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In recent years, customized bus (CB), as a complementary form of urban public transport, can reduce residents’ travel costs,
alleviate urban traffic congestion, reduce vehicle exhaust emissions, and contribute to the sustainable development of society. At
present, customized bus travel demand information collection method is passive. )ere exist disadvantages such as the amount of
information obtained is less, the access method is relatively single, and more potential travel demands cannot be met. )is study
aims to combine mobile phone signaling data, point of interest (POI) data, and secondary property price data to propose a method
for identifying the service areas of commuter CB and travel demand. Firstly, mobile phone signaling data is preprocessed to
identify the commuter’s location of employment and residence. Based on this, the time-space potential model for commuter CB is
proposed. Secondly, objective factors affecting commuters’ choice to take commuter CB are used asmodel input variables. Logistic
regression models are applied to estimate the probability of the grids being used as commuter CB service areas and the probability
of the existence of potential travel demand in the grids and, further, to dig into the time-space distribution characteristics of people
with potential demand for CB travel and analyze the distribution of high hotspot service areas. Finally, the analysis is carried out
with practical cases and three lines are used as examples. )e results show that the operating companies are profitable without
government subsidies, which confirms the effectiveness of the method proposed in this paper in practical applications.

1. Introduction

As a new innovative public transport mode, the CB advo-
cates energy saving and emission reduction, green travel,
alleviating urban traffic congestion, and providing people
with high-quality travel services in a “point-to-point” way
[1, 2]. CB originated from the idea of “car-sharing.” It was
introduced in 1948 by the organization “Sefage” in Sweden
to save transportation costs for families who did not own a
car [3]. Travel demand is an important part of customized
bus route planning. Before most scholars study the route
planning framework, they need to analyze the travel demand
initially. K Tsubouchi et al. [4] applied the Internet and big
data to develop a demand-responsive bus system that could
be adapted to different city types. Qiu et al. [5] investigated a
method to improve the performance of flexible route buses
in an operational environment with uncertain travel

demand. Scott et al. [6] researched both ‘point-to-point’ and
‘round-trip’ modes in London and predicted future demand
for customized buses in London. ANand Lo [7] proposed a
two-stage solution algorithm, compared to the traditional
robustness formulation to determine the service with reli-
ability using a two-stage formulation. Liu et al. [8] proposed
a new commuter minibus transit system with on-demand
interaction. )e authors evaluated and compared the per-
formance of CB, PC, and conventional public transportation
systems through travel cost, travel time, and fuel con-
sumption. Lyu et al. [9] proposed a CB-Planner method for a
bus line planning framework with multiple travel data
sources and designed a heuristic solution framework.

China’s CB development started late and is still in the
development stage. Zhong et al. [10] collected passenger
travel demand information through online questionnaires
and a mobile phone app and identified a suitable passenger
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flow catchment area division method. By considering the
station traffic volume and regional capacity allocation, a
suitable regional clustering method for passenger flow
distribution is established. Cheng et al. [11] used the data
from the public bus smart card tomine potential CB demand
points. Yu et al. [12] planned CB stops and routes based on
large amounts of demands data. Liu et al. [13] proposed a
visual analysis method. )ey evaluated the actual, dynam-
ically changing travel demand and planned the routes for the
nighttime CB system. )e reliability of the method was
verified with cases.

At present, many scholars mainly research line opti-
mization, station location, and price strategy and have
achieved certain research achievements [14–16]. And the
research on commuter CB travel demand is rather inade-
quate. Existing ways of collecting information on CB travel
demand are mainly through online collection (e.g., Ma et al.
proposed a framework of CB methods based on online
questionnaires to obtain travel demand [17]) or through
offline questionnaires in some large residential areas,
commercial areas, transportation hubs, and other areas (e.g.,
Li et al. used RP and SP questionnaires to research the factors
of influencing the potential travel demand for CB in
Shanghai, China [18]). However, this passive way of col-
lecting travel demand information is time-consuming and
costly. In addition, due to the incomplete coverage and low
audience level of the current CB travel demand information
collection, the mining of the potential commuter CB travel
demand population is neglected. Only by collecting data
online or offline for a certain region, it is inevitable that the
data collected for the study of travel demand is not large
enough and the coverage is not extensive. )ere are more
potential travel demands that cannot be met.

In view of the existing problems and combined with big
data processing technology, this paper proposes commuter
CB service areas and travel demand identification method
based on mobile phone signaling data. With the following
main contributions: (1) Combining mobile phone signaling
data and using big data processing technology, the distri-
bution characteristics of commuters’ workplace and resi-
dence are identified. Based on the above, a time-space
potential model of commuter CB travel is established and an
algorithm is designed to solve it. (2) Using the unit grid as
the fundamental unit, we choose the factors affecting pas-
sengers’ choice of the commuter CB as the input parameters
of the model. )e logistic regression model is constructed
and solved by SPSS software, to study the time-space dis-
tribution characteristics of people with potential commuter
CB travel demand and to further identify the service areas of
commuter CB and travel demand.

)e rest of the paper is organized as follows. In Section 2,
a brief description of the data types used in the paper is
given. In Section 3, the commuter CB service areas and travel
demand identification method are proposed.)e central city
of Chongqing, China, is used as a case study for demon-
stration in Section 4. )e main findings of the paper are
briefly summarized, and further perspectives on the fol-
lowing research on CB travel demand are discussed in
Section 5.

2. Data Description

)e data used in this paper involve three parts: mobile phone
signaling data, POI data of rail stations and bus stops, and
data of secondary housing prices around where commuters
reside.

(i) Mobile phone signaling data: it is provided by the
operator of China Unicom in Chongqing, China. It
has covered 38 districts and counties in the city for
mobile phone signaling monitoring, with signaling
collection interval of 30–60min. )e average
number of daily subscribers is 4.7 million. )e
average number of valid signaling data records for a
single user is 26. In this paper, about 43 million data
pieces of China Unicom in August 2019 are selected
as the research data to identify the space-time
distribution characteristics of commuters’ occupa-
tion and residence. And 175,794 users from 7:00
a.m. to 9:00 a.m. on a working day in August are
chosen as the research data for potential travel
demand mining.

(ii) POI data of rail stations and bus stations: the POI
data of the study area including 10,780 bus stations
and 158 rail stations are crawled in Python pro-
gramming language by retrieving the Gaode API
interface. )e POI attributes information included
station ID, longitude, and latitude.

(iii) Secondary house prices data: by crawling the sec-
ond-hand house prices on the websites of 58
TongCheng and LianJia in China, we obtain the
name of each community, convert it to latitude and
longitude coordinates, and obtain its spatial geo-
graphic information. )e mean value of the sec-
ondary house price near the commuter’s residence
is used as the input parameter of the model, and this
feature is used to represent the income of the
commuter.

3. Identification Method of Service Areas and
Travel Demand

In the process of generating mobile phone signaling data, the
natural environment, interference from human factors, and
other conditions can lead to error in the location of cellular
cells, and there may be missing data and duplication. At first,
the abnormal data are cleaned, and on this basis, the origin
(O) and destination (D) of commuters in the study area are
identified using the training method proposed in [19]. )e
characteristics of commuters’ occupational and residential
distribution are obtained. Based on the time-space distri-
bution characteristics of commuter travelers’ occupations
and residences, a time-space potential model of commuter
CB is established. We considered the influence factors as the
input parameters of the model and established logistic re-
gression model. We use the model to predict the study area
and select the areas that meet the conditions as the com-
muter CB service area. Based on this, we further identify the
potential commuter CB travel demand population.
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3.1. Time-Space Potential Model. In this paper, based on
mobile phone signaling data, the travel regularity of com-
muters, the similarity of travel time and spatial distribution
of work and residence, and the possibility of taking com-
muter CB in time-space distribution are comprehensively
considered. Based on the shared travel model framework,
the distribution characteristics in two dimensions of time
and space are considered, and based on the literature [20],
the time-space potential model of commuter CB is proposed.

)e model takes commuter travelers as the research
object. We take the time difference between commuters
leaving their places of residence and the distance difference
between commuters’ places of work and residence as in-
dependent variables. Due to the difference between time and
distance units, maximum-minimum normalization is used
to convert them into dimensionless expressions and in-
troduce weighting factors. )e objective function is to cal-
culate the value of time-space potential between commuters.
)e model takes into account the shorter time difference
between commuters in terms of travel time and the smaller
distance between commuters’ residence and workplace in
the spatial dimension. To a certain extent, it indicates the
greater potential of commuters who can travel by the same
transportation mode.)erefore, when certain conditions are
met, it is considered that there is a potential similar travel
demand between commuters in both temporal and spatial
dimensions. )e formula of the model is defined as

TPV(i, j) � α
T(i, j) − min(T)

max(T) − min(T)
  + c

S(i, j) − min(S)

max(S) − min(S)
 

+ λ
L(i, j) − min(L)

max(L) − min(L)
 .

(1)

Equation (1) constraint is

T(i, j) �
t(i, j)

ΔT
,

t(i, j) � ti − tj,

T< δ,

S(i, j)< ε,

L(i, j)< ε,

(2)

where TPV(i, j) denotes the time-space potential between
the commuter and the commuter, and the magnitude of the
value indicates the likelihood that the commuter will travel
in time and space by commuter CB. i, j are commuters. ΔT is
time period of study. S(i, j) denotes the difference in dis-
tance between commuter i and the place of residence of j.
L(i, j) denotes the difference in distance between commuter
i and the place of job of j. t(i, j) denotes the time difference
between commuters i and j when leaving their place of
residence. S is the sets composed by S(i, j). L are the sets
composed by L(i, j). T are the sets composed by t(i, j)/ΔT,
and ε is the distance threshold, which takes the value of

300–500m in general. δ is the time threshold. α, β, c are
weighting factors.

According to equation (1), the time-space potential value
TPV(i, j) of commuter CB between commuters i and j is
inversely proportional to S(i, j), L(i, j), and t(i, j). )ere-
fore, the smaller the value of TPV(i, j), the greater the
potential for commuters between i and j to take commuter
CB travel together. Passengers are similar in space and time
of travel, showing a more similar time space of commuting
travel. )e likelihood that they will share commuter CB
travel is higher.

3.2. SolutionofTime-SpacePotentialModel. Firstly, the study
area is gridded and the boundaries of the study area are
adjusted to generate 5729 1 km× 1 km grids. Secondly, a
time window constraint is established to calculate the time-
space potential values between commuters in the grid with
each cell grid. Finally, all grids in the study area are iterated
to obtain the potential value between any commuters. )e
steps are as follows.

Step 1: the study area is divided into a unit grid of
1 km× 1 km, denoted by Uc, and the unit grid within
the entire study area is defined as a set U, and the
commuters located in the unit grid form a set PCk

,
where PCk

⊆P, and P is the set of commuters.
Step 2: establish time window constraint TWt.
Step 3: iterate over all the grids in the study area in
terms of the unit cell grid Uc and calculating the values
of S(i, j), L(i, j) and t(i, j) among the commuters in
each grid.
Step 4: if T> δ or S(i, j), L(i, j)> ε, then it indicates that
i and j do not have the potential for commuter CB.
Step 5: if T≤ δ and S(i, j), L(i, j)≤ ε, then calculate the
time-space potential values between i and j. )e entire
algorithm process is iterated through all grids until all
the time-space potential values of CB between com-
muters in the study area are calculated.

Algorithm 1 for calculating the time-space potential
values of commuter CB is designed according to the cal-
culation process.

3.3. Service Areas and Potential Travel Demand. )is section
is the core of the paper. Based on the results of the time-
space potential value calculation of CB and referring to the
literature [21], the threshold of time-space potential value is
0.5. When the time-space potential value is less than 0.5, the
distance difference between commuters’ residence, work-
place, and time difference from home is the smallest. At that
time, the commuters have more potential to travel together
and the possibility of using the same transportation mode is
higher. )e unit grids with time-space potential values less
than 0.5 are sorted in descending order by the number of
commuters. )e top 30% of the sorted grids and the last 30%
of the sorted grids are taken as the sample set. It is assumed
that the 30% unit grids with the higher number of com-
muters are the high demand area, so that it is equal to “1.”
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)e 30% unit grids with lower number of commuters are the
low demand area, so that it is equal to “0”. Considering the
factors that influence commuters’ choice of commuter CB
travel as the input parameters of the model, construct a
logistic regression grid model. Based on the model results,
the commuter CB initial service areas and potential travel
demand are obtained.

3.3.1. Logistic Regression Model. Logistic regression model is
a classification algorithm of machine learning. )e algo-
rithm predicts in a classification way and can calculate the
probability of each category, which fits the filtering of the
grid in the study area of this paper. Firstly, based on the
time-space potential model of commuter CB, we initially
selected commuters with time-space potential value less than
0.5 and identified their geographical location in the unit
grids. Secondly, we choose the average commuting distance,
average commuting time, average income, number of bus
stations, number of subway stations, average distance from
neighboring bus stations, and average distance from
neighboring rail stations of commuters in the grids as the
input parameters of the logistic regression model. Finally, a
binary logistic regression grid model is constructed to
predict the unit grid, and the model is solved by SPSS
software. )e unit grids of high hotspots are filtered and
probability values are obtained to mine the potential pop-
ulation of commuter CB.

(i) Logistic regression model theory: logistic regression
is the search for the vector of independent variables
X � (X1, X2, . . . , Xn) and the binary response Y
[21]. )e probability of Y belonging to a particular
class is modeled.

P(X) � Pr(Y � 1 ∣ X) � β0 + β1X1 + β2X2 +, . . . , + βpXp.

(3)

In fact, logistic regression classification is the process
of finding a function, mapping the function values
for the 0 to 1 interval, and then classifying the data
into two categories. Based on continuous explora-
tion, an ideal “unit-step function” is eventually
found, and the function value P(X) is mapped to a 0
or 1 class label according to its positivity or
negativity.

However, the direct design of the step function value
in this way is discontinuous, and it is not possible to
perform some relevant derivations, which is not
conducive to the optimization calculation later.
)us, the Sigmoid function is chosen as the classi-
fication function in the Logistic Regression algo-
rithm, and the function expression is as follows:

g(z) �
1

1 + e
− z. (4)

)e Sigmoid function is an s-shaped curve, with
g(z) taking values in the interval [0, 1]; when z� 0,
g(z) � 0.5, when z⟶ +∞, g(z) tends to 1, and
when z⟶ −∞, g(z) tends to 0.
)en we have

P(X) �
e
β0+β1X1+β2X2+,...,+βpXp

1 + e
β0+β1X1+β2X2+,...,+βpXp

. (5)

)e coefficients of the logistic regression model are
usually estimated by the maximum likelihood esti-
mation method.

L(β) � 
i:yi

p Xi(  

x′:yi
′

p Xx′( ,
(6)

where

β � β0, β1, β2, . . . , βp ,

Xi � Xi1, Xi2, . . . , Xip .
(7)

(ii) Characteristic values: based on the existing basic
data, the study is carried out to fully explore the
travel demand and service areas of CB. We choose
seven important factors as input parameters for the
Logistic Regression model, which are strongly
influencing commuters to take commuter CB travel.

① Average commuting distance: based on the
longitude and latitude information of mobile
phone signaling data, we calculate the difference
between the Euclidean distance of commuters
leaving their place of residence and arriving at
their place of job.

② Average commuting time: based on the time
difference between the user’s departure from the

Input left lng, left lat, right lng, right lat, sample set D � x1, x2, x3, . . . , xn 

(1) for i, j ingriddo (i � 1, 2, 3, . . . , len(grid))

(2) if t[i], t[j] inTW[i] do
(3) S(i, j) � 2 × asin(sqrt(a)) × 6371 × 1000
(4) L(i, j) � 2 × asin(sqrt(b)) × 6371 × 1000
(5) t(i, j) � timestamp1[i] − timestamp2[j]

(6) if S(i, j)< ε and L(i, j)< ε and t(i, j) < δ do
(7) TPV[i, j] � a × S(i, j) + b × L(i, j) + c × t(i, j)

Output TPV

ALGORITHM 1: CBTPV algorithm.
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place of residence and arrival at the place of work
recorded by the mobile phone signaling data, we
consider personal business trips or out of work,
etc., and take the average commuting time of
three working days in a week as the average
commuting time. )en, counting the number of
commuters in each unit grid, we calculate the
average commuting time of each unit grid.

③ Secondary house prices: considering that the
prices of secondary houses can characterize
people’s income to some extent, based on this,
secondary house prices are used as a substitute
variable for people’s income. )e mean value of
the price of second-hand houses nearby where
commuters reside is calculated as a characteristic
to represent the income of commuters.

④ Number of bus stops: invoke Gaode map API
interface, use the Python programming language
to crawl the latitude and longitude of bus stops in
the study areas, and count the number of bus
stops in the unit grids.

⑤ Number of rail stops: similar to ④, the Gaode
map API interface is retrieved and the Python
programming language is used to crawl the lat-
itude and longitude of rail stations in the study
area and count the number of rail stations in the
unit grids.

⑥ Distance of commuters’ neighboring bus stops:
the distance of commuters from bus stops and
rail stops will influence whether they choose to
take CB for commuting. )e average value of the
shortest distance between bus stops and rail stops
in the grid of commuters’ neighboring cells is
considered as the input parameter of the logistic
regression model.

⑦ Distance of commuters’ neighboring rail stations:
the distance of commuters from the rail station
platform will influence whether they choose to
take CB for commuting. )e average value of the
shortest distance of rail stations in the grids of
commuters’ neighboring units is considered as
the input parameter of the logistic regression
model.

3.3.2. Service Areas and Potential Travel Demands. Based on
the Logistic Regression model, the parameters of the model
are input to predict the grids in the study area. )rough the
theory of the Logistic Regression model, it is known that
when P≥ 0.5, the prediction result has good predictive value,
and the grids are considered as high hotspots grids; on the
contrary, when P< 0.5, the unit grids are low hotspots grids.
)us, the high hotspots grid area can be used as the com-
muter CB service areas. And, the commuters that exist in the
high hotspot grids are considered as the potential commuter
CB travel demand people.

4. Case Study

4.1. Background of the Case. In this study, the commuter CB
travel demand and service areas identification method is
proposed in the paper.)emethod is applied to a real case in
the central city of Chongqing, China. )e distribution of
commuters’ occupational and residential locations is iden-
tified and visualized based on the commuter OD identifi-
cation algorithm. In Figure 1, it can be seen that commuters’
residence is mainly concentrated in the central area of the
central city, and the areas are also the commuters’ work
gathering area.

4.2. Case Results

4.2.1. Analysis of the Results of Calculating the Time-Space
Potential Value of Commuter CB. Algorithm 1 is designed in
Python to calculate the potential values between commuters
in the unit grids between 7:00 a.m. and 9:00 a.m. )e results
are shown in Figure 2. )e average value of potential values
between commuters in the unit grids is statistically analyzed.
And the grids with potential values less than 0.5 in the unit
grids are chosen to prepare for the logistic regression model
to be established below.

4.2.2. Analysis of Logistic Regression Model Prediction
Results. Based on the calculation results of the commuter
CB travel potential model, the unit grids with an average
travel potential value less than 0.5 (471 units) are chosen and
sorted in descending order by the number of commuters in
the unit grids. )e upper 30% and the lower 30% of the
sorted units are taken as the sample set. Since the number of
commuters in the upper 30% of the unit grids is higher, they
are identified as Y� 1, and similarly, the lower 30% of the
unit grids are identified as Y� 0. )e total number of unit
grids is 282.

)e binary logistic regression model is solved by SPSS
software.)e fitted results show that the average commuting
time, the average distance of neighboring bus stations, the
number of bus stations, and the income level had positive
effects on the identification of the areas served by commuter
CB. )e summary table of parameters of the model is shown
in Table 1, and the table of prediction accuracy is shown in
Table 2.

From Table 1, Wald is 84.817, P≤ 0.01. According to the
logistic regression theory, it is known that it passed the
significance level test and the model is statistically signifi-
cant. While Cox–Snell R Square is 0.260 and Nagelkerke R
Square is 0.346, the fit of the model is high and the model
explains the original data at a desirable level.

As can be seen from Table 2, the Sigmoid function takes
values in the range of 0-1 interval, with 0.5 as the dividing
line. )e prediction cannot be used as a commuter CB unit
grid in the prediction accuracy rate of 71.6%, the prediction
as the service areas has 100 unit grids, and the prediction
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correct rate is 70.9%. )e total prediction accuracy rate is
71.3%, the accuracy rate is 71.43%, the recall rate is 70.92%,
and AUC value is 0.811 (as shown in Figure 3). )ese in-
dicators show that the prediction model is more ideal and
the prediction effect is perfect.

Based on the learned model, logistic regression is applied
to predict 5729 grids in the central city of Chongqing, China.

)e machine learning model is solved by SPSS software, and
the prediction results are shown in Figure 4.

4.2.3. High Hotspot Grids and Potential Travel Demand.
Based on the above analysis of the model results, it can be
learned that the prediction results for the area of high

Value
High:2076.81

Low:0

(a)

Value
High:653.461

Low:0

(b)

Figure 1: Heat map of where commuters reside and where they work. (a) Heat map of population distribution in the place of residence. (b)
Heat map of the population distribution of the workplace.
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Figure 2: Distribution of time-space potential values of CB.

Table 1: Summary table of model parameters.

Parameters Wald P value Cox–Snell R square Nagelkerke R square
Values 84.817 ≤0.01 0.260 0.346

Table 2: Prediction accuracy.

Actual prediction
Prediction

Accuracy rate (%)Y
0 1

Y 0 101 40 71.6
1 41 100 70.9

Total accuracy rate (%) 71.3
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hotspot unit grids (as shown in Figure 5(a)) have advantages
for the operation of commuter CB routes. )e high hotspot
grids areas are considered as the service areas of commuter
CB. And, the commuters in the high hotspot unit grids are
the potential commuter CB travel demand crowd (as shown
in Figure 5(b)).

4.2.4. Examples of Commuter CB Line Planning. By ana-
lyzing the distribution of high hotspot grids and travel
demand, we randomly chose one high hotspot unit grid each
in Shapingba District, Beibei District, and Yubei District of
Chongqing, China, as an example to plan commuter CB
routes. )e commuters in the high hotspot unit grids are
considered as potential commuter CB travel demand. )e
lines information is shown in Table 3.

In this paper, the place of residence is considered as the
pickup area and the place of work as the drop-off area.)ree
randomly selected residential grid areas are surveyed by
random sampling to verify the accuracy of the model

prediction results. And, in the chosen areas, conduct a
questionnaire survey of the commuter CB SP for passengers.
)e purpose of the SP questionnaire is that the general travel
intentions of people in the unit grid represent the travel
intentions of potential commuters of CB travel in the unit
grid.

One hundred questionnaires are distributed to each of
the three chosen areas, for a total of 300 questionnaires,
including 95 valid questionnaires for grid ID 4309, 98 valid
questionnaires for grid ID 4342, and 94 valid questionnaires
for residential grid ID 2654, for a total of 287 valid ques-
tionnaires. )e results of the questionnaire survey show that
the number of passengers in each grid who are inclined to
choose commuter CB travel is greater than the predicted
number of potential commuter CB travel demand people
obtained from the model, which verifies the validity of the
model prediction results.

Based on the number and distribution of commuter CB
travel demands, the k-means clustering algorithm is used to
spatially cluster the travel demand. Since the k-value has a

Figure 4: Model prediction results.
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Figure 3: ROC curve.
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large impact on the result of the k-means clustering algo-
rithm, the appropriate k-value is initially determined by
applying the Silhouette Coefficient. )en, spatial clustering
is carried out, respectively, for residential and workplace

travel demand, and line planning is performed for the area
based on the clustering results. )rough line planning, three
vehicles are allocated to meet the passenger travel demand.
From the perspective of enterprise operation, the company’s

(a) (b)

Figure 5: High hotspot grids and potential travel demand distribution. (a) High hotspot grids. (b) Potential travel demand distribution heat
map.

Table 3: Line information of example.

Line ID Grid ID of residence Grid ID of workplace Distance (km) Demand (person)
1 4309 3708 10.7 14
2 4342 3900 12 11
3 2654 2597 13 13

Pick-up point
Drop-off point

Workplace grid
Residency grid

Travel demand of residence
Travel demand of workplace

Figure 6: Example of line planning.
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constant cost is 240 RMB, the variable cost is 25.23 RMB,
and the enterprise’s fare revenue is 304 RMB. Without
considering the government subsidy, the total revenue is
38.77 RMB, which ensures that the operating enterprise is in
a profitable state. )e line planning results are shown in
Figure 6.

5. Conclusion

Based on the current status of research by many scholars,
this paper focuses on the current shortcomings and carries
out an in-depth study on the issue of commuter CB travel
demand and service areas.)emain research contents of this
paper are as follows:

(i) Firstly, based on the preprocessing of mobile phone
signaling data and commuter OD identification, a
commuter CB travel time-space potential model is
proposed. )en, the study area is gridded, by de-
signing an algorithm to solve the model.

(ii) Considering commuters who meet certain condi-
tions, Logistic Regressionmodel is applied to analyze
the unit grid as the basic cell. We choose the ob-
jective factors that influence passengers’ choice to
take commuter CB as the output parameters of the
model and deeply mine the potential population of
commuter CB travel demand. We consider the high
hotspot grids output of the model as the commuter
CB service areas. Finally, using Chongqing, China, as
a study case and three routes as examples, the results
show that the operating companies are in a profitable
state without government subsidies. )e case results
prove the effectiveness of the method proposed in
this paper in practical applications.

In addition, some issues in this paper need to be further
discussed:

(i) )e data used in this paper are mobile phone sig-
naling data based on COO cellular cell location
technology, and there are certain defects in data
accuracy. )e article chooses to sort the samples of
the upper 30% and the lower 30% of the grids, and
other methods are also feasible, such as the upper
20% and the lower 20%.

(ii) )e paper is not sufficient to justify the value of
some model parameters, and it is expected that the
parameters of the model can be further studied later
to improve the accuracy of the model.

(iii) )e operating company can combine the spatial and
temporal distribution characteristics of the potential
commuter CB travel demand obtained from this
paper to introduce intentional routes to specific
areas. )is way can provide people with convenient
travel services.
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