recent references, good results
are always obtained by the GAN-based methods. (e main
reason lies in its unique characteristics: firstly, the GAN
model has more complex and deep network structure than
the commonly used neural network; secondly, modeling the
fusion process into the adversarial learning is more in line
with the general principle of human understanding of the

world. However, the common characteristics of the well-
known methods are that they are directly developed in the
pixel level, the important image features are not carefully
used.

In order to overcome the shortcomings of the above
methods, a multi-focus image fusion method based on the
GAN in the complex shearlet domain is developed. Different
from the traditional transformation methods, such as the
curvelet and the contourlet, the complex shearlet can divide
the source images into high-pass and low-pass sub-bands to
provide more useful features. Besides, the computational
efficiency of complex shearlet is higher than that of the
NSCT to get the same shift invariance. With the help of the
GAN, the whole fusion can be modeled by the adversarial
learning of the features in the complex shearlet. (erefore,
better fusion results can be obtained in the feature level.

(e rest of this paper is organized as follows. (e details
of the whole method are given in Section 2. Experimental
results and some important discussions are given in Section
3. Finally, the paper is concluded in Section 4.

2. Methodology

Figure 1 shows the structure of the proposedmethod. Firstly,
the images to be fused are input into the GAN, and at the
same time, the complex shearlet is implemented to get the
high-pass subbands for them. (en, the features in the
complex shearlet domain are computed to produce the new
form of the loss function. (e loss function is updated to
drive the training of the GAN, and the final fusion results can
be obtained after the training is finished.

2.1. )e Complex Shearlet Transform. As one of the most
famous multi-scale geometric transformation tools, the
complex shearlet transform can extract directional infor-
mation of different scales and deliver highly sparse ap-
proximations of the 2D signals. Generally speaking, it
divides the source images into low-pass and high-pass sub-
band images in different levels, i.e., the approximately sparse
representation of the source images and the obvious feature
information of the images. Different from the discrete
wavelet, contourlet, and shearlet, the complex shearlet is
realized based on the multi-scale pyramid filters and the
Hilbert transform [19, 20]. (e former gives the multiple
partitions of the image, and the latter provides the direc-
tional sub-bands in the complex space. Figure 2 gives an
example of the complex shearlet transform on a “clock with
the left focus.”

2.2. )e Feature in the High-Pass Sub-Bands. After the
complex shearlet transform is done, the shearlet coefficients
with large absolute values are considered to be the sharp
brightness or salient features, meaning that they are the
focused regions in the source images. Considering the aim of
bringing the focus to the fused image, it needs to extract the
focus firstly by using the complex shearlet coefficients.

On the other hand, the features in themulti-focus images
can be uniformly described by the activity-level

2 Journal of Advanced Transportation



measurements, such as the local energy, standard deviation,
and spatial frequency [21, 22]. For the above reasons, local
energy and spatial frequency are used to represent the
important features in the high-pass coefficients. Further-
more, different from their common form used in other
literatures, they are computed in multiple scales and
directions.

2.3. )e GAN Model

2.3.1. )e Structure of the GAN. Usually, the complete
structure of the GAN network consists of two parts: the
generator and the discriminator [23, 24]. (e detailed
structure of the GAN model used in this paper is shown in
Figures 3 and 4.

For the generator, five convolutional layers are used to
extract features. A 5 x 5 convolution kernel is used in the first
convolutional layer, and a 3 x 3 convolution kernel is used
for the other four layers. (e inputs of each layer are
connected by the outputs of all the previous layers, with the
aim of speeding up the convergence and improving the
stability of the model [25] All the activation functions are set
to be “ReLU,” i.e., rectified linear unit. Furthermore, layer
normalization (BN) is also employed to preserve the contrast

information of the source images. It calculates the average
value of all the dimensional inputs in each layer and finally
implements the normalization operation.(e advantages are
to reduce the sensitivity of initializing data and effectively
avoid the gradient disappearance problem [26].

Different from the generator, the main propose of the
discriminator is to give the decision by classification. As
shown in Figure 4, the discriminator has the same structure
with the convolutional neural network which has two inputs,
i.e., the Laplacian joint enhanced image from the source
images and the fused image from the generator. Four layers
of the 3× 3 filters are designed to implement the convolution
to capture the feature information. Meanwhile, in order to
reduce the loss of important information caused by using the
downsampling scheme, the activation function is set to be
“ReLU.” Finally, the fully connected layer is used to classify,
and the sigmoid function is employed to output the final
results.

2.3.2. )e Loss Function. (e loss function plays the role of
minimizing the loss of the training to get the ideal model,
and it usually consists of the generator loss function and
discriminator loss function, as shown in the following
formula:

Fusion image F

Discriminator

A′

B′
F′

A
B

F

Update
Loss function

Target image

Detail features

Complex shearlet transform

Generator

Multi-channel image

Image A Image B

Figure 1: (e architecture of the proposed method.
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Figure 2: An example of the complex shearlet transformation.
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LGAN � min LG( 􏼁, min LD( 􏼁􏼈 􏼉, (1)

where LG, LD are the generator loss function and the dis-
criminator loss function, respectively.

According to the original model, LG is defined by for-
mula (2). It is computed by the summarizing the con-
frontation loss R and the content loss C from the procedure
of the image generation.

LG � R + λC, (2)

R �
1
N

􏽘

N

n�1
D I

n
f − α􏼐 􏼑􏼐 􏼑

2
, (3)

C � μ1fin + μ2fgrad, (4)

where λ is a balanced weight between R and C, In
f is the target

image to be fused, N is the number of fused images, D(In
f) is

the result of classification, α means that the false data is rec-
ognized to be true by the discriminator,fin is the intensity loss,
fgrad is the gradient loss, and μ is the balanced weight.

LD can be expressed as

LD �
1
N

􏽘

N

n�1
D GIf

􏼒 􏼓 − b􏼔 􏼕
2

+ D Gjoint􏼐 􏼑 − c􏽨 􏽩
2
, (5)

where Gjoint is the joint Laplace enhanced gradient map, GIf

is the gradient map of the fused image, and b and c are their
labels, respectively.

From all the formulas above, it can be seen that target
image to be fused is very important in confrontation
learning. (e common way to get it is to average the images
to be fused or let it be initialized by one of the images to be
fused. (e drawback is that it is far from the final results and
should spend much time and resource to get the optimal
decision during the confrontation.

(erefore, a new form of the target image is proposed.
Let Cλ(a, b) be the low-pass sub-band coefficient at position
(a, b), λ � A, B. (e low-pass coefficient of the fused image
can be obtained by

CF(a, b) �
CA(a, b), EA(a, b)≥EB(a, b),

CB(a, b), EA(a, b)<EB(a, b),
􏼨 (6)

where Eλ is the local energy computed in the 3 × 3
neighborhood.

Let Cl,k
λ (i, j) be the high-pass coefficient at (i, j) in the

l-th sub-band and the k-th level after implementing the
complex shearlet transformation, λ � A, B; then, the high-
pass coefficient of the fused image can be obtained by

C
l,k
F (i, j) �

C
l,k
A (i, j), S

l,k
A (i, j)≥ S

l,k
B (i, j),

C
l,k
B (i, j), S

l,k
A (i, j)< S

l,k
B (i, j),

⎧⎨

⎩ (7)

where sλ is the spatial frequency which can be computed by
the following formula:

sλ � 􏽘
K

q�1,q≠ k

􏽘

L

p�1,l≠p

S C
l,k
λ , C

p,q

λ􏼐 􏼑. (8)

(en, the target image In
f can be obtained by applying

the inversion of the complex shearlet transform on the fused
low-pass and high-pass sub-bands.

3. Experimental Results and Analysis

(e experiments are implemented to show the performance of
the proposed method. (e platform used is Inspur big data
server NF5280M4 with Intel Xeon CPU and 256GB RAM.100
pairs of multi-focus images are used for the training. All the
data can be downloaded from the web [27–30].

Seven typical methods, i.e., PCNN-based method
(PCNN for short) [31], the contourlet-based method
(contourlet for short) [32], the GAN-based method (GAN
for short) [17], the DCNN-based method (DCNN for short)
[33], the discrete shearlet-based method (shearlet for short)
[34], the convolutional sparse representation-based method
(CSR for short) [35], and sparse representation and sum
modified-Laplacian-based method (SR-SML for short) [36],
are implemented. (e level of the complex shearlet is four.

So far, how to evaluate the quality of the fusion results is
still a confusing question. Subjectively visual and objectively
quantitative comparison is the mainstream practice in this
domain. Without loss of generality, mutual information,
entropy, standard deviation (MI, En, and SD for short,
respectively), and QAB/F are selected to be the metrics. (e
greater their value, the better the fusion images [37–39].

To save space, only “Pepsi-Cola,” “Plane,” “Clocks,”
“Flower,” “Cup,” and “Calendar” are shown in Figure 5. All
the fusion results are shown in Figures 6–11 . In Figure 7, the
middle part of the “Plane” is partially enlarged to compare
the local detail features.

From the above methods, we can see that though the
focus regions are expressed better than the source image, the
fusion results are different from each other. For the PCNN-
based method, blurred edges obviously occur, and so the
details are not clear enough. For the contourlet method,
shearlet method, CSRmethod, and SR-SMLmethod, though
the results are improved, the contours are sharpened and the
phenomenon of ghosting occurs. (is can be explained by
comparing the ability of the sparse representations for the
important image features.

As for the GAN based the DCNN-based method, the
results are much clear, but the texture information is not
good enough by comparing the results obtained by the
proposed method. (is is because these two models are
directly learned based on the pixel of the images to be fused.
(e importance of the feature in the procedure of learning is
not fully considered. On the other hand, the texture in-
formation in the proposed method is highly improved and
the ghosting phenomenon is suppressed to the greatest
extent. Furthermore, this can also be proved by the enlarged
images in Figures 7 and 11. In addition, from the objective
comparison in Tables 1 and 2, the best value of the four
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(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 6: (e fusion results of “Pepsi-Cola.” (a) PCNN. (b) Contourlet. (c) GAN. (d) Shearlet. (e) CSR. (f ) SR-SML. (g) DCNN.
(h) Proposed.

Figure 5: Parts of the source images in experiments.

(a) (b) (c) (d)

Figure 7: Continued.
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(e) (f ) (g) (h)

Figure 7: (e fusion results of “Plane.” (a) PCNN. (b) Contourlet. (c) GAN. (d) Shearlet. (e) CSR. (f ) SR-SML. (g) DCNN. (h) Proposed.

Table 1: (e fusion performance of the seven methods and the proposed method from Figures 6–8.

Method
Pepsi-Cola Clock Plane

SD QAB/F En MI SD QAB/F En MI SD QAB/F En MI
PCNN 43.71 0.36 6.58 4.46 39.27 0.50 6.98 5.01 44.97 0.40 3.91 3.39
Contourlet 44.11 0.59 7.00 5.39 39.41 0.57 7.00 5.19 46.24 0.48 3.98 3.35
Shearlet 44.07 0.61 7.10 5.34 39.44 0.52 7.00 5.21 46.70 0.49 4.06 3.41
GAN 44.25 0.70 7.16 5.38 39.95 0.62 7.06 5.20 45.842 0.69 4.04 3.72
CSR 45.23 0.76 7.10 5.50 40.50 0.68 7.03 5.42 48.10 0.73 4.08 3.60
SR-SML 45.40 0.78 7.11 5.55 40.88 0.69 7.05 5.44 48.90 0.76 4.19 3.62
DCNN 44.80 0.74 7.06 5.41 39.66 0.65 7.00 5.32 46.85 0.68 4.03 3.58
Proposed 45.25 0.78 7.20 5.60 40.88 0.69 7.10 5.53 50.15 0.76 4.28 3.72

Table 2: (e fusion performance of the seven methods and the proposed method from Figures 9–11.

Method
Flower Cup Calendar

SD QAB/F En MI SD QAB/F En MI SD QAB/F En MI
PCNN 40.61 0.41 3.90 4.72 38.22 0.43 4.01 4.21 37.42 0.40 4.88 4.31
Contourlet 40.62 0.40 4.02 4.73 38.39 0.42 4.03 4.38 37.65 0.52 5.35 4.47
Shearlet 40.81 0.42 4.06 4.89 38.44 0.45 4.08 4.41 38.15 0.56 5.55 4.55
GAN 40.81 0.57 4.80 4.99 39.10 0.51 4.10 4.63 38.59 0.60 5.76 4.91
CSR 40.89 0.59 4.65 4.77 38.55 0.54 4.10 4.60 39.03 0.66 5.90 4.89
SR-SML 41.19 0.57 4.66 5.12 38.71 0.55 4.14 4.72 39.11 0.67 5.93 4.91
DCNN 40.16 0.60 4.81 5.16 40.01 0.58 4.09 4.81 39.98 0.65 5.98 5.24
Proposed 41.26 0.68 4.96 5.27 40.21 0.63 4.18 4.93 39.91 0.67 6.00 5.29

(a) (b) (c) (d)

Figure 8: Continued.
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(a) (b) (c) (d)

Figure 10: Continued.

(e) (f ) (g) (h)

Figure 8: (e fusion results of “Clocks.” (a) PCNN. (b) Contourlet. (c) GAN. (d) Shearlet. (e) CSR. (f ) SR-SML. (g) DCNN. (h) Proposed.

(a) (b) (c) (d)

(e) (f ) (g) (h)

Figure 9: (e fusion results of “Flower.” (a) PCNN. (b) Contourlet. (c) GAN. (d) Shearlet. (e) CSR. (f ) SR-SML. (g) DCNN. (h) Proposed.
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metrics can be almost obtained by the proposed method. All
the above facts fully demonstrate the effectiveness and ac-
curacy of the proposed method.

4. Conclusion

To get better fusion results for the multi-focus images, the
features-motivated generative adversarial network is con-
structed with the help of the complex shearlet transform. Six
typical experiments have been carefully implemented to
show the full evidence of the effectiveness and accuracy. In
the future, more complex models will be built to further
improve the fusion performance.
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