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*is study conducts a comprehensive comparative analysis of regression-based multinomial models and artificial neural network
models in intercity travel mode choices. *e four intercity travel modes of airplane, high-speed rail (HSR), train, and express bus
were used for analysis. Passengers’ activity data over the process of intercity travel were collected to develop the models. *e
standard multinomial logit (MNL) regression and Bayesian multinomial logit (BMNL) regression were compared with the radial
basis function (RBF) and multilayer perceptron (MLP). *e results show that MLP performs best in terms of predictive accuracy,
followed by BMNL andMNL, and RBF is the least accurate.*e performances of all models were examined against changes in data
balance, and it was found that rebalancing can improve fitting performance while slightly reducing the predictive performance.
*is comparative study and its parameter estimation shed new light on the comparison of traditional and emerging models in
travel behavior studies, and the findings can be used as heuristic guidance for all stakeholders.

1. Introduction

To model passengers’ travel behaviors is of value to better
understand mobility modes in the complex travel envi-
ronment [1]. Policies and managerial strategies rely on the
accurate estimation of travel mode choices of passengers. In
2020, COVID-19 has profoundly influenced passengers’
travel behaviors, causing a dramatic shift in intracity and
intercity mobility modes, inevitably affecting society, pro-
duction, and the global economy. Scholars have investigated
contextual factors that influence travel modes, aiming to
better understand passengers’ choices and develop suitable
models.

Previous studies have shown that travel mode choice can
be affected by social and demographic factors, including
gender [2–4], age [4–6], occupation [3], income [2, 4, 7, 8],
and car ownership [4]. Miskeen et al. [4] found that males

were more likely to use public transportation than cars,
while females were less likely to shift to public trans-
portation. Cheng et al. [6] indicated that age was the most
significant individual-related attribute. Tourists were more
likely to choose a plane or train than a coach [3]. Forinash
et al. [7] found that high- and low-income groups preferred
air travel and bus, respectively. It was similarly reported that
an increase in passengers’ incomes decreased their use of
buses [4]. Lower-income individuals were found to be more
sensitive to cost and less sensitive to out-of-vehicle time than
middle- and high-income individuals [8]. Related attributes,
such as travel demand, service quality of transport modes,
and accessibility of transportation hubs, have been found to
influence travel mode choices [1, 3, 9, 10].

*e most widely used modeling techniques in travel
mode choice are discrete choice models, such as the bino-
mial logit (BL) [11], multinomial logit (MNL) [4, 12],
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multinomial probit (MNP) [3], nested logit (NL) [13, 14],
and mixed logit (ML) models [15–17], which have high
interpretability of estimation results on input variables, as
well as high transferability and validity. Regression-based
models form maximum likelihood estimates of parameters
[4, 5, 11, 12, 17, 18]. Apart from the popular logit model,
Bayesian parameter estimation methods have shown good
accuracy and performance [19–22]. For example, Wong and
Farooq [23] developed an algorithm based on the restricted
Boltzmann machine, which has multiple discrete-continu-
ous layers and can be expressed as a variational Bayesian
inference optimization problem.

Emerging machine learning techniques have been
studied for travel mode choice [24–34]. Lindner et al. [33]
found an artificial neural network (ANN) and classification
tree (CT) to outperform binary logit regression in motorized
travel mode choice. Cheng et al. [6] found the random forest
(RF) to have significantly better prediction accuracy than
support vector machine (SVM), adaptive boosting (Ada-
Boost), andMNL inmodeling travel mode choice. Zhao et al.
[24] compared the model development, evaluation, and
behavior interpretation of MNL and ML with that of the
naive Bayes, CT, AdaBoost, bag fruit tree, RF, SVM, and
ANNmachine learning classifiers. Among machine learning
approaches, the multilayer perceptron (MLP) and radial
basis function (RBF) have been widely applied due to their
better classification accuracy compared to naive Bayes,
K-nearest neighbors, and backpropagation neural networks
[35–37]. Hence, they have potential use in the study of travel
mode choice.

*e influence of data balance on the accuracy of mul-
timode choice models has not been widely reported. Im-
balanced sample data can influence the accuracy of
estimation in multiclass discrete choice prediction [38, 39],
and methods such as oversampling and undersampling have
been proposed to address this issue [40, 41]. However, there
is no commonly agreed best method to resolve this issue in
multiclass classification. *is is a well-known issue in travel
mode choice, and the effectiveness of rebalancing methods
when using different regression-based and neural network

models in empirical studies of modeling travel mode choice
requires study.

*is study has three objectives: (1) to investigate the
predictive performance of modeling techniques including
Bayesian multinomial logit (BMNL), MNL, MLP, and RBF
for intercity travel mode choice; (2) to assess the predictive
performance of the above techniques after data balancing;
and (3) to evaluate the factors affecting intercity travel mode
choice and their relative importance using a comprehensive
dataset. Passengers’ activity data over the whole process of
intercity travel were collected. *e travel modes of airplane,
HSR, train, and express bus were investigated. *e BMNL,
MNL, MLP, and RBF models were developed and validated.
A receiver operating characteristic (ROC) curve and con-
fusion matrix were employed to evaluate the models’ pre-
dictive performance.

*e remainder of this paper is organized as follows.
Section 2 introduces the methodological background of the
selected models, followed by a description of the dataset in
Section 3. Section 4 presents the results and findings. We
summarize our conclusions and propose future work in
Section 5.

2. Methodology

2.1. Bayesian Multinomial Logit Model. MNL regression
generalizes logistic regression into multiclass problems that
consist of more than two possible discrete groups [1, 19]. It
can be expressed as [19]

P Zj � i􏼐 􏼑 �
exp βi0 + βi1xj1 + βi2xj2 + · · · + βikxjk􏼐 􏼑

􏽐
I
i�1exp β

i
0 + βi1xj1 + βi2xj2 + · · · + βikxjk􏼐 􏼑

,

(1)

where X � [xj1, xj2, . . . , xjk] is a vector of independent
variables xjk, β � [βi0, β

i
1, β

i
2, . . . , βik]T is the corresponding

coefficient vector, and Zj � i is the choice of travel mode i
for the jth observation.

*e likelihood function can be expressed as

f(Z | β) � 􏽙
N

j�1
􏽙
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(2)

where N is the number of samples, I is the number of
outcomes, and εij equals 1 when the discrete outcome of
sample j is i and is 0 otherwise.

*e Bayesian approach using Markov chain Monte
Carlo (MCMC) was utilized for model estimation. Based
on Bayesian inference, the posterior joint distribution of
parameters β conditional on dataset Z can be estimated as
[19]

f(β |Z) �
f(Z, β)

f(Z)
�

f(Z | β)π(β)

f(Z | β)π(β)d(β)
∝f(Z | β)π(β),

(3)

where f(Z, β) is the joint probability distribution of Z and β,
f(Z | β) is the likelihood of the conditional function based
on β, and π(β) is the prior distribution of β. Due to lack of
information on the random parameters, we used the non-
informative prior distributions [1]:
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β ∼ N 0k, 106Mk􏼐 􏼑, (4) where 0k is a vector of zeros and Mk is the k × k identity
matrix.

*e posterior joint distribution can be derived as [42]
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N

j�1
􏽙

I

i�1
εji ×

exp βi0 + βi1xj1 + βi2xj2 + · · · + βikxjk􏼐 􏼑

􏽐
I
m�1 exp β

i
0 + βi1xj1 + βi2xj2 + · · · + βikxjk􏼐 􏼑

⎡⎢⎣ ⎤⎥⎦

× 􏽙
N

j�1
􏽙

I

i�1

1
���
2π

√
103

exp −
1
2
βik􏼐 􏼑

2

106
⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦∝ exp 􏽘

N

j�1
􏽘

I

i�1
εij ×

exp βi0 + βi1xj1 + βi2xj2 + · · · + βikxjk􏼐 􏼑

􏽐
I
m�1 exp β

i
0 + βi1xj1 + βi2xj2 + · · · + βikxjk􏼐 􏼑

⎡⎢⎣ ⎤⎥⎦ − 􏽘
N

j�1
􏽘

I

i�1

1
2
βik􏼐 􏼑

2

106
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(5)

2.2. Radial Basis Function (RBF) Neural Network. An RBF
neural network is a typical three-layer neural network
model with input, hidden, and output layers, as shown in
Figure 1, where k is the number of input variables, H is the
number of hidden neurons, I is the number of output
neurons (travel modes), X � [x1, x2, . . . , xk]T is the input,
Y � [y1, y2, . . . , yI]

T is the output, and whi is the con-
nection weight of the hth hidden layer neuron to the ith
output layer neuron.

A Gaussian function is generally used as the hidden layer
excitation function. *e output of the hth hidden layer
neuron is

Gh(x) � e
− X− c2

h
/2σ2

h( ), h � 1, 2, . . . , H, (6)

and the linear mapping relationship between Gh(x) and the
ith output layer neuron is

Gh(x) � yi � 􏽘
H

h�1
whiGh(x), i � 1, 2, . . . , I, (7)

where ch and σh are, respectively, the center vector of the
Gaussian function and the base width of the hth hidden
neuron.

RBF has been criticized as a “black box” that lacks inter-
pretability [43]. Various tools have been developed to address
this issue, the most common being variable importance
analysis [44–46], which measures the relative importance of
each independent variable in predicting dependent variables.

2.3. Multilayer Perceptron (MLP) Neural Network. MLP is a
commonly used supervised ANNmodel that can be used for
both pattern recognition and function approximation.
Compared to RBF, MLP can have multiple hidden layers
(shown in Figure 2) [47]. *e hyperbolic tangent function is
selected as the activation function of MLP hidden neurons.
*e output from a hidden neuron is

y �
e

u
− e

−u

e
u

+ e
−u, (8)

and the connection weight is the output of the net function,

u � b + 􏽘
k

p�1
wpxp, (9)

where k is the number of inputs, xp is the input, wp is the
weight of the corresponding input (wp; 1≤p≤ k), b is the
bias weight, and the Levenberg–Marquardt training algo-
rithm is selected [28].

2.4. Model Comparison and Validation. *e multi-
classification confusion matrix (see Table 1) is used to
calculate the accuracy of each model [48], where sim is the
number of samples in which mode i is predicted as mode m.
*e recall and precision of mode i are

Recalli �
Sii

􏽐
I
m�1sim

,

Precisioni �
Sii

􏽐
I
m�1Smi

,

(10)

and the accuracy of the model can be calculated as [1]

accuracy �
􏽐

I
i�1Sii

N
. (11)

*e ROC curve and area under the curve (AUC) were
also used to measure the predictive ability. A higher AUC
value indicates better predictive accuracy [42, 49].

3. Data Collection

Data from Li et al.’s work [42] were used in this study. A total
of 985 random samples collected in Xi’an from March 1–10,
2018, were used for analysis, where 161 samples reported the
choice of airplane, accounting for 16.3% of intercity travel
records, and 369 (37.5%) were reported as HSR, 299 (30.4%)
as train, and 156 (15.8%) as express bus. Among them, 80%
were randomly selected for training, and the remaining 20%
were used for prediction. In addition to the original in-
formation included in the database, the travel distance was
calculated by Baidu Maps using the real route between the
cities of origin and destination. *e intercity travel time was
obtained according to the identification number of the
carrier, transportation schedule, and origin and destination
cities.

Undersampling and oversampling are the most fre-
quently used techniques to balance data for machine
learning and pattern recognition [38–41]. Undersampling
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achieves relative equilibrium among classes by reducing the
number of samples of classes with more samples. Using this
method, the number of samples of each travel mode was 156,

with 80% randomly selected for training, and the remaining
20% selected for prediction. Oversampling is to add samples
of classes with fewer samples to equal the number of samples

x1

x2

x3

xk

y1

y2

yI

Input layer Output layerHidden layer

whi

Figure 1: RBF network.

Table 1: Multiclassification confusion matrix.

Predictive class
Mode 1 2 3 . . . I Recall

Actual class

1 s11 s12 s13 . . . s1I Recall1
2 s21 s22 s23 . . . s2I Recall2
3 s31 s32 s33 . . . s3I Recall3

. . . . . . . . . . . . . . . . . .

I sI1 sI2 sI3 sII RecallI
Precision Precision1 Precision2 Precision3 PrecisionI Accuracy

bias

weights weights

Input layer Output layerHidden layer

x1

x2

x3

xk

y1

y2

yI

Figure 2: General topology of MLP.
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in a class with more samples. *rough oversampling, the
sample size of each transportation mode became 369; 80% of
samples were randomly selected for training, and the
remaining 20% were selected for prediction.

Tables 2 and 3 describe the categories and continuous
variables for imbalanced and rebalanced data, respectively.

4. Results

Stata 15.0 software was used for parameter estimation of the
BMNL andMNLmodels, confusionmatrix, and ROCs. SPSS
25.0 was used for relative importance analysis of variables by
the RBF and MLP models.

4.1. Model Results. Table 4 presents the estimated means of
variables from the BMNL model, and Tables 5–7 show their
parameter estimates. *e frequently used train was con-
sidered as the reference in the model. *e typical variables
including gender, age, occupation, travel purpose, monthly
income, intercity travel distance, intercity travel cost, in-
tercity travel time, safety, comfort, punctuality, access time,
and departure time were selected for modeling after col-
linearity testing. *e MCMC simulation-based full Bayesian
approach was employed to estimate the posterior distri-
butions of parameters. Variables with confidence intervals
not including zero were regarded as significant [19]. As
shown in Table 4, we found that the parameter estimates of
certain variables differed slightly between the imbalanced
and balanced data. For example, the intercity travel distance
is significantly related to the choice of express bus when
using balanced data, but not when using imbalanced data.
*e signs of variables were found to be consistent between
balanced and imbalanced data.

Table 8 shows the estimated coefficients of variables from
the MNL model using the same variables. Parameter esti-
mates of variables are shown in Tables 9–11. Similar to the
BMNL model, the parameter estimates differ to some extent
between imbalanced and balanced data, and the signs of
significant variables are consistent. *e symbols of signifi-
cant variables in the MNL model were consistent with those
in the BMNL model. However, the significant variables in
MNL were not completely consistent with those in the
BMNL model. For example, the travel purpose is significant
in the BMNL model but not in the MNL model. Gender was
significantly related to the choice of HSR in the BMNL
model, but not in the MNL model.

Figures 3 and 4 show the relative importance of the
factors obtained by RBF and MLP, respectively. *ere is a
slight difference in the order of relative importance of
factors. For example, using imbalanced data, intercity travel
cost is most important in the RBF model, but second in
importance in the MLP model, after intercity travel time.
Slight differences exist in the relative importance of factors
between imbalanced and balanced data in the same model.
For example, in the MLP model, gender is the least im-
portant using imbalanced data, and travel purpose is the
least important using balanced data. Overall, intercity travel
cost, intercity travel time, intercity travel distance, comfort,

safety, and punctuality are the most important factors in the
intercity travel mode choice, followed by the monthly in-
come, age, and occupation. Access and departure times,
which reflect the accessibility of a transport hub, show
moderate importance. Travel purpose and gender are the
least important.

4.2. Model Comparison and Validation

4.2.1. Model Performance for Imbalanced Data. AUCs and
confusion matrices were employed to compare the fitting
and predictive performance of the MNL, BMNL, MLP, and
RBF models. *e confusion matrix of the four models using
imbalanced data is shown in Table 12. *rough the analysis
of the accuracy, it can be found that MLP has the best fitting
performance (80.70%), and RBF is the worst (67.30%).
BMNL (76.36%) and MNL (76.10%) have similar fitting
performance. For the predictive set, the predictive perfor-
mance of MLP (78.70%) is the best, followed by MNL
(75.76%), BMNL (75.25%), and RBF (65.50%).

*e ROC curves of the four models are shown in Fig-
ures 5 and 6. For the training set, the AUC of theMLP for the
airplane is 0.9857, which indicates that its fitting perfor-
mance is better than that of BMNL (0.9732), MNL (0.9731),
and RBF (0.9443). *e MLP model is almost perfect, as its
ROC curve rises rapidly toward the upper-left corner of the
graph. Similarly, the AUCs of MLP for HSR and train are the
largest, followed by BMNL, MNL, and RBF. *ese findings
confirm that the MLP model outperforms BMNL and MNL,
followed by RBF.

For the predictive set, the AUC of MLP for airplane is
0.9905, which is better than RBF (0.9823), BMNL (0.9784),
and MNL (0.9767). Similarly, MLP is almost perfect, as its
ROC curve rises rapidly toward the upper-left corner of the
graph.*e AUC of MLP for HSR is also the largest, followed
by BMNL, MNL, and RBF. *e AUC of MLP for train is
0.9054, which indicates that its predictive performance is
significantly better than that of MNL (0.8637), BMNL
(0.8624), and RBF (0.8280). However, the AUC of BMNL for
express bus is the largest, followed by MNL, MLP, and RBF.

4.2.2. Model Performance for Rebalanced Data. MNL,
BMNL, MLP, and RBF were used to train and verify the
balanced data with the same variables used for the imbal-
anced data. *e confusion matrices of each model for
undersampled and oversampled balanced data are shown in
Tables 13 and 14. *e ROC curves for the undersampled
training and predictive set are presented in Figures 7 and 8.
*e ROC curves for the oversampled training and predictive
sets are presented in Figures 9 and 10.

*e results show that MLP provides the best fitting for
both oversampled and undersampled data, followed by
BMNL and MNL, and RBF has the poorest fitting perfor-
mance. *e results are consistent with those of the four
models using imbalanced data. Hence, whether the data are
balanced will not affect the relative fitting performance of the
models.
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For the predictive performance of the models, we found
that MLP performs best regardless of oversampling or
undersampling balanced data. More importantly, BMNL
andMNL show the same predictive performance when using
oversampling balanced data, and RBFmodels have the worst
predictive performance. Similarly, BMNL andMNL have the
same predictive performance using undersampled data, but
their performance is lower than that of RBF.

*e fitting performance of models based on balanced
data is a slight improvement over using imbalanced data. For

example, the fitting performance of MLP model is 80.70%
using imbalanced data, and 81.80% and 83.10%, respectively,
with undersampled and oversampled data. However, except
for the RBF model, the predictive performance of these
models based on balanced data is slightly lower than that
when using imbalanced data.

*e ROC curve was also used to intuitively judge the
predictive performance of each model, and AUCs were used
to quantitatively compare their predictive accuracy under
different modeling techniques. We found that the results

Table 3: Description of continuous variables.

Data Variable Unit
Training set Predictive set

Min Max Mean SD Min Max Mean SD

Imbalanced data

Intercity travel distance km 16.00 2831.00 797.54 579.86 16.00 2540.00 792.66 632.00
Intercity travel cost Yuan 7.00 2600.00 310.46 319.44 7.00 1400.00 283.07 288.70
Intercity travel time Hour 0.22 52.00 6.48 6.49 0.25 33.00 6.00 5.87

Access cost Yuan 1.00 300.00 11.59 22.89 1.00 100.00 10.19 16.36
Departure cost Yuan 1.00 150.00 13.52 20.72 1.00 150.00 13.23 21.89

Oversampling balanced data

Intercity travel distance Km 16.00 2831.00 807.54 621.35 16.00 2801.00 808.45 617.20
Intercity travel cost Yuan 7.00 2600.00 321.23 343.35 7.00 2600.00 324.57 344.48
Intercity travel time Hour 0.22 52.00 5.92 6.33 0.25 37.00 5.85 6.50

Access cost Yuan 1.00 300.00 13.03 25.51 1.00 150.00 11.57 20.38
Departure cost Yuan 1.00 150.00 15.19 23.36 1.00 150.00 14.24 22.69

Undersampling balanced data

Intercity travel distance Km 17.00 2831.00 823.55 616.21 27.00 2500.00 731.52 597.32
Intercity travel cost Yuan 7.00 2600.00 330.79 360.54 13.50 1200.00 277.20 275.22
Intercity travel time Hour 0.22 37.00 5.92 6.14 0.25 28.00 5.22 5.90

Access cost Yuan 1.00 300.00 12.77 25.43 1.00 120.00 12.49 19.88
Departure cost Yuan 1.00 150.00 14.68 23.11 1.00 120.00 14.51 22.79

Table 4: Parameter estimation in BMNL.

Variable
Imbalanced data Oversampling balanced data Undersampling balanced data

Airplane HSR Express bus Airplane HSR Express bus Airplane HSR Express bus
Mean Mean Mean Mean Mean Mean Mean Mean Mean

Gender
Male vs. female 0.555 0.186 0.368 0.683 0.197 0.713 1.231 0.384 0.733

Age 0.282 0.350 0.247 0.416 0.357 0.346 0.396 — 0.380
Occupation
Personnel of institutions vs.
enterprise unit 0.710 0.408 0.651 0.344 0.143 0.313 — — —

Student vs. enterprise unit — −0.300 1.348 0.316 −0.349 1.930 — — 1.454
Farmer vs. enterprise unit −0.473 — — −0.898 −0.561 −0.333 −2.097 −0.584 −0.574
Self-employed vs. enterprise unit — — 0.686 −1.157 −0.384 0.558 −2.540 −1.114 —
Others vs. enterprise unit −0.844 −0.193 0.679 −1.480 −0.475 0.616 −2.160 −0.704 0.473

Monthly income — −0.273 — — −0.221 — −0.163 −0.222 —
Travel purpose
Mandatory travel vs. leisure travel −0.477 −0.284 −0.425 −0.341 −0.388 — — −0.230 0.138

Intercity travel distance 0.004 0.001 — 0.002 — −0.002 0.003 — −0.002
Intercity travel cost 0.018 0.015 — 0.027 0.022 0.001 0.026 0.023 —
Intercity travel time −1.239 −0.397 — −1.265 −0.417 0.002 −1.255 −0.482 0.036
Safety 0.566 0.609 — 0.818 0.685 — −0.098 0.621 —
Comfort — 0.314 −0.433 0.195 0.369 −0.463 0.639 0.312 −0.480
Punctuality −0.335 0.319 −0.574 −0.377 0.317 −0.525 −0.496 0.323 −0.817
Access time 0.390 — −0.268 0.455 — −0.284 0.351 −0.220 —
Departure time 0.694 — — 1.026 0.264 — 0.796 — −0.427
Constant −7.703 −5.803 3.089 −9.503 −6.798 2.328 −5.985 −5.589 3.884
Note: parameters that were significant at the 95% confidence level are shown in the table.
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Table 5: Parameter estimation in BMNL using imbalanced data.

Variable
Airplane HSR Express bus

Mean SD
Credit interval

Mean SD
Credit interval

Mean SD
Credit interval

2.50% 97.50% 2.50% 97.50% 2.50% 97.50%
Gender
Male vs. female 0.555 0.143 0.275 0.833 0.186 0.057 0.067 0.295 0.368 0.167 0.040 0.677

Age 0.282 0.089 0.114 0.454 0.350 0.091 0.180 0.538 0.247 0.084 0.072 0.407
Occupation
Personnel of institution vs.
enterprise unit 0.710 0.173 0.377 1.051 0.408 0.059 0.295 0.527 0.651 0.129 0.403 0.913

Student vs. enterprise unit 0.114 0.171 −0.217 0.435 −0.300 0.068 −0.440 −0.167 1.348 0.181 1.002 1.727
Farmer vs. enterprise unit −0.473 0.226 −0.930 −0.027 −0.078 0.063 −0.205 0.423 −0.031 0.158 −0.321 0.288
Self-employed vs. enterprise unit −0.147 0.187 −0.522 0.228 0.074 0.082 −0.083 0.235 0.686 0.139 0.409 0.967
Others vs. enterprise unit −0.844 0.161 −1.173 −0.526 −0.193 0.066 −0.316 −0.059 0.679 0.144 0.396 0.953

Monthly income −0.098 0.090 −0.270 0.089 −0.273 0.062 −0.394 −0.154 −0.121 0.070 −0.251 0.016
Travel purpose
Mandatory travel vs. leisure travel −0.477 0.196 −0.871 −0.096 −0.284 0.053 −0.384 −0.185 −0.425 0.130 −0.699 −0.192

Intercity travel distance 0.004 0.001 0.003 0.005 0.001 0.001 0.001 0.002 −0.001 0.001 −0.002 0.001
Intercity travel cost 0.018 0.002 0.014 0.022 0.015 0.002 0.011 0.186 0.001 0.002 −0.005 0.004
Intercity travel time −1.239 0.096 −1.433 −1.059 −0.397 0.044 −0.485 −0.311 −0.009 0.029 −0.064 0.048
Safety 0.566 0.149 0.268 0.847 0.609 0.086 0.440 0.782 0.039 0.065 −0.079 0.173
Comfort 0.245 0.124 −0.017 0.474 0.314 0.053 0.211 0.427 −0.433 0.099 −0.634 −0.254
Punctuality −0.335 0.13 −0.586 −0.089 0.319 0.066 0.189 0.440 −0.574 0.04 −0.655 −0.498
Access time 0.390 0.151 0.074 0.677 −0.08 0.056 −0.189 0.034 −0.268 0.106 −0.472 −0.066
Departure time 0.694 0.142 0.428 0.981 0.029 0.060 −0.080 0.151 −0.161 0.132 −0.419 0.094
Constant −7.703 0.081 −7.863 −7.537 −5.803 0.098 −5.997 −5.62 3.089 0.124 2.857 3.342

Table 6: Parameter estimation in BMNL using oversampling of balanced data.

Variable
Airplane HSR Express bus

Mean SD
Credit interval

Mean SD
Credit interval

Mean SD
Credit interval

2.50% 97.50% 2.50% 97.50% 2.50% 97.50%
Gender
Male vs. female 0.683 0.118 0.474 0.947 0.197 0.075 0.052 0.339 0.713 0.085 0.556 0.872

Age 0.416 0.106 0.190 0.615 0.357 0.028 0.298 0.410 0.346 0.054 0.241 0.452
Occupation
Personnel of institution vs.
enterprise unit 0.344 0.076 0.218 0.510 0.143 0.054 0.041 0.256 0.313 0.107 0.050 0.491

Student vs. enterprise unit 0.316 0.078 0.126 0.436 −0.349 0.050 −0.444 −0.256 1.930 0.060 1.817 2.041
Farmer vs. enterprise unit −0.898 0.058 −1.014 −0.787 −0.561 0.077 −0.712 −0.417 −0.333 0.054 −0.438 −0.229
Self-employed vs. enterprise unit −1.157 0.120 −1.398 −0.928 −0.384 0.075 −0.531 −0.232 0.558 0.142 0.269 0.818
Others vs. enterprise unit −1.480 0.072 −1.643 −1.348 −0.475 0.116 −0.695 −0.249 0.616 0.101 0.423 0.794

Monthly income −0.044 0.061 −0.192 0.058 −0.221 0.047 −0.315 −0.129 0.015 0.052 −0.079 0.128
Travel purpose
Mandatory travel vs. leisure travel −0.341 0.033 −0.396 −0.264 −0.388 0.086 −0.556 −0.216 −0.127 0.064 −0.243 0.004

Intercity travel distance 0.002 0.001 0.001 0.004 −0.001 0.001 −0.002 0.001 −0.002 0.001 −0.003 −0.001
Intercity travel cost 0.027 0.002 0.023 0.031 0.022 0.002 0.018 0.026 0.001 0.002 −0.002 0.005
Intercity travel time −1.265 0.075 −1.426 −1.128 −0.417 0.022 −0.459 −0.373 0.002 0.024 −0.047 0.045
Safety 0.818 0.069 0.671 0.947 0.685 0.047 0.594 0.780 0.155 0.104 −0.042 0.359
Comfort 0.195 0.120 0.007 0.490 0.369 0.033 0.303 0.434 −0.463 0.094 −0.644 −0.284
Punctuality −0.377 0.116 −0.602 −0.164 0.317 0.041 0.242 0.399 −0.525 0.080 −0.680 −0.370
Access time 0.455 0.081 0.255 0.587 −0.136 0.110 −0.357 0.066 −0.284 0.058 −0.409 −0.175
Departure time 1.026 0.171 0.717 1.356 0.264 0.033 0.201 0.329 −0.202 0.111 −0.418 0.012
Constant −9.503 0.080 −9.678 −9.362 −6.798 0.092 −6.976 −6.605 2.328 0.067 2.164 2.433
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Table 7: Parameter estimation in BMNL using undersampling of balanced data.

Variable
Airplane HSR Express bus

Mean SD
Credit interval

Mean SD
Credit interval

Mean SD
Credit interval

2.50% 97.50% 2.50% 97.50% 2.50% 97.50%
Gender
Male vs. female 1.231 0.266 0.719 1.764 0.384 0.114 0.167 0.620 0.733 0.165 0.435 1.075

Age 0.396 0.102 0.206 0.595 0.232 0.143 −0.080 0.506 0.380 0.083 0.220 0.541
Occupation
Personnel of institution vs.
enterprise unit −0.162 0.130 −0.403 0.081 −0.176 0.106 −0.393 0.035 0.139 0.171 −0.235 0.444

Student vs. enterprise unit 0.041 0.170 −0.274 0.366 −0.121 0.210 −0.529 0.288 1.454 0.131 1.198 1.718
Farmer vs. enterprise unit −2.097 0.191 −2.450 −1.722 −0.584 0.061 −0.709 −0.458 −0.574 0.223 −1.017 −0.128
Self-employed vs. enterprise unit −2.540 0.232 −3.011 −2.105 −1.114 0.081 −1.280 −0.954 0.021 0.231 −0.449 0.485
Others vs. enterprise unit −2.160 0.211 −2.563 −1.735 −0.704 0.085 −0.906 −0.574 0.473 0.134 0.217 0.740

Monthly income −0.163 0.067 −0.305 −0.031 −0.222 0.101 −0.418 −0.027 −0.128 0.075 −0.284 0.020
Travel purpose
Mandatory travel vs. leisure travel −0.038 0.215 −0.470 0.352 −0.230 0.113 −0.471 −0.013 0.138 0.205 −0.253 0.554

Intercity travel distance 0.003 0.001 0.001 0.005 0.000 0.001 −0.002 0.002 −0.002 0.001 −0.004 −0.001
Intercity travel cost 0.026 0.004 0.020 0.035 0.023 0.003 0.016 0.031 0.000 0.003 −0.006 0.006
Intercity travel time −1.255 0.062 −1.378 −1.146 −0.482 0.056 −0.598 −0.388 0.036 0.043 −0.049 0.126
Safety −0.098 0.133 −0.357 0.151 0.621 0.099 0.432 0.824 0.077 0.096 −0.113 0.274
Comfort 0.639 0.035 0.574 0.706 0.312 0.120 0.056 0.526 −0.480 0.134 −0.753 −0.223
Punctuality −0.496 0.158 −0.800 −0.190 0.323 0.018 0.290 0.363 −0.817 0.118 −1.065 −0.582
Access time 0.351 0.073 0.216 0.490 −0.220 0.030 −0.278 −0.159 0.042 0.070 −0.098 0.178
Departure time 0.796 0.109 0.584 1.029 −0.050 0.063 −0.178 0.064 −0.427 0.115 −0.641 −0.200
Constant −5.985 0.135 −6.242 −5.731 −5.589 0.207 −6.001 −5.200 3.884 0.173 3.540 4.203

Table 8: Parameter estimation in MNL.

Variable

Imbalanced data Oversampling balanced data Undersampling balanced data

Airplane HSR Express
bus Airplane HSR Express

bus Airplane HSR Express
bus

Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient Coefficient
Gender
Male vs. female — — — — — 0.681 — — 0.723

Age — 0.349 — — 0.366 0.360 — — —
Occupation
Personnel of
institutions vs.
enterprise unit

— — — — — — — — —

Student vs.
enterprise unit — — 1.298 — −0.352 1.856 — — 1.642

Farmer vs.
enterprise unit — — — — — — — — —

Self-employed vs.
enterprise unit — — — — — — — — —

Others vs. enterprise
unit — — — — — — — — —

Monthly income −0.128 −0.289 — — −0.226 — — — —
Travel purpose
Mandatory travel vs.
leisure travel — — — — — — — — —

Intercity travel
distance 0.004 0.001 — 0.002 — −0.002 0.003 — —

Intercity travel cost 0.017 0.014 — 0.026 0.022 — 0.031 0.027 —
Intercity travel time −1.211 −0.380 — −1.242 −0.421 — −1.395 −0.638 —
Safety — 0.585 — 0.801 0.678 — — — —
Comfort — — −0.458 — — −0.461 — — −0.418
Punctuality — 0.299 −0.575 — — −0.513 — — −0.617
Access time — — — — — — — — —
Departure time 0.731 — — 1.030 — −0.185 — — —
Constant −7.673 −5.821 3.058 −9.522 −6.798 2.303 — −5.297 3.420
Note: parameters that were significant at the 95% confidence level are shown in the table.
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Table 9: Parameter estimation in MNL using imbalanced data.

Variable
Airplane HSR Express bus

Coefficient P> z
Credit interval

Coefficient P> z
Credit interval

Coefficient P> z
Credit interval

2.50% 97.50% 2.50% 97.50% 2.50% 97.50%
Gender
Male vs. female 0.474 0.321 −0.462 1.410 0.160 0.543 −0.355 0.674 0.409 0.121 −0.107 0.926

Age 0.326 0.269 −0.252 0.904 0.349 0.035 0.024 0.675 0.253 0.128 −0.073 0.579
Occupation
Personnel of
institution vs.
enterprise unit

0.725 0.290 −0.618 2.069 0.410 0.316 −0.391 1.210 0.642 0.191 −0.320 1.604

Student vs. enterprise
unit 0.116 0.885 −1.453 1.685 −0.362 0.390 −1.189 0.464 1.298 0.002 0.464 2.132

Farmer vs. enterprise
unit −0.425 0.658 −2.307 1.458 −0.080 0.892 −1.234 1.074 −0.059 0.929 −1.359 1.241

Self-employed vs.
enterprise unit −0.207 0.789 −1.720 1.306 0.081 0.849 −0.754 0.916 0.611 0.195 −0.314 1.537

Others vs. enterprise
unit −0.824 0.366 −2.610 0.962 −0.173 0.732 −1.161 0.816 0.705 0.178 −0.32 1.730

Monthly income −0.128 0.565 −0.563 0.307 −0.289 0.013 −0.516 −0.062 −0.106 0.329 −0.318 0.106
Travel purpose
Mandatory travel vs.
leisure travel −0.443 0.340 −1.352 0.466 −0.302 0.256 −0.823 0.219 −0.412 0.112 −0.921 0.096

Intercity travel distance 0.004 0.001 0.002 0.005 0.001 0.278 −0.001 0.002 −0.001 0.009 −0.003 0.001
Intercity travel cost 0.017 0.001 0.013 0.021 0.014 0.001 0.010 0.018 0.001 0.828 −0.005 0.004
Intercity travel time −1.211 0.001 −1.444 −0.978 −0.380 0.001 −0.483 −0.276 −0.003 0.917 −0.061 0.055
Safety 0.491 0.137 −0.156 1.138 0.585 0.004 0.188 0.982 0.059 0.760 −0.319 0.437
Comfort 0.251 0.410 −0.345 0.846 0.358 0.056 −0.01 0.725 −0.458 0.011 −0.811 −0.105
Punctuality −0.278 0.356 −0.866 0.311 0.299 0.104 −0.061 0.660 −0.575 0.002 −0.936 −0.213
Access time 0.404 0.180 −0.187 0.994 −0.035 0.841 −0.374 0.304 −0.221 0.172 −0.539 0.096
Departure time 0.731 0.017 0.131 1.331 0.047 0.791 −0.304 0.398 −0.210 0.269 −0.584 0.163
Constant −7.673 0.002 −12.518 −2.828 −5.821 0.001 −8.592 −3.051 3.058 0.012 0.667 5.450

Table 10: Parameter estimation in MNL using oversampling of balanced data.

Variable
Airplane HSR Express bus

Coefficient P> z
Credit interval

Coefficient P> z
Credit interval

Coefficient P> z
Credit interval

2.50% 97.50% 2.50% 97.50% 2.50% 97.50%
Gender
Male vs. female 0.661 0.118 −0.167 1.490 0.196 0.443 −0.305 0.697 0.681 0.001 0.275 1.087

Age 0.386 0.126 −0.108 0.880 0.366 0.020 0.058 0.673 0.360 0.007 0.097 0.624
Occupation
Personnel of
institution vs.
enterprise unit

0.343 0.564 −0.824 1.510 0.138 0.723 −0.627 0.903 0.318 0.401 −0.424 1.061

Student vs. enterprise
unit 0.298 0.672 −1.082 1.679 −0.352 0.399 −1.171 0.466 1.856 0.001 1.193 2.519

Farmer vs. enterprise
unit −0.898 0.309 −2.627 0.831 −0.546 0.376 −1.757 0.664 −0.338 0.488 −1.291 0.616

Self-employed vs.
enterprise unit −1.107 0.126 −2.525 0.312 −0.387 0.376 −1.243 0.469 0.554 0.119 −0.142 1.250

Others vs. enterprise
unit −1.518 0.055 −3.067 0.030 −0.479 0.305 −1.394 0.437 0.545 0.179 −0.250 1.340

Monthly income −0.040 0.836 −0.416 0.336 −0.226 0.043 −0.445 −0.007 −0.017 0.840 −0.182 0.148
Travel purpose
Mandatory travel vs.
leisure travel −0.343 0.413 −1.166 0.479 −0.384 0.140 −0.895 0.126 −0.134 0.506 −0.529 0.261

Intercity travel distance 0.002 0.001 0.001 0.004 −0.001 0.264 −0.002 0.001 −0.002 0.001 −0.003 −0.001
Intercity travel cost 0.026 0.001 0.021 0.031 0.022 0.001 0.017 0.026 0.001 0.580 −0.003 0.005
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from AUCs are consistent with those from the confusion
matrices for each model.

4.3. Model Interpretation. We use the results of the BMNL
with better statistical performance and MLP models with
better predictive performance to explain the effects of factors
on intercity travel mode choice.

From Table 4 and Figure 4, it is found that gender was
positively correlated with the choice of HSR and express bus,
indicating that men were prone to traveling by HSR or
express bus, and women by train. *is finding is consistent

with a previous study [2], which revealed that women
preferred using train more than men. *e models show that
personnel of government-sponsored institutions were more
likely than enterprise personnel to choose an airplane.
Farmers and the self-employed were less likely than en-
terprise personnel to travel by airplane. Similarly, students
and farmers were not prone to choosing HSR, and farmers
were prone to using an express bus [2, 8]. *ese results are
supported by a previous study [1, 3] that found that pas-
sengers working in the state sector are likely to choose
airplane over coach. Monthly income was found to be
positively associated with airplane choice, and negatively

Table 10: Continued.

Variable
Airplane HSR Express bus

Coefficient P> z
Credit interval

Coefficient P> z
Credit interval

Coefficient P> z
Credit interval

2.50% 97.50% 2.50% 97.50% 2.50% 97.50%
Intercity travel time −1.242 0.001 −1.432 −1.053 −0.421 0.001 −0.524 −0.318 0.001 0.964 −0.050 0.052
Safety 0.801 0.006 0.225 1.378 0.678 0.001 0.279 1.077 0.146 0.333 −0.149 0.440
Comfort 0.236 0.404 −0.318 0.791 0.371 0.051 −0.001 0.743 −0.461 0.001 −0.737 −0.185
Punctuality −0.353 0.194 −0.886 0.179 0.321 0.082 −0.040 0.682 −0.513 0.001 −0.808 −0.219
Access time 0.456 0.076 −0.048 0.959 −0.122 0.462 −0.447 0.203 −0.244 0.060 −0.499 0.010
Departure time 1.030 0.001 0.506 1.554 0.271 0.130 −0.080 0.621 −0.185 0.232 −0.487 0.118
Constant −9.522 0.001 −13.873 −5.170 −6.798 0.001 −9.530 −4.066 2.303 0.020 0.356 4.250

Table 11: Parameter estimation in MNL using undersampling of balanced data.

Variable
Airplane HSR Express bus

Coefficient P> z
Credit interval

Coefficient P> z
Credit interval

Coefficient P> z
Credit interval

2.50% 97.50% 2.50% 97.50% 2.50% 97.50%
Gender
Male vs. female 0.847 0.137 −0.268 1.962 0.175 0.637 −0.552 0.901 0.723 0.010 0.176 1.271

Age 0.439 0.213 −0.252 1.130 0.305 0.183 −0.144 0.754 0.259 0.135 −0.080 0.598
Occupation
Personnel of
institution vs.
enterprise unit

0.252 0.748 −1.284 1.787 −0.057 0.916 −1.113 0.999 0.220 0.657 −0.751 1.191

Student vs. enterprise
unit 0.317 0.742 −1.565 2.199 −0.128 0.831 −1.304 1.048 1.642 0.001 0.774 2.510

Farmer vs. enterprise
unit −1.600 0.179 −3.931 0.732 −0.704 0.399 −2.339 0.931 −0.518 0.420 −1.777 0.741

Self-employed vs.
enterprise unit −1.939 0.059 −3.953 0.076 −0.828 0.200 −2.096 0.439 0.646 0.176 −0.291 1.584

Others vs. enterprise
unit −1.860 0.093 −4.028 0.307 −0.782 0.289 −2.229 0.664 0.632 0.256 −0.458 1.721

Monthly income −0.139 0.612 −0.676 0.398 −0.223 0.180 −0.550 0.103 −0.048 0.671 −0.271 0.175
Travel purpose
Mandatory travel vs.
leisure travel −0.337 0.549 −1.439 0.764 −0.313 0.408 −1.055 0.428 −0.283 0.300 −0.819 0.252

Intercity travel distance 0.003 0.006 0.001 0.005 0.001 0.960 −0.002 0.002 −0.002 0.008 −0.003 0.001
Intercity travel cost 0.031 0.001 0.023 0.040 0.027 0.001 0.019 0.036 0.001 0.875 −0.006 0.005
Intercity travel time −1.395 0.001 −1.686 −1.105 −0.638 0.001 −0.837 −0.439 −0.013 0.763 −0.095 0.070
Safety 0.084 0.838 −0.727 0.896 0.514 0.074 −0.050 1.077 0.014 0.945 −0.392 0.421
Comfort 0.301 0.424 −0.437 1.039 0.466 0.074 −0.044 0.976 −0.418 0.023 −0.780 −0.057
Punctuality −0.389 0.256 −1.061 0.283 0.189 0.448 −0.298 0.675 −0.617 0.002 −1.003 −0.230
Access time 0.422 0.237 −0.277 1.120 −0.194 0.430 −0.676 0.288 −0.135 0.434 −0.475 0.204
Departure time 0.655 0.073 −0.061 1.371 −0.034 0.892 −0.530 0.461 −0.226 0.259 −0.617 0.166
Constant −5.696 0.050 −11.396 0.004 −5.297 0.006 −9.039 −1.555 3.420 0.008 0.912 5.928
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Figure 3: Relative importance of each variable using RBF. (a) Imbalanced data. (b) Oversampling balanced data. (c) Undersampling
balanced data.
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Figure 4: Relative importance of each variable using MLP. (a) Imbalanced data. (b) Oversampling balanced data. (c) Undersampling
balanced data.
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Table 12: Confusion matrix and recall, precision, and accuracy of each model for imbalanced data.

Model
Training set Predictive set

Predictive class Predictive class
Mode Airplane HSR Train Express bus Recall Airplane HSR Train Express bus Recall

MNL Actual class

Airplane 109 18 2 0 84.50% 30 2 0 0 93.80%
HSR 16 246 27 6 83.40% 3 57 11 3 77.00%
Train 3 25 181 28 76.40% 3 5 44 8 73.30%

Express bus 0 8 54 59 48.80% 0 1 12 19 59.40%
Precision 85.16% 82.83% 68.56% 63.44% 76.10% 83.33% 87.69% 65.67% 63.33% 75.76%

BMNL Actual class

Airplane 113 14 2 0 87.60% 30 2 0 0 93.80%
HSR 18 243 28 6 82.40% 3 55 13 3 74.30%
Train 5 24 184 26 77.00% 3 5 45 7 75.00%

Express bus 3 7 53 61 49.20% 0 0 13 19 59.40%
Precision 81.29% 84.38% 68.91% 65.59% 76.36% 83.33% 88.71% 63.38% 65.52% 75.25%

MLP Actual class

Airplane 118 9 2 0 91.50% 29 3 0 0 90.60%
HSR 12 268 13 2 90.80% 3 64 6 1 86.50%
Train 1 30 183 23 77.20% 0 7 45 7 76.30%

Express bus 0 5 54 62 51.20% 0 2 13 17 53.10%
Precision 90.08% 85.90% 72.62% 71.26% 80.70% 90.63% 84.21% 70.31% 68.00% 78.70%

RBF Actual class

Airplane 80 41 6 2 62.00% 21 11 0 0 65.60%
HSR 17 216 45 17 73.20% 4 53 12 5 71.60%
Train 0 39 181 17 76.40% 1 9 38 11 64.40%

Express bus 0 18 54 49 40.50% 0 1 14 17 53.10%
Precision 82.47% 68.79% 63.29% 57.65% 67.30% 80.77% 71.62% 59.38% 51.52% 65.50%

*e bold values represent the accuracy of models.
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Figure 5: ROC curves of models for imbalanced data training set. (a) Airplane. (b) HSR. (c) Train. (d) Express bus.
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Figure 6: ROC curves of models for imbalanced data predictive set. (a) Airplane. (b) HSR. (c) Train. (d) Express bus.

Table 13: Confusion matrix and recall, precision, and accuracy of each model for undersampling of balanced data.

Model
Training set Predictive set

Predictive class Predictive class
Mode Airplane HSR Train Express bus Recall Airplane HSR Train Express bus Recall

MNL Actual class

Airplane 115 8 1 1 92.00% 27 4 0 0 87.10%
HSR 8 102 7 8 81.60% 5 21 1 4 67.74%
Train 3 15 79 28 63.20% 0 4 15 12 48.39%

Express bus 3 3 25 94 75.20% 0 1 8 22 70.97%
Precision 89.15% 79.69% 70.54% 71.76% 78.00% 84.38% 70.00% 62.50% 57.89% 68.55%

BMNL Actual class

Airplane 116 7 1 1 92.80% 28 3 0 0 90.32%
HSR 12 88 14 11 70.40% 5 18 3 5 58.06%
Train 3 6 81 35 64.80% 0 2 17 12 54.84%

Express bus 3 0 28 94 75.20% 0 1 8 22 70.97%
Precision 86.57% 87.13% 65.32% 66.67% 75.80% 84.85% 75.00% 60.71% 56.41% 68.55%

MLP Actual class

Airplane 121 2 1 1 96.80% 28 3 0 0 90.30%
HSR 6 107 7 5 85.60% 2 25 1 3 80.60%
Train 1 13 92 17 74.80% 0 4 19 8 61.30%

Express bus 0 3 30 89 73.00% 0 2 10 19 61.30%
Precision 94.53% 85.60% 70.77% 79.46% 81.80% 93.33% 73.53% 63.33% 63.33% 73.40%

RBF Actual class

Airplane 105 12 3 5 84.00% 25 5 0 1 80.60%
HSR 20 79 15 11 63.20% 3 20 3 5 64.50%
Train 1 12 83 27 67.50% 0 2 22 7 71.00%

Express bus 1 9 28 84 68.90% 0 2 8 21 67.70%
Precision 82.68% 70.54% 64.34% 66.14% 70.20% 89.29% 68.97% 66.67% 61.76% 71.00%

*e bold values represent the accuracy of models.
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Table 14: Confusion matrix of each model for oversampling of balanced data.

Model
Training set Predictive set

Predictive class Predictive class
Mode Airplane HSR Train Express bus Recall Airplane HSR Train Express bus Recall

MNL Actual class

Airplane 275 18 1 1 93.22% 71 1 1 1 95.95%
HSR 18 235 23 19 79.66% 9 55 5 5 74.32%
Train 6 23 190 76 64.41% 1 10 40 23 54.05%

Express bus 7 8 63 217 73.56% 0 1 27 46 62.16%
Precision 89.87% 82.75% 68.59% 69.33% 77.71% 87.65% 82.09% 54.79% 61.33% 71.62%

BMNL Actual class

Airplane 276 17 1 1 93.56% 71 1 1 1 95.95%
HSR 18 235 22 20 79.66% 9 54 6 5 72.97%
Train 6 23 194 72 65.76% 1 10 41 22 55.41%

Express bus 7 5 73 210 71.19% 0 0 28 46 62.16%
Precision 89.90% 83.93% 66.90% 69.31% 77.54% 87.65% 83.08% 53.95% 62.16% 71.62%

MLP Actual class

Airplane 277 16 1 1 93.90% 72 0 1 1 97.30%
HSR 13 241 21 20 81.70% 6 55 5 8 74.30%
Train 3 21 209 58 71.80% 1 13 42 18 56.80%

Express bus 0 13 31 244 84.70% 0 2 15 57 77.00%
Precision 94.54% 82.82% 79.77% 75.54% 83.10% 91.14% 78.57% 66.67% 67.86% 76.40%

RBF Actual class

Airplane 244 33 6 12 82.70% 58 10 3 3 78.40%
HSR 51 176 37 31 59.70% 14 43 8 9 58.10%
Train 2 37 188 64 64.60% 2 15 41 16 55.40%

Express bus 2 18 72 196 68.10% 0 3 18 53 71.60%
Precision 81.61% 66.67% 62.05% 64.69% 68.14% 78.38% 60.56% 58.57% 65.43% 65.90%

*e bold values represent the accuracy of models.
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Figure 7: ROC curves for undersampled balanced data training set. (a) Airplane. (b) HSR. (c) Train. (d) Express bus.
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Figure 8: ROC curves for undersampled balanced data predictive set. (a) Airplane. (b) HSR. (c) Train. (d) Express bus.
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Figure 9: Continued.
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with express bus choice.*is result agrees with the result of a
study [4, 7] that found that higher- and lower-income in-
dividuals favor air and bus travel, respectively.

*e variable of travel purpose had a significant positive
effect on HSR choice and was ranked 11th in the relative
importance of all variables. *is finding is similar to that of

a past study [1] and reveals that, compared to the train,
leisure passengers prefer HSRs or airplanes more than
passengers for mandatory travel. It is possible that leisure
passengers can afford the higher travel cost and are more
willing to travel in a comfortable mode. *e modeling
results also show the significant impact of travel distance on
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Figure 9: ROC curves for oversampled balanced data training set. (a) Airplane. (b) HSR. (c) Train. (d) Express bus.
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Figure 10: ROC curves for oversampled balanced data training set. (a) Airplane. (b) HSR. (c) Train. (d) Express bus.
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intercity travel mode choice, which is third most important.
*is result implies that, compared to the train, the longer
travel distance favors airplane and HSR, and the shorter
distance favors express bus, which is consistent with
previous studies [3, 10]. Intercity travel cost is the most
important variable and is a positive sign for the airplane or
HSR choice, indicating that passengers incurring higher
travel costs are more likely to travel by airplane or HSR.
Intercity travel time is the second most important factor,
showing a negative association with the choice of airplane
and HSR, indicating that passengers spending less travel
time are more likely to select airplane or HSR. *is finding
is intuitive because airplanes and HSRs are faster than
trains.

Safety ranked fourth, and this variable affects the choice
of airplane and HSR, showing that passengers with a higher
safety demand are more likely to travel by airplane or HSR.
Comfort is the fifth most important factor; it positively
influences the choice of airplane and HSR and is negatively
associated with express bus. *is result is expected, as air-
planes and HSRs have better service facilities and envi-
ronments than trains [1]. Punctuality ranked ninth and is
positively related to HSR choice and negatively associated
with airplane and express bus. *is shows that a higher
punctuality demand favors HSR and does not favor airplane
and express bus. *is result is expected, as external con-
ditions such as bad weather can easily affect the operation of
airplanes and express buses, but its impact on HSRs and
trains is relatively small [1].

Access time ranked seventh in relative importance and is
found to have a positive effect on airplane choice and a
negative effect on express bus compared to train, indicating
that passengers spending longer access time prefer traveling
by airplane and are less likely to travel by express bus. *e
finding is straightforward because the airport is generally
farther than the railway station from the city center, and the
highway passenger station is closer [10]. A similar result was
found for the effect of departure time.

5. Discussion and Conclusions

We investigated modeling techniques BMNL, MNL, MLP,
and RBF for passengers’ intercity travel mode choices. Data
from a large individual-level survey in the city of Xi’an were
used to develop the model. More comprehensive factors
such as socioeconomics, travel demand, service quality, and
accessibility of transport hub were incorporated in the
models.

*e comparison results show that MLP has the best
predictive performance, BMNL and MNL have approxi-
mately equal predictive accuracy, and RBF has the poorest
performance using imbalanced data. It was found that the
fitting performance of the four models with balanced data
was slightly higher than those with imbalanced data.
However, it was surprising that the predictive performance
of these models with balanced data was slightly lower than
those with imbalanced data. A potential reason could be that
the degree of imbalance for the original data is very small.
*ese findings suggest that the MLP and BMNL modeling

approaches are recommended for the analysis of passengers’
intercity travel mode choice. Significant variables in the
BMNL model include gender, age, occupation, travel pur-
pose, intercity travel distance, intercity travel cost, intercity
travel time, safety, punctuality, access time, and departure
time, which is not completely consistent with those in the
MNL model. However, the signs of significant variables in
the BMNLmodel were in line with those in the MNL model.
Regarding the MLP modeling results, the travel cost was
found to be the most important factor in intercity mode
choice, followed by travel time and travel distance. Comfort,
safety, and punctuality were relatively important factors for
passenger travel mode choices. *e influence of individual
characteristics on intercity travel mode choices was relatively
low, and monthly income was the most important factor
among individual characteristics.

*ese findings can provide a reference for traffic man-
agement departments to formulate traffic demand man-
agement strategies and provide technical support for data
analysts and high-tech enterprises to develop intelligent
decision-making systems for the choice of passenger in-
tercity travel modes. *rough our research conclusion, we
can find that intercity travel time, intercity travel cost, in-
tercity travel distance, and the service quality of a trans-
portation mode are important factors affecting intercity
travel mode choices. Traffic transportation management
departments can accordingly develop a green transportation
development strategy by optimizing ticket prices, increasing
vehicle speeds, and improving the quality of service, so as to
push travelers from transportation with high energy con-
sumption to that with low energy consumption. Our find-
ings show that the predictive performance of models does
not significantly improve when using balanced data instead
of imbalanced data.*is can provide a basis for data analysts
to fully understand the impact of data structures on the
predictive performance of models.

*ere are some limitations to this study. *e results may
only apply to the selected dataset and therefore must be
verified using datasets from more cities. *e degree of data
imbalance and proportion between the training set and the
prediction set may also affect the fitting and predictive
performance of the models, and it is necessary to explore the
fitting and predictive performance of models using ex-
tremely unbalanced data and other proportions in the fu-
ture. In addition, although no significant multicollinearity
was found in the independent variables for the models,
intercity travel time and intercity travel cost varied with
travel distance. It is necessary to generate the fare rate and
intercity travel time per kilomile by standardizing the in-
tercity travel time and intercity travel cost and incorporate
the transformed variables into the models to eliminate the
potential impact of travel distance. Moreover, more variables
that might be associated with intercity travel mode choices,
such as the characteristics of the destination city, weather,
and coronavirus disease, should be investigated. Advanced
modeling techniques, such as the Bayesian random pa-
rameter model capturing more unobserved heterogeneity,
the Probit model with endogenous variables, and the
XGBoost model, should be applied in future studies.
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