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Maritime Autonomous Surface Ships (MASSs) are attracting increasing attention in recent years as it brings new opportunities for
water transportation. Previous studies aim to propose fully autonomous system on collision avoidance decisions and operations,
either focus on supporting conflict detection or providing with collision avoidance decisions. However, the human-machine
cooperation is essential in practice at the first stage of automation. An optimized collision avoidance decision-making system is
proposed in this paper, which involves risk appetite (RA) as the orientation.)e RA oriented collision avoidance decision-making
system (RA-CADMS) is developed based on human-machine interaction during ship collision avoidance, while being consistent
with the International Regulations for Preventing Collisions at Sea (COLREGS) and Ordinary Practice of Seamen (OPS). It
facilitates automatic collision avoidance and safeguards the MASS remote control. Moreover, the proposed RA-CADMS are used
in several encounter situations to demonstrate the preference. )e results show that the RA-CADMS is capable of providing
accurate collision avoidance decisions, while ensuring efficiency of MASS maneuvering under different RA.

1. Introduction

)e idea of embracing autonomous vessels to create sus-
tainable development and shape new opportunities for water
transportations in the industry is getting feasible. As the
technological barriers are resolved in numerous studies,
autonomous vessels have been drawing significant attention
recently. For autonomous vessels, the collision avoidance
system (CAS) and the control system are two fundamental
systems, which are closely related with vessel maneuvering
and safety performance. Both of them aim at removing
human operator in the control loop, which is still questionable
as teaching the automation to understand regulations is still
unrealistic and the trust of public on the autonomous vessels
is challenging [1]. However, human intelligence and machine
intelligence are complementary; the former one is good at
experience and the later one shows high power of computing

[2]. )erefore, the human-machine cooperation is essential
for developing automatic system for the Maritime Autono-
mous Surface Ships (MASS) [3].

Several studies tried to propose intelligent collision
avoidance and ship control systems to support autonomous
vessels navigating in complex waters. However, the majority
of them are purely based on geometrical collision avoidance
approaches (e.g., CPA approach, fuzzy logic [4], artificial
potential field method [5], velocity obstacle [6, 7], model
predictive control (MPC) [8], and Convention on the In-
ternational Regulations for Preventing Collisions at Sea
(COLREGS), ignoring the valuable experience from crew-
members in practices, leading to unreasonable decision
making for the autonomous vessel in real encounter situ-
ations. )is question has been highlighted in the first
generation of autonomous vessels, in which the unmanned
and manned vessels exist when the response of autonomous
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vessels to collision risk is still uncertain [9]. Automation can
improve vessel safety from some perspectives by removing
the crews while creating other unpredictable risks.

In the real practice, the collision avoidance decisions for
the manned vessels are made by the officers who are on
watching (OOWs). Although these decisions should be
consistent with COLREGS, the OOWs will make different
choices based on their risk appetite (RA). Several related
factors should be considered by the OOWs, such as the water
condition, ship conditions, and weather conditions.
)erefore, to develop an intelligent CAS for autonomous
vessels, the OOWs’ experience of RA and maneuvering
behaviors should be fully considered to make the proposed
system more practical and comprehensible under man-
machine symbiosis condition.

To resolve the question, the contribution of this paper is to
pioneer an optimized collision avoidance decision-making
system for autonomous ships in complex encounter situations,
involving RA as the orientation. )e RA oriented collision
avoidance decision-making system (RA-CADMS) is developed
based on human-machine interaction during ship collision
avoidance, consistent with COLREGS and Ordinary Practice of
Seamen (OPS). It is capable of providing the decisions according
to the RA under different encounter situations and the oper-
ator’s risk tolerance, reflecting OOWs’ experience under
complex water situation that lacks information, so that realizing
human-machine cooperated collision avoidance decision-
making. )e study firstly analyzes the ship collision avoidance
decision behavior under various ship encounter situations.
)en, a multicriteria ship collision avoidance decision-making
optimization system is developed to demonstrate the decision
preference of OOWs who have different RA. At last, a prospect
theory (PT) is applied to balance the accepted risk thresholds in
the field of ship collision avoidance system. )e main contri-
bution of this paper can be highlighted as follows:

(1) A RA-CADMS is proposed to incorporate hybrid
intelligence that combines the complementary
strength of experience from OOWs.

(2) )e balance of collision risk tolerance and avoidance
decision efficiency is resolved by the RA-CADMS by
pioneering PT in the collision avoidance decision-
making.

(3) )e decision space for the MASS in different en-
counter situations is visualized and can be selected
with different levels of RA.

)e rest of the paper is organized as follows: previous
studies related to risk appetite and ship collisions are
reviewed in Section 2. In Section 3, an optimized collision
avoidance decision-making system is established, and sev-
eral case studies are implemented in Section 4. )e dis-
cussion and conclusions are drawn in Sections 5 and 6.

2. Literature Review

2.1. Collision Avoidance System. As defined by [10], a gen-
eralized CAS should at least contain collision risk assess-
ment, action decision-making, and action execution

modules, in which the decision selection is the core of the
CAS as it is essential for safe navigation of MASS [11].

To develop a sufficient CAS to support collision
avoidance, various methods are proposed in the previous
studies. )ey are grouped into three perspectives. First,
statistical analysis and numerical method are used to
support collision avoidance, such as encounter situation and
stage discrimination quantitative model [12], with collision
parameters. Reference [13] proposed the Personifying In-
telligent Decision-making for Vessel Collision Avoidance
(PIDVCA) algorithm, which quantified the initial timing of
steering rudder and the last time for steering rudder. On the
basis of the COLREGS, Woerner et al. [14] and Chen et al.
[6]. suggested a quantitative evaluation approach to analyse
the collision risk. )e second group covers the knowledge-
based marine collision avoidance system to improve the
stability and comprehensibility of the models [15]. )is type
of CAS selects the optimal collision avoidance scheme
through various ship dynamic parameters, e.g., course [16],
relative speed [10], and ship trajectories [17]. )e applied
approaches in the CAS include fuzzy logic [4] and Bayesian
network [18]. )e last group applies advanced artificial
intelligence to deal with the problem and has made great
progress on collision avoidance system formulation. For
example, Shen et al. [19]. utilised the deep reinforcement
learning method to solve the collision avoidance problem
under multiship encounter situations in restricted waters;
Hu et al. [20]. developed a multiobjective optimization
model for COLREGS-compliant path planning; improved
cultural particle swarm was introduced into ship collision
avoidance decision [21]. To support multiple ships anti-
collision decision, CAS based on multiagent was designed,
in which the agents formulate collision-free strategy
through information interaction [22], such as distributed
algorithm [23, 24] and centralized algorithm [25]. More-
over, big data processing techniques for ship AIS trajectories
and video detection provided well support to identify ship
encounter behaviors more accurately [26, 27] or study the
traffic flows in water areas [28].

It can be found that the section of collision avoidance is
greatly enriched by previous studies, However, most of
them ignore the impacts from human that include the
common practices of seafarers, good seamanship, and risk
tolerance.

2.2. Collision Avoidance System for MASS. )e current
studies related to MASS collision avoidance can be cate-
gorized into two groups [9]. One aims to developing the alert
systems for MASS to detect potential dangers of collision,
using collision risk index [29–31], ship domain [32], dan-
gerous region in velocity-space [33] and probability of
collision [34], risk prediction based on deep learning [35],
etc. Different from the manned ship, objects of CAS for
MASS are conflict detections, which are difficult in the
perception of collision situations [9]. Although the expert-
based methods and model-based methods are widely pre-
sented to support the CAS design for MASS, limitations on
these methods are noted: (1) there are no common
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agreements on the boundary to clarify the safety and danger;
(2) the CAS hardly provide personalized alarm services for
officers with different risk attitudes.

Another group concentrates on the automatic collision-
free solutions for MASS, while the interactions of the hu-
man-machine cooperation encounter situations are not
considered. According to the current studies (e.g., Huang et
al. [9]), there are six kinds of collision-free resolution
methods for MASS, including rule-based method, virtual
vector method, discretization of solutions, continuous so-
lutions, replanning method, and hybrid method. )ree
objectives include (1) offering an optimal/feasible scheme;
(2) safety checking on scheme; and (3) defining all the unsafe
situations. However, some of the methods are difficult to be
applied in unmanned situations. For instance, Johansen et al.
[8] proposed a predictive control model to offer collision
avoidance by considering the maneuvering ability, while it
might be difficult for MASS controller to understand the
effects of these forces and how to select a collision scheme.
Besides, the optimal solution offered by CAS may not be
accepted by the MASS controller as the risk attitude for
individuals is inconsistent.

)e maneuver decision preferences for manned vessel
vary with several influencing factors [36–38], investigating
the maneuver decision preferences in navigating ships to
avoid a collision and to ensure safety for the MASS.
However, relevant studies are rarely found in the current
literature due to the lack of theoretical studies.

2.3. Risk Appetite in Decision-Making. RA can be defined as
the amount and type of risk that an individual is willing to
pursue or retain, or the willingness to take on risky activities
in pursuit of values [39]. A high-risk appetite means high-risk
tolerance and hopes to give large benefits and vice versa. For
example, 60 officers perceived different risk scores and per-
formed various ship maneuverings based on scenario survey
experiments under the same encounter situations [37]. )e
prospect theory (PT) was firstly proposed by [40] and was
then updated to cumulative prospect theory (CPT) [41] and
the third generation prospect theory [42]. )e theory com-
bines behavioral science theory with multicriteria decision-
making methods to reflect decision-makers’ psychological
characteristics and attitudes of loss and gain. As the PT has
great advantages in describing the psychological behavior
characteristics and loss of decision makers, it has been widely
used in financial analysis, transportation, and other domains
that involve multiattribute decision-making. For instance,
Wang et al. [43]. considered the psychological behavior in the
emergency decision-making and proposed a group emer-
gency decision-making approach based on PT, which was
capable of adjusting the importance of the model attributes-
based experts’ psychological behavior. Gao et al. [44]. pro-
posed a path selection model based on a CPT; further, Hjorth
and Fosgerau [45] used risk preference parameters of traveler
to trade-off traveling cost and identify the sensitivity of each
parameter impacting the daily cost. Moreover, a multi-
attribute decision-making method [46] based on PT was
proposed to solve risk decision-making problems with

interval probability. Specifically, Zhou et al. [47]. applied PT
in route traffic analysis and studied the drivers’ route choice
behavior and developed a route selection model to aid traffic
management.

It can be found from the review that PT is a sufficient
approach to support human behavior-based risk modelling.
It is suitable for developing intelligent CAS for the MASS
that crewmembers’ behavioral characteristics and risk
preferences can be covered to support collision avoidance.
Besides, the following problems need to be resolved during
the collision avoidance decision-making:

(i) How can a CAS combine the wisdom of human and
intelligence of machine in collision avoidance
decision?

(ii) How to balance the safety and economy of collision
avoidance decision and adjust to the crew individual
risk attitude variation in decision-making?

3. A Generic Framework of RA-CADMS

An abstract representation of RA-CADMS is shown in
Figure 1. It contains two subcomponents: the RA assessor
and the CADM model. )e RA assessor confirms the
possible avoidance schemes for the current encounter sit-
uations through three RA-related features of safety, effi-
ciency, and stationarity. )e CADM model assigns decision
weights to evaluate the features and then convert them into
composite prospect value, which ranks the collision
avoidance decisions for the MASS under individual risk
attitude. Moreover, a real-time updated loop is added to link
the two components. It provides with self-updating for the
RA-CADMS when information for MASS and target ships is
updated after the executed decision.

3.1. RA Assessor. A high-risk appetite means high-risk tol-
erance and hopes to give large benefits and vice versa. For
example, a survey implemented by [37] invites 60 officers to
make an avoidance decision under the same encounter
situation. Although the states of the vessel, weather, and
other conditions are the same, the selected starting point for
avoidance andminimum distance of approaching for each of
them are different as their RA andmaneuvering behavior are
different, thereby developing a RA assessor based on OOWs’
OPS and COLREG is the major component in the RA-
CADMS, in which influence factors for collision avoidance
that related to RA are discussed.

3.1.1. Parameter Related to Ship Collision Avoidance. As
Rule 16 of COLREG states that “Every vessel is directed to
keep out of the way of another vessel shall, so far as possible,
take early and substantial action to keep well clear,” the give-
way vessel can take action at any time within the time in-
terval between the time to urgent situation and the time to
close-quarter situation. However, there are great differences
in trajectory characteristics under the same waters based on
high-quality ship trajectory data from AIS [27, 48]. Further,
video-based detection reflected more detailed and clear ship
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encounter behavior, such as moving straight, turning right,
and turning left, in specific waters [49]. )erefore, a high RA
decision-maker may take avoidance action later than the
time interval and pass the encounter at a closer distance to
save fuel and time. Contrary to the high one, an OOW with
low RA is cautious and prefers to take action earlier to
maintain a safer distance so that leading to larger deviation
and higher fuel consumptions. On such basis, three cate-
gories of RA are stated as cautious (i.e., risk aversion), ag-
gressive (i.e., risk hobbies), and neutral (i.e., risk neutrality).
Cautious refers to low risk appetite and is willing to obtain
higher safety values; aggressive means higher tolerance; and
neutral stands intermedium of RA.

To describe the risk of encounter situations, ship dy-
namic parameters are selected in the RA assessor. )ese
include ship relative speed (vij), accepted distance (dacc),
and change of course (θ). )us, the action time t can be
expressed as t ∼ (vi, vj, dacc, θ, |Pos, PTs), where POS and PTS
are the positions for the own ship (OS) and the target ship

(TS). Assuming there is a MASS (i.e., ship i) encountered
with a manned vessel (i.e., ship j) leads to an encounter
situation of crossing over (see Figure 2). )e real speeds for
the ship i and the ship j are vi and vj , respectively, and the
relative speed and position between two encounters are vij

and Pij. To avoid collision, the ship i should take a course
changing action at a certain time t and position Pij(t) to
ensure that it could pass the ship j at a safety distance. If the
ship i takes action at time t1 and position Pij(t1), the
minimum course change is θ1. Similarly, the ship i should
change course to θ2 when it gets closer (i.e., take action at
time t2 and position Pij(t2)).

3.1.2. Indicators for RA Assessor. Based on COLREGS, OPS,
and relevant researches [38, 50, 51], the optimization of
collision avoidance decision-making for MASS is mainly
reflected in safety, efficiency, and stationarity. )e three
indicators are proposed as follows:

(1) Safety: it is to ensure that the collision risk can be
eliminated by the avoidance decisions. Although
ships should pass each other not less than the
minimum safety distance, the accepted distance
between two ships is not persistent in real practice. It
is impacted by several factors such as weather, ship
type, and size and is selected based on OPS. OOWs
evaluate the safety value (SV) of decision scheme
mainly by the minimum passing distance (dm) and
the time-taking evasive action to passing the close
point time (TCPAa). )us, we define SV as
expressed in the following equations:

SV dm(  �

dm

d1
 

0.65

1

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

,

dm ≤ d1, dm ≤d1,

d1 <dm, d1 < dm,

(1)

SV TCPAa(  �

TCPAa

t1

1

⎧⎪⎪⎨

⎪⎪⎩
,

0≤TCPAa ≤ t1,

TCPAa < 0 or t1 <TCPAa,
(2)

SV �
w1SV dm(  + w2SV TCPAa( , dm ≤D1 and 0≤TCPAa ≤ t1,

1, others.
 (3)

)e thresholds D1 and t1 are defined to divide the
safety value SV with two segments, respectively.
Assuming a MASS minimum passing another TS
more than d1 or navigation at a range larger than t1,
no collision risk is existed (i.e., SV � 1).

(2) Efficiency: this indicator evaluates the distance de-
viating (Dev) of the OS from its initial course. Large
Dev stands for low efficiency and small Dev means

high efficiency. It can be calculated using the fol-
lowing equation:

Dev � v × t2 − t2(  × sin θ. (4)

)e Dev is influenced by the OS′ speed v, course
deviation θ, and the time between the course recover
time t2 and the course change time t1. A sample is
given in Figure 3.

RA
assessor

indicators value

indicators selection

parameter analysis

TS and OS information

composite prospect
value

prospect value and
decision weight

reference points

decision matrix and
normalized matrix

scheme generation

CADM
model 

Figure 1: )e framework for RA-CADMS.
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(3) Stationarity: this indicator describes the smoothness
and stationarity (Sta) of the ship’s trajectory in col-
lision avoidance operation. According to Rule 18 of
COLREGS, ship course and/or speed alteration should
be apparent to another ship observing visually or by
radar. )erefore, the course change θ of decision
schemes is at least 20°. At the same time, considering
ship maneuvering, dynamics model, and existing re-
searches [52, 53], abrupt and too large course change
could cause ship speed slowing down and bunker
consumption. )is indicator function is as follows:

Sta � π − |θ|. (5)

3.2. CADM Model. )is section proposes a CADM model
based on PT to sort the decision for different risk appetite
officers. )e advantage is that it takes into account the

psychological characteristics through risk parameters for
decision makers in the uncertainty decision progress. In the
CADM model, the collision avoidance schemes are priori-
tized based on composite prospect values, which can be
calculated through the equations introduced in the PT. As
shown in Figure 4, the calculation mainly follows two steps.
First, the indicator value for each scheme that selected in the
RA assessor is normalized to construct the decision matrix,
while the reference points for the indicators are identified by
using the grey correlation analysis. Second, the prospect and
objective values are aggregated by using PT, which consider
the RA of the MASS and the weight of the indicators.

3.2.1. Prospect 3eory. )e PT was first proposed by Kah-
neman and Tversky [54] to explain the human behavior in a
systematic way. It formulates the biased or irrational human
behaviors and introduces two concepts of the definition of
prospect: a value function defined on the utility and a de-
cision weight function defined on the cumulative proba-
bility, as shown in Figure 5.

As shown in Figure 5(a), the value function is convex
when the curve is in the area of gains and is concave when in
the losses area. )e curve in the value function is divided by
the reference points ξ−

ij for the positive prospect value and ξ
+
ij

for the negative prospect value; it is steeper for losses than
for gains and can be formulated with prospect value
equations.

)e positive prospect value (i.e., area of gains) for ith
scheme and jth indicator is calculated as

pv+
ij � 1 − ξ−

ij 
α
, (6)

and the negative prospect value (i.e., area of losses) for ith
scheme and jth indicator is calculated as

pv−
ij � − η × − ξ+

ij − 1  
β
, (7)

where α, β , and η are the risk preference parameters. )e
increasing value of the parameters means the model is more
sensitive on loss so that trends to avoid risk.

Figure 5(b) reports how the decision weight functions
describe the well-observed behavior that human tends to
overestimate the occurrence of low-probability events but
underestimate that of high probability ones as

π(ω) �

π(ω)
+

�
ωc

ωc
+(1 − ω)

c
 

1/c, ξ−
j is reference point,

π(ω)
−

�
ωδ

ωτ
+(1 − ω)

τ
 

1/τ , ξ+
j is reference point,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where ω represents the objective probability of the event
result; c and τ represent the fitting parameters of the
probability weight function on the left and right sides of the
reference point.

Composite prospect value of each scheme is defined as
follows:

θ

t1 course-change time

t2 course-recover time

doc

Figure 3: A sample of collision avoidance decision.
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Figure 2: A sample of the autonomous vessel (own ship) en-
countered with a manned vessel (target ship).
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pv � 
i,j

pv
+
ijπ

+ ωj  + 
i,j

pv−
ijπ

− ωj . (9)

3.2.2. Decision Matrix. To develop the CADM model, a
decision matrix should be established to describe the
number of n available collision avoidance schemes
U1, U2, . . . , Un . For instance, under an encounter situation
shown in Figure 6, there are three available collision
avoidance schemes U1, U2, U3 . )e first scheme
U1 � (t1, P1, θ1, dacc1) means when the OS is moving to the
position P1 at time t1, the collision risk is unacceptable for a
MASS with the RA of caution. )e MASS makes a course
change θ1 and finally passes the TS with an accepted distance
of dacc1 (green line in Figure 6). Similarly, the avoidance
schemes for neutral RA and aggressive RA are
U2 � (t2, P2, θ2, d2) and U3 � (t3, P3, θ3, d3), respectively,
leading to accepted distance of dacc2 (yellow line in Figure 6)
and dacc3 (red line in Figure 6).

Each U contains the number of m decision-making
indicators x1, x2, . . . , xm . )e decision-making matrix X
can be represented as follows:

X �

x11 x12 · · · x1m

x21 x22 · · · x2m

⋮ ⋮ ⋱ ⋮

xn1 xn2 · · · xnm

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

In the decision matrix, each indicator (x1 � SV,
x2 � Dev, and x3 � Sta) that is obtained from RA assessor
needs to be normalized into an interval of [− 1, 1] to acquire a
normalized decisionmatrixR by using linear transformation
equations, in which

Zj �
1
n



n

i�1
xij. (11)

For indicator of Dev,

rij �
zj − xij

max max
j

xij  − zj, zj − min
j

xij  

.
(12)

For indicator of Sv and Sta,

v (u)
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losses

0 u

(a)

0.0

1.0
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p

(b)

Figure 5: An example of (a) the value function and (b) the weighting function.
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rij �
xij

− zj

max max
j

xij  − zj, zj − min
j

xij  

.
(13)

3.2.3. Reference Points. It can be noted that the used ref-
erence points are crucial for evaluating the performance of
the indicators in a PT-based model. For a CADMmodel, the
selections of the reference points are associated with OPS.
Once the reference points are selected, the optional decision
scheme can be evaluated by yielding prospect values between
the positive (i.e., gains) and negative (i.e., losses). In other
words, the selection of reference points in the CADMmodel
means the expression of OOWs’ knowledge and experience.

As each OOW has his/her own experience to determine
the gains and the losses under different encounter situations,
setting a global value for universal scenarios is not rea-
sonable. )us, the CADM model applies a grey correlation
analysis technology to determining the reference point
under different situations. )e technology is based on the
method of proximity measure of similarity, which can
calculate the degree of association between factors and use
the parameter to indicate the reference point. )e correla-
tion coefficient for each indicator under different collision
avoidance schemes can be calculated as follows:

ξ+
ij �

min
i

min
j

rij − r
+
j



 + ρmax
i

max
j

rij − r
+
j





rij − r
+
j



 + ρmax
i

max
j

rij − r
+
j




,

ξ−
ij �

min
i

min
j

rij − r
−
j



 + ρmax
i

max
j

rij − r
−
j





rij − r
−
j



 + ρmax
i

max
j

rij − r
−
j




,

(14)

where r+
j � max rij|1≤ i≤ n , r−

j � min rij|1≤ i≤ n , j �

1, 2, . . . , m , and ρ ∈ [0, 1], while positive and negative
reference points for each indicator are identified as follows:

ξ+
j � max ξ+

ij|1≤ i≤ n , j � 1, 2, . . . , m,

ξ−
j � max ξ−

ij|1≤ i≤ n , j � 1, 2, . . . , m.
(15)

3.2.4. Composite Prospect Value. Based on PT, the com-
posite prospect value of each scheme can be calculated by
using the following equation:

pv � 
i,j

pv+
ijπ

+ ωj  + 
i,j

pv−
ijπ

− ωj , (16)

and the aggregated prospect value can be calculated by using
the objective function:

max pv � 
m

i�1


n

j�1
pv+

ijπ
+ ωj  + 

m

i�1


n

j�1
pv−

ijπ
− ωj  , (17)

where the weight ω∗ � (ω∗1 ,ω∗2 , . . . ,ω∗m) for each indicator
is obtained based on the user’s RA and OPS, in which

s.t.
0≤ωj ≤ 1

j

ωj � 1
⎧⎨

⎩ . It can be assigned by expert judgements and

linear programming.

4. Case Study

To validate the proposed system, the simulations are carried
out to test the effectiveness of the RA-CADM model. )e
simulation test contains two typical ship encounter sce-
narios, which are carried out in MATLAB software using the
i7-8550U CPU and 12GB RAM. In the simulations, one of
the scenarios describes a MASS encounters an individual
manned vessel and another presents a multiple encounter
situation.

4.1. ShipManoeuvrability Simulation. )e Nomoto model is
used to simulate the ship movement when the ships take a
collisions avoidance action. To simplify the model, the
impacts from wind and current are not taken into consid-
eration. Consequently, the ship course changes are simu-
lated by using the following equation:

T × _r + r � K × δ, (18)

where T is the constant time for a ship changing its course
and K is the rudder gain, r is the angular speed, and δ is the
rudder angle. )e course change after time of t can be
calculated as

θ � K × δ0 × t − T + T × e
− (t/T)

 , (19)

while the K can be calculated with K � V/L and T � 2 × L/V
based on experience.

x

y

o
Ship i

vi

vij (t)

vij (t1)

vij (t2)

Pij (t1)

Pij (t2)

Pij (t3)

vij (t3)
θ1

θ2

θ3

θ

Ship j
vj

Figure 6: An example of ship encounter situation.
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4.2. Scenario I: Pairwise Vessel Encounter. Based on the
simulations, the first target is to test the typical individual
collision avoidance scenario. As shown in Table 1, the initial
encounter scenario is that the OS (i.e., MASS) is heading
north along the planned route, while the TS comes from the
starboard side with bearing of 049°. According to COLREGS,
the MASS should perform its duty of giving way to the
coming ship. )en, the simulation assumes that both ships
are equipped with AIS, which is able to broadcast ship
dynamic information with a period of 10 seconds when a
ship remains its course or with a period of 3 seconds when
the ship is taking a course change.

)e initial information for both ships is given in Table 1.)e
speeds forOS andTS are 11 and 13 knots, respectively, the initial
course for the MASS is 000°, and the initial course for the TS is
275°. )e relative distance between the two ships is 7 nautical
miles and the lengths for them are 225meters and 189meters. In
addition, two vessels are encountered at the open and calm sea.

To avoid collision, theMASS tries to keep clear of all the TS
under six possible accepted distances, where dacc ∈ (1.0, 1.2,

1.4, 1.6, 1.8, 2.0). In terms of the course changes, six degrees
are provided for the MASS from low to high:
θ ∈ (20°, 25°, 30°, 35°, 40°, 45°), which reflect the RA of
OOWs. In order to test the collision avoidance behavior more
apparently, Table 2 offers the details on the collision avoidance
schemes, including the accepted distance, course of changes,
action times, recover time, and initial route deviation.

As the examples, the OS′ trajectory for scheme of U1
1 (the

blue trajectory) and U1
6 (the green trajectory) and TS’s tra-

jectory (pink) are demonstrated in Figure 7. In the scheme of
U1

1, theMASS decides to pass the TSwith an accepted distance
of 1.0 nm, thus it needs to change the course to 020° at the
action time of 12.1 minutes. After it passed the TS, the MASS
recovers its course to 000° at 26.4minutes.)e whole collision
avoidance action takes 14.3 minutes. In the scheme of U1

6, the
MASS changes its course to 045° at 8.8 minutes to pass the TS
with an acceptable distance of 2.0 nm. After passing the TS,
theMASS recovers its course to 000° at 24.3 minutes.)e total
action time for scheme U6 is 15.5 minutes.

)e RA-CADM model is used to evaluate the collision
avoidance schemes that are given in Table 3 and the most
suitable scheme is selected for the MASS under different risk
preferences (i.e., caution, neutral, and aggressive). )e
overall process includes five steps, taking aggressive as an
example (Tversky, 1992) (η � 2.25, α � β � 0.88, c � 0.61,

τ � 0.69):

Step 1: calculating the RA indicator for each scheme.
)e values of RA indicator for the scheme can be
calculated using equations (1)–(5). Using the scheme
U1 as an example, the RA values of safety, efficiency,
and stationarity can be calculated as SVU1 � 0.8×

(1.0/2.0)0.65 + 0.2 × (13.5/25) � 0.618, DevU1 � 11×

26.4 − 12.1/60 × sin 20° � 0.897, and StaU1 � π − 20°
× π/180° � 2.793, where d1 � 1.0, t1 � 25, TCPAU1 �

25.6, and TCPAU1 � 25.6 − 12.1 � 13.5. Similarly, the
values of the RA indicators for the other 5 schemes are
calculated to construct the decision-making matrix X,
which is

X �

0.618 0.897 2.793

0.692 1.178 2.705

0.759 1.448 2.618

0.822 1.693 2.531

0880 1.862 2.443

0.934 2.009 2.356

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

Step 2: normalization. )e RA indicator values in the X
are then normalized to acquire the normalized decision
matrix R, in which equations (11)–(13) are used to
calculate the normalized RA values for safety, effi-
ciency, and stationarity, respectively. As a result,

R �

r11 r12 r13

r21 r22 r23

r31 r32 r33

r41 r42 r43

r51 r52 r53

r61 r62 r63

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

− 1.000 1.000 1.000

− 0.552 0.545 0.600

− 0.150 0.107 0.200

0.225 − 0.289 − 0.200

0.575 − 0.562 − 0.600

0.903 − 0.801 − 1.000

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(21)

Step 3: identifying the reference points. To evaluate the
performance of the RA indicators in the RA-CADM
model, the maximum and minimum values of each
indicator are selected from the normalized decision
matrix R. )e positive set (i.e., the maximum value set)
is r+ � 0.903, 1, 1{ } and negative set (i.e., the minimum
value set) is r− � − 1, − 0.801, − 1{ }. Using equations (14)
and (15), the r11 in the R is divided to two correlation
coefficient values ξ+

11 and ξ−
11, where

ξ+
11 �

min
i

min
j

rij − r
+
j



 + ρmax
i

max
j

rij − r
+
j





rij − r
+
j



 + ρmax
i

max
j

rij − r
+
j





�
0 + 0.5 × 2

| − 1 − 0.903| + 0.5 × 2
� 0.345,

ξ−
11 �

min
i

min
j

rij − r
−
j



 + ρmax
i

max
j

rij − r
−
j





rij − r
−
j



 + ρmax
i

max
j

rij − r
−
j





�
0 + 0.5 × 2

| − 1 + 1| + 0.5 × 2
� 1.

(22)

Table 1: Scenario I: encounter information.

OS TS
SOG (knots) 11 13
COG 000° 275°
Distance (nm) 7 7
Relative bearing (°) — 049
Ship length (meters) 225 189
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Table 2: Scenario I: collision avoidance schemes.

No. of schemes Accepted distance (nm) Change of
course (degrees) Action time (minutes) Recover time (minutes) Initial route deviation (nm)

U1
1 1.0 20 12.1 26.4 0.9

U1
2 1.2 25 10.8 26.0 1.2

U1
3 1.4 30 10.0 25.8 1.5

U1
4 1.6 35 9.4 25.5 1.7

U1
5 1.8 40 9.0 24.8 1.8

U1
6 2.0 45 8.8 24.3 2.0

Table 3: Scenario II: initial encounter information.

OS TS1 TS2
SOG (knots) 14 10 10
COG 000° 210° 225°
Distance (nm) — 6 8
Relative bearing (°) — 027 021
DCPA (nm) — 1.42 0.50

t=100 s

TS

OS (U1
1) OS (U6

1)

OS (U1
1)

OS (U6
1)
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1)

OS (U6
1)
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Figure 7: Ship trajectories in Case 1.
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Similarly, the normalized decision matrix R is con-
verted to the positive correlation coefficient matrix,

ξ+
ij �

0.345 1.000 1.000

0.407 0.687 0.714

0.487 0.528 0.556

0.596 0.437 0.455

0.753 0.390 0.385

0.800 0.357 0.333

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (23)

and the negative correlation coefficient matrix,

ξ−
ij �

1.000 0.357 0.333

0.691 0.426 0.385

0.541 0.524 0.455

0.450 0.661 0.556

0.388 0.807 0.714

0.345 1.000 1.000

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (24)

In ξ+
ij and ξ

−
ij, the maximum and the minimum values in

each column are selected as the reference points to
calculate the positive prospect value pv+ and negative
prospect value pv− by using equations (6) and (7). In
the calculation, the risk preference parameters are
defined as an aggressive RA that is α � β � 0.88.

)ereby,
pv+

11 � (1 − 1)
0.88

� 0
pv+

12 � (1 − 0.357)
0.88

� 0.678
pv+

13 � (1 − 0.333)
0.88

� 0.7

⎧⎪⎪⎨

⎪⎪⎩
and

pv−
11 � − 2.25 × (1 − 0.345)

0.88
� − 1.552

pv−
12 � − 2.25 × (1 − 1)

0.88
� 0

pv−
13 � − 2.25 × (1 − 1)

0.88
� 0

⎧⎪⎪⎨

⎪⎪⎩
. As results,

the positive prospect matrix

pv+ �

0 0.678 0.700
0.356 0.613 0.652
0.504 0.520 0.587
0.591 0.386 0.490
0.649 0.235 0.332
0.690 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. and the negative prospect

matrix pv− �

− 1.552 0 0
− 1.420 − 0.809 − 0.747
− 1.250 − 1.161 − 1.102
− 1.014 − 1.357 − 1.320
− 0.657 − 1.456 − 1.468
− 0.546 − 1.525 − 1.575

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

are

obtained.
Step 4: assigning weights to the indicators. With aids
of a linear interactive optimize software program
(LINGO 15.0), the optimal weight assignments ω∗ �

(ω1,ω2, ω3) for each RA indicator can be simulated.
To set the maximum target function as MAX � (0 +

0.356 + 0.504 + 0.591 + 0.649 + 0.69) × (w0.61
1 /w0.61

1 +

(1 − w1)
0.61)1/0.61 + (− 1.552 − 1.42 − 1.25 − 1.014−

0.657 − 0.546) × (w0.69
1 /w0.69

1 + (1 − w1)
0.69 �)1/0.69.

while defining the limitation of outputs as,

s.t.

0≤ωj ≤ 1


j

ωj � 1

w1 ≥ 0.5

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

, the weight assignments are generated

as ω∗ � 0.5, 0.4, 0.1{ }.
Step 5: calculating the composite prospect value for each
collision avoidance scheme. )e composite prospect
values for each scheme are calculated by aggregating the
above information using equation (18). )ereby, pvU1 �

− 0.25, pvU2 � − 0.53, pvU3 � − 0.65, pvU4 � − 0.70, pvU5
� − 0.69, and pvU6 � − 0.86. Based on the results, the
optimized ranking for an aggressive RA user,

Aggressive ∼ U
1
1 ≻U

1
2 ≻U

1
3 ≻U

1
5 ≻U

1
4 ≻U

1
6 . (25)

Similarly, if the RA for the MASS is set as neutral, the
parameter set of η � 2.25, α � β � 0.99, and c � τ � 0.99
should be used according to previous studies [55]. )e
optimum collision avoidance schemes are resequenced as

Neutral ∼ U
1
4 ≻U

1
5 ≻U

1
3 ≻U

1
2 ≻U

1
1 ≻U

1
6 , (26)

where the composite prospect values for the schemes are
pvU1 � − 0.67, pvU2 � − 0.66, pvU3 � − 0.62, pvU4 � − 0.50,

pvU5 � − 0.55, and pvU6 � − 0.73.
Meantime, for RA is cautious, the parameter value as-

signment is η � 3.5, α � 1.21, β � 1.02, c � 0.55, and τ �

0.49 [56]. )e composite prospect values are calculated as
pvU1 � − 1.25, pvU2 � − 1.22, pvU3 � − 1.20, pvU4 � − 1.10,

pvU5 � − 0.89, andpvU6 � − 0.87. )e collision avoidance
schemes are ranked as

Cautious ∼ U
1
6 ≻U

1
5 ≻U

1
4 ≻U

1
3 ≻U

1
2 ≻U

1
1 . (27)

4.3. Scenario II: Multiple-Vessel Encounter. As the proposed
RA-CADM model is able to deal with multiple-vessel en-
counter situations, the second scenario simulates an en-
counter situation that involves 2 TSs (as shown in Figure 8)
and the ship details are given in Table 3.

As shown in Figure 8, two TSs come from starboard of
the MASS, in which the TS1 will keep clear of the MASS and
the TS2 will cross the OS′ safety distance and lead to high
risk of collision. To avoid the urgent risk of collision, the
MASS needs to select an optimal collision scheme that not
only keeps clear of the TSs but also ensures the efficiency of
the action. As stated in the COLREGS that a give-way ship
shall change course to starboard to avoid collision, thereby
only two collision avoidance strategies can be considered by
the MASS: (1) changing course to starboard with large
degree to keep clear the TSs but suffering bigger deviation
distance (i.e., low efficiency) or (2) remaining its course
before passing the TS1 and then turning starboard to avoid
the TS2 so that the deviation distance will be relatively small.
On such a basis, the available collision avoidance schemes
are shown in Table 4, in which the former three schemes U2

1,
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U2
2, and U2

3 are the smaller deviation strategy and the
subsequent three U2

4, U2
5, and U2

6 are the large deviation
strategy.

)e simulation results of the TS1 (pink), TS2 (black), and
MASS’s trajectories by applying the schemes U2

1, U2
1 (blue)

and U2
6, U2

6, U2
6 (green) are given in Figure 9.

By using the same step introduced above, the composite
prospect value for each collision avoidance scheme in the
second scenario can be obtained that pvU1 � − 0.25, pvU2 �

− 0.44, pvU3 � − 0.53, pvU4 � − 0.71, pvU5 � − 0.70 , and
pvU6 � − 0.87. )erefore, the collision avoidance schemes
for aggressive RA are ranked as

Aggressive ∼ U
2
1 ≻U

2
2 ≻U

2
3 ≻U

2
5 ≻U

2
4 ≻U

2
6 . (28)

Similarly, the collision avoidance schemes of neutral and
cautious officers are ranked as

Neutral ∼ U
2
3 ≻U

2
2 ≻U

2
4 ≻U

2
1 ≻U

2
5 ≻U

2
6 ,

Cautious ∼ U
2
6 ≻U

2
5 ≻U

2
4 ≻U

2
3 ≻U

2
2 ≻U

2
1 .

(29)

5. Results and Discussion

5.1. Indicator Values under Different RA. )e case study
results show that the RA-CADMS is capable of aiding the
MASS to select the optimal collision avoidance schemes
based on the RA and risk tolerance. To validate the ratio-
nality of the outputs from the model, this section discusses
the variation of the RA indicators in terms of a dynamic
prospective.

5.1.1. RA�Aggressive. As shown in Figure 10, when setting
the RA for a MASS to avoid collision as aggressive, the
schemes of U1

1 and U2
1 are chosen as the optimal action for

the MASS under scenarios I and II, respectively. In the
scenario I, the dynamic values of three RA indicators are
reported in Figure 10(a). It can be noted the MASS takes
course change at time 725 s when the SV is relatively low
(0.4). After the action is made, the SV for the MASS is
increasing to 0.6, but the Dev began to grow and reached
1.0 nm in the end. In scenario II (see Figure 10(b)), the
MASS takes actions at time 845 s and the SV is increased
from 1.05 to 1.20, causing the deviation of 0.9 nm.

5.1.2. RA�Neutral. When RA is set as neutral, the RA-
CADMS selects the schemes U1

4 and U2
3 as two optimal deci-

sions for the MASS under scenario I and scenario II. As shown
in Figure 11(a), the MASS chooses to take collision avoidance
action at time 560 s when SV is 0.43. As a result, the SV sig-
nificantly raised to 0.79 and theDev increased to 1.7. In scenario
II (see Figure 11(b), theMASS takes action at time 835 s and the
SV is increased from 1.05 to 1.25, leading to a Dev of 1.7nm.

5.1.3. RA�Cautious. Similarly, when RA� cautious, the
optimal schemes for theMASS are U1

6 (for scenario I) and U2
4

(for scenario II). As shown in Figure 12(a), in scenario I, the
action time for the MASS is 520 s when SV is 0.45; after the
collision avoidance action is took, the SV increases to
maximum, but the Dev is also relatively large (Dev � 2.0). In

Table 4: Scenario II: collision avoidance scheme.

Scheme Accepted distance (n mile) Change of course (degree) Action time (minutes) Recover time (minutes)
U2

1 1.0 20 13.6 23.6
U2

2 1.2 30 13.8 23.7
U2

3 1.4 40 14 23.6
U2

4 1.6 50 0.3 25.0
U2

5 1.8 55 0.3 24.8
U2

6 2.0 60 0.2 24.8

OS

TS1

TS2

DCPA1=1.42 nm
DCPA2=0.50 nm

y 
[n

 m
ile

]
5

5

0

RML1

RML2

x [n mile]

TCPA1=15.0 min
TCPA2=21.5 min

Figure 8: )e multiple-vessel encounter situation.
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scenario II, Figure 12(b), theMASS chooses to avoid two TSs
at the initial time of the simulation. For that moment, the SV
is 1.6. )e action causes a large route deviation, which is the
largest among all the schemes (Dev � 5).

5.2. Characteristics of Different RA. )e simulation results
demonstrate that different RA setting in the MASS leads to
the different collision avoidance actions, proving a close
relationship among them. To characterize the avoidance
actions under different RA can provide better understanding
for MASS designer/controllers.

Table 5 reports the details of the scheme selections. Five
factors are considered, including the action time, SV values
before action, SV values after action, and SV increment and
deviation. Based on Table 4, the following findings are
concluded:

(1) For MASS, the more conservative it is, the easier it is
to take collision avoidance action earlier. It is evident
that the cautious RA selects the earliest action time
(520 seconds) in scenario I, which is 205 seconds
earlier than the scheme that is selected by the ag-
gressive RA. )is phenomenon is more apparent in
scenario II as the scheme U2

6 takes action at initial
time, while the U2

1 takes action at 845 seconds.)is is
due to the risk tolerance under different RA. For
instance, in scenario I, the minimum accepted SV for
the aggressive RA is 0.4, while the minimum ac-
cepted SV for cautious is 0.45. )e high tolerance of
risk causes later actions.

(2) Followed by the first findings, this study notes that
the safety levels under different RA are different. For
instance, in the scheme U1

1 of scenario I, the SV raises
to maximum (i.e., SV � 1) after the collision
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Figure 9: Ship trajectories in Case 2.
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avoidance action is taken by a cautious RA, with a
significant increasing on SV (from 0.45 to 0.55). In
contrast, the MASS with high-risk tolerance (i.e.,
aggressive) accepts SV � 0.6 as the safety level. It
means the action taken by aggregative RA is riskier.

(3) Under different risk appetites, the composite pros-
pect value of the same collision avoidance schemes
for the same encountering scenario is different. )e
composite prospect value of the aggressive crew is
larger than that of the cautious crew, for the

aggressive pursuing greater prospect value, but the
prospect value of each scheme is negative in any type
of officers, indicating that there exists expected de-
viation compared to ideal decision.

(4) In practice, MASSs can recommend the officers
optimal schemes according to the specific risk ap-
petite types of different operators, which can not
only ensure the safety and economy of ship collision
avoidance action but also be well understood and
accepted by the OOWs.
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Figure 10: Results of decision indicators with aggressive officers in (a) scenario I and (b) scenario II.
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Figure 11: Results of decision indicators with neutral officers in (a) scenario I and (b) scenario II.
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(5) )e relationships between cost (i.e., deviation)
and profit (i.e., SV) are not linear. By simulating
100 cases of increasing the deviation from 0.1 nm

to 10 nm, the relationship between the deviation
and the SV can be fitted with the following
equation:
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Y: 0.00562
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Figure 13: )e fitness between the deviation and the increment of the SV.
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Figure 12: Results of decision indicators with cautious officers in (a) scenario I and (b) scenario II.

Table 5: Results under different RA.

RA Collision avoidance scheme Action time (second)
SV

Deviation
Before action After action Increment

Scenario I
Aggressive U1

1 725 0.4 0.6 0.2 1
Neutral U1

4 560 0.43 0.79 0.36 1.7
Cautious U1

6 520 0.45 1 0.55 2

Scenario II
Aggressive U2

1 845 1.05 1.2 0.15 0.9
Neutral U2

3 835 1.05 1.25 0.2 1.8
Cautious U2

6 0 1.6 2 0.4 5
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f(Dev) � 0.04739∗ dev1.13
+ 0.1079. (30)

As shown in Figure 13, the fitness function indicates that
before deviation less than 1.5 nm, a slight avoidance action
would increase the SV significantly, which is a good ratio of
benefit.When the deviation is larger than 1.5 nm, the ratio of
benefit for ships that takes a large change is unsatisfactory.

6. Conclusion and Future Research

)is study proposed a RA-CADMmodel to support collision
avoidance decision making for MASS under man-machine
hybrid conditions. On the basis of the collision risk model,
the novelty of the model included the following: (1) it firstly
applied the prospect theory in collision avoidance decision
making and pioneered the MASS control with a human-like
machine system; (2) the proposed model was tested with
scenario simulations that covered the individual collision
scenario and multiple collision scenarios to prove the reli-
ability and the applicability in real cases; (3) the RA under
different states were discussed in-depth, so as to present
sufficient support for MASS designer and controller to make
collision avoidance strategies. Although the results of this
case study demonstrate risk preference, these risk param-
eters from other researches may deviate from the actual
crews due to industry background differences.

)erefore, further research works are suggested as follows:
(1) the differences between traditional CAS and intelligent CAS
can be discussed; (2) the weight assignment for the RA in-
dicators in the model should be investigated through surveys
and or AIS data mining; (3) considering more risk-related
factors during the decision-making process to optimize the
collision schemes; and (4) real ship tests are encouraged for
obtaining more information of collision avoidance decision.
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