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.e timely, automatic, and accurate detection of water-surface targets has received significant attention in intelligent vision-
enabled maritime transportation systems..e reliable detection results are also beneficial for water quality monitoring in practical
applications. However, the visual image quality is often inevitably degraded due to the poor weather conditions, potentially
leading to unsatisfactory target detection results. .e degraded images could be restored using state-of-the-art visibility en-
hancement methods. It is still difficult to generate high-quality detection performance due to the unavoidable loss of details in
restored images. To alleviate these limitations, we first investigate the influences of visibility enhancement methods on detection
results and then propose a neural network-empowered water-surface target detection framework. A data augmentation strategy,
which synthetically simulates the degraded images under different weather conditions, is further presented to promote the
generalization and feature representation abilities of our network. .e proposed detection performance has the capacity of
accurately detecting the water-surface targets under different adverse imaging conditions, e.g., haze, low-lightness, and rain.
Experimental results on both synthetic and realistic scenarios have illustrated the effectiveness of the proposed framework in
terms of detection accuracy and efficacy.

1. Introduction

.e visual information captured from video is able to
provide more meaningful and important data in intelligent
transportation systems. With the popularization of artificial
intelligence (AI) and Internet of .ings (IoT), intelligent
vision techniques have witnessed the rapid developments of
video surveillance in the IoT-empowered maritime trans-
portation system [1–3]. To enhance traffic safety and mar-
itime monitoring, the timely and accurate detection of
surface-water targets (e.g., ship, garbage, and person in
water) has received tremendous attention in the current
literature. .e traditional detection methods, such as mean
shift [4], deformable part-based models (DPMs) [5], support
vector machine (SVM) [6], and sparse representation [7],
have been proposed to detect the targets of interest. How-
ever, the corresponding detection results easily suffer from

the complicated environments, including water-surface re-
flect light and multimoving targets. To further improve
detection results, deep learning has gained increasing at-
tention during the past several years. .e learning-based
detection methods can be mainly divided into two types, i.e.,
two-stage and one-stage methods. In the literature, R-CNN
[8], Fast R-CNN [9], and Faster R-CNN [10] belong to the
representative two-stage strategy. .e accurate detection
results could be obtained but at the expense of a high
computational cost. To guarantee real time detection, the
one-stage methods have recently gained much attention in
practical applications. .e typical methods mainly include
YOLOv1 [11], which is based on image global information,
and its advanced extensions (e.g., YOLOv2 [12], YOLOv3
[13], and YOLOv4 [14]). .ese methods could achieve a
good balance between detection accuracy and efficiency and
have been widely adopted in practical applications. .ere is

Hindawi
Journal of Advanced Transportation
Volume 2021, Article ID 9470895, 14 pages
https://doi.org/10.1155/2021/9470895

mailto:wenliu@whut.edu.cn
mailto:jktchui@ouhk.edu.hk
https://orcid.org/0000-0002-1591-5583
https://orcid.org/0000-0001-7992-9901
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9470895


thus a great potential to exploit these methods to detect
water-surface targets in intelligent vision-enabled maritime
transportation systems [15, 16].

However, it is often intractable to observe high-quality
video images under different severe weather conditions
(e.g., hazy, low-light imaging, and rainy), which easily
occur in practice. .e corresponding degraded visibility
will be harmful for reliable detection of water-surface
targets, even for deep learning-enhanced detection
methods. .e existing visibility enhancement methods can
theoretically improve image visual quality. It should be
noted that it is impossible to generate restored images
without loss of any details [17]. Due to this essential
limitation, the learning-based detection methods easily fail
to accurately recognize the water-surface targets. To
guarantee accurate and robust detection, the data aug-
mentation strategies can be incorporated into existing
learning-based detection frameworks. It has the capacity of
significantly improving detection results under different
imaging conditions. Taking detection of water-surface
garbage as an example, it is able to guarantee reliable water
quality monitoring for IoT-based maritime video surveil-
lance. In current literature [18–20], most studies on water
quality monitoring mainly focus on spectrum analysis and
physical and chemical analysis in several IoT-empowered
practical applications. To our knowledge, rare studies have
been implemented on automatic detection of water-surface
garbage through IoT-based maritime video surveillance.

.e main contributions related to intelligent water-
surface target detection and water quality monitoring are
threefold in this work:

(1) An intelligent vision-enabled water-surface target
detection framework with deep neural networks has
been proposed for IoT-based maritime video
surveillance

(2) Optimal strategies for training deep neural networks
have been represented to handle the influences of
different severe weather conditions on water-surface
target detection

(3) Extensive detection experiments on both simulated
and real-world scenarios have demonstrated that the
proposed vision-enabled water-surface target de-
tection framework could provide robust and accu-
rate results under different imaging conditions

.e main benefit of our water-surface target detection
framework is that two aspects have been taken into
consideration, i.e., the powerful learning capacity of deep
neural networks and the data augmentation-based net-
work learning strategy. Comprehensive experiments un-
der different severe weather conditions demonstrate that
the proposed framework could accurately and robustly
detect the water-surface targets for maritime video
surveillance.

.e reminder of this work is composed of several sec-
tions. Section 2 briefly reviews the recent work related to
IoT-based maritime video surveillance and detection of
water-surface targets. In Section 3, an intelligent vision-

enabled target detection framework is proposed to promote
maritime surveillance under different weather conditions.
Comprehensive experiments are performed to demonstrate
the effectiveness of our detection framework in Section 4.
.is paper is finally concluded by summarizing the main
contributions in Section 5.

2. Related Work

In the current literature, many efforts have been devoted to
maritime surveillance and water quality monitoring. We will
briefly review the intelligent maritime surveillance and
water-surface target detection in this section.

2.1. IntelligentVideo Surveillance inMaritimeTransportation.
Intelligent maritime surveillance has recently attracted
tremendous attention [21], which enables the under-
standing of various maritime activities leading to enhanced
maritime safety and security. With the recent burgeoning
application of computer vision technology, visual-based
maritime surveillance systems could provide more reliable
applications, such as traffic safety management and water
pollution monitoring. In the current literature, Bloisi et al.
[22] proposed to promote existing maritime surveillance
systems through the popular closed-circuit television
(CCTV) camera device which could provide useful visual
information. To promote maritime video surveillance
under different weather conditions, many visibility en-
hancement methods were developed to improve imaging
quality. For example, illumination decomposition-based
image dehazing [23] reconstructed the natural-looking
dehazed images in visual maritime surveillance. .e ob-
served maritime images captured in low-light conditions
have also been improved through the Retinex theory [24]
and deep learning [25]. .e high-quality images in mari-
time video surveillance are potentially conducive to pro-
moting maritime monitoring in practice. To achieve more
effective visual maritime surveillance, the maritime objects
of interest should also be robustly and accurately detected,
recognized, and tracked [26–28].

With the rapid developments of low-end IoTdevices and
emerging AI techniques [29, 30], IoT-enabled intelligent
maritime video surveillance has received increasing atten-
tion both from academics and practitioners. Liu et al. [2]
proposed to improve big data quality to promote intelligent
vessel traffic services in maritime IoT systems. To further
improve the efficacy of maritime surveillance, an AI-
enpowered maritime IoT was developed by proposing a
parallel-network-driven approach [31]. Palma [32] also
proposed to enable maritime IoT across the seas and oceans
through the performance analysis of CoAP and 6LoWPAN
over VHF links. By combining the AI-based computer vision
and IoT, it is tractable to robustly and accurately detect the
undesirable water-surface targets under different weather
conditions. .ere is thus a great potential for monitoring
water quality with the IoT-based maritime video surveil-
lance. For more details on maritime IoT, please refer to [33]
and references therein.
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2.2. Detection of Water-Surface Targets in Maritime
Surveillance. .e detection of water-surface targets (i.e.,
garbage) is beneficial for water quality monitoring in
maritime surveillance. .e reliable evaluation of water
quality is challenged for management activities aiming at
protecting the limited water resources. Several different
types of water quality monitoring systems have been de-
veloped to assist in assessing water quality and providing
early warning [19]. Adu-Manu et al. [20] has reviewed the
main water quality monitoring methods from traditional
manual to newly developed methods. .e paper-based
monitor sensors and smart cell phones were combined for
on-site water quality monitoring [34]. However, it becomes
difficult to implement real time water quality monitoring in
a large-scale region through this technology. To overcome
this limitation, Chung and Yoo [35] proposed to implement
remote water quality monitoring through the wireless sensor
network (WSN)..e network of smart sensors was proposed
to implement in situ and in continuous spatio-temporal
monitoring of surface-water quality [36]. For more details
on the traditional water quality monitoring system, please
refer to [19, 37, 38] and references therein. Video surveil-
lance has become an emerging manner to indirectly assess
water quality. For example, Serra-Toro et al. [39] tended to
monitor water quality by recognizing the fish swimming
behavior from video images. To promote learning-based
waste detection in water bodies, a dataset (i.e., AquaTrash)
[40] was developed based on existing TACO dataset [41] to
assist in protecting water sources. Benefiting from the strong
learning capacity of deep models, an extension of YOLOv3
[42] performs well in effective detection of vision-based
water-surface garbage. .e YOLOv3 network has been
embedded into an intelligent water-surface cleaner robot,
which is capable of accurately and real timely detecting and
collecting floating garbage [43]. However, if the observed
images are degraded under severe weather conditions (e.g.,
haze, low-lightness, and rain), these intelligent vision-based
detection methods easily fail to accurately and robustly
recognize the water-surface garbage, leading to unreliable
water quality monitoring in maritime surveillance.

3. Intelligent Vision-Enabled Water-Surface
Target Detection Framework

In this work, we mainly focus on detection of water-surface
targets in vision-empowered maritime surveillance. An
intelligent vision-enabled water-surface target detection
framework with deep neural networks will be proposed. To
enhance the accuracy and robustness of target detection,
degraded images under different severe weather conditions
will be synthetically generated through existing physical
imaging models. .ese synthetically degraded images are
naturally beneficial for improving the generalization abilities
of our neural networks.

3.1. AI-Empowered Detection of Water-Surface Targets.
We propose to develop the intelligent vision-enabled water-
surface target detection framework based on the existing

CCTV system, which has been widely utilized in maritime
video surveillance. With the great advancements of IoT
technologies, where sensors and embedded equipment are
connected to the Internet to efficiently gather and exchange
maritime data [44], IoT-based maritime video surveillance
has become increasingly more attractive to both academia
and industry. Two typical deep neural networks, i.e.,
YOLOv4 [14] and Faster R-CNN [10], are incorporated into
our learning-enabled detection framework to accurately
monitor the water-surface garbage. To improve the gener-
alization abilities of neural networks, a standard dataset,
which contains several types of water-surface garbage, is
designed to train our networks. However, the efficacy of
water-surface garbage detection highly depends upon the
imaging quality of CCTV. Under different weather condi-
tions, e.g., haze, low-lightness, and rain, the observed images
inevitably suffer from visibility degradation, leading to
unsatisfactory detection results in practical applications. To
guarantee reliable detection performance, we propose to
develop two different strategies to enhance the proposed
intelligent vision-enabled target detection framework, i.e.,

(1) It firstly selects the state-of-the-art visibility en-
hancement methods to improve the visual qualities
of target images obtained under hazy, low-light, or
rainy conditions. Both Faster R-CNN and YOLOv4,
which are trained using the standard dataset only
containing sharp images, are then adopted to au-
tomatically detect the water-surface garbage in vis-
ibility-enhanced images.

(2) To eliminate the negative effects of suboptimal en-
hanced images on garbage detection, the second
strategy proposes to enlarge the existing standard
dataset with different types of degraded images
synthetically generated under different severe
weather conditions. .e enlarged dataset, which
contains both sharp and degraded images, is bene-
ficial for promoting the generalization abilities of our
neural networks. .e effectiveness and robustness of
garbage detection under degraded visual environ-
ments could be enhanced accordingly.

Extensive experiments will be implemented in this work
to compare these two strategies and select the optimal
scenario. Once the harmful water-surface garbage is accu-
rately detected, an automatic alarm device in our IoT-based
maritime video surveillance system will automatically emit
an alarm signal. .e operators in charge will then perform
the corresponding activities to reduce the negative effects of
unwanted garbage on water quality. .erefore, the proposed
intelligent vision-enabled water-surface target detection
framework is capable of early detection of harmful pollution
for real time monitoring water quality under different
weather conditions.

3.2. Synthetically Degraded Images in Poor Weather
Conditions. To enhance the learning capacities of our neural
networks, the observed degraded images under different
severe weather conditions will be synthetically generated
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accordingly. In this work, the hazy, low-light, and rainy
images can be simulated according to the following physical
imaging principles.

3.2.1. Haze Imaging. In the fields of image processing and
computer vision, the atmospheric scattering model has been
directly adopted to model the process of generating haze-
degraded images. In particular, the observed degraded image
I(x) ∈ [0, 1] is obtained as follows:

I(x) � J(x)t(x) + A(1 − t(x)), (1)

where J(x) ∈ [0, 1] is the real scene radiance, t(x) ∈ (0, 1]

represents the transmission map, A ∈ (0, 1] is the global
atmospheric light, and x ∈ Ω denotes the pixel index with Ω
being image domain. Given the predefined J and A, the hazy
images under different haze levels can be synthetically
generated by manually changing the mappings of t. In
particular, t can be theoretically generated according to the
depth map d, i.e., t � exp(−κd) with κ being a positive
constant. It is able to directly measure the depth map d in
practical applications.

3.2.2. Low-Light Imaging. According to the Retinex theory,
the observed low-light image I(x) ∈ [0, 1] can be defined as
follows:

I(x) � R(x) ∘L(x), (2)

where ∘ represents the element-wise multiplication oper-
ator and R(x) ∈ [0, 1] and L(x) ∈ [I(x), 1] denote the re-
flection and illumination maps, respectively. .eoretically,
the visual quality of I is highly related to the magnitude of L

with the existing high-quality image R. To simulate the low-
light images, the latent sharp images are firstly transformed
from RGB color space into HSV color space. By multiplying
the V layer with different attenuation coefficients ϖ ∈ (0, 1)

in sharp images, we can accordingly generate the synthet-
ically degraded images from severe to slight levels.

3.2.3. Rain Imaging. .e rain-degraded image I(x) ∈ [0, 1]

can be considered as the combination of rain-free back-
ground B(x) ∈ [0, 1] and rain streak layer S(x) ∈ [0, 1]. .e
rainy image I can thus be synthetically expressed as follows:

I(x) � B(x) + S(x), (3)

where the rain-free scene B is commonly reconstructed by
estimating the unwanted rain streaks S from the rainy
version I. Analogous to the generation of rain streaks in [45],
we introduce both salt-and-pepper noise and motion blur to
synthetically simulate the rain-degraded images. .e de-
graded images under different rain conditions are highly
related to the levels of random noise [46] and types of
motion blurs.

3.3. One-Stage-Based Detection Framework. .e object de-
tector is an important part of our water-surface target
detection framework. To improve detection accuracy and

robustness, it is necessary to employ the reliable object
detector. In the literature, deep network-based object
detectors can be classified into two categorizes: (i) one-
stage detectors and (ii) two-stage detectors. As an
emerging one-stage-based object detection method,
YOLOv4 is now receiving an increasing attention from
both academia and industry. We will provide a brief
overview of YOLOv4 used in our target detection
framework in this subsection.

To balance the trade-off between detection accuracy and
efficiency, Redmon et al. [11] originally proposed a one-stage
detector called YOLO in 2016. It divides the target image
into several partially overlapping regions of different sizes
and predicts the bounding boxes and probabilities for each
region. .e object identification and bounding box ex-
traction are jointly implemented by formulating object
detection as a special regression problem. To further en-
hance detection performance, YOLOv2 [12] and YOLOv3
[13] were then proposed with improved precision and speed.
More recently, a more powerful detection framework,
named YOLOv4 [14], was presented, which combined
several advanced strategies in different aspects. As observed
in Figure 1, we choose CSPDarknet53 as the backbone of
YOLOv4, which could promote the ability of learning in-
variable features. In particular, YOLOv4 utilizes Weighted-
Residual-Connections (WRCs) and Cross-Stage-Partial-
Connections (CSPC), takes into account Cross mini-Batch
Normalization (CmBN), DropBlock regularization, and
Mish-activation, and performs Self-Adversarial-Training
(SAT) and Mosaic data augmentation to train detection
network. In literature [47, 48], YOLOv4 has achieved su-
perior performance in different datasets. .is state-of-the-
art detection results benefit from the powerful “Bag-of-
Freebies” and “Bag-of-Specials” detection strategies during
the real time implementation. .ere is thus a great potential
to adopt YOLOv4 to real time detection of water-surface
garbage in existing maritime video surveillance systems. For
more details on YOLOv4, please refer to [14] and references
therein.

3.4. Two-Stage-BasedDetection Framework. Current studies
have demonstrated that two-stage detectors could produce
higher detection accuracy compared with traditional one-
stage detectors [49]. However, the superior accuracy was
achieved at the expense of high computation, leading to
slow inference speed. Among the two-stage-based detec-
tion methods, Faster R-CNN [10] has received tremendous
attention from both academia and industry. It mainly
consists of two modules. In particular, the first module is a
fully convolutional region proposal network (RPN) which
proposes candidate regions. .e second module is the Fast
R-CNN [9] detector which refines the proposed regions.
Note that both RPN and Fast R-CNN share the same
convolutional layers, resulting in joint training in practice.
It is worth mentioning that RPN can simultaneously
predict the object boundary and object score at each lo-
cation. Furthermore, RPN accepts images (of any size) as
input and obtains a set of rectangular object suggestions,
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each of which has an objectivity score. .e Faster R-CNN
adopts a fully convolutional network to learn this process
and guarantees end-to-end detector training on the shared
convolutional features [10]. Owing to the sharing of
convolutional features, it is tractable to adopt the very deep
networks to yield high-quality detection results. Figure 2
visually displays the entire architecture of Faster R-CNN
for water-surface garbage detection. For more imple-
mentation details on Faster R-CNN, please refer to [10]
and references therein.

4. Experimental Results and Analysis

.is section is mainly devoted to demonstrate the efficacy of
our proposed framework on water-surface target detection
under different weather conditions. Several objective criteria
will be simultaneously selected to quantitatively evaluate the
detection accuracy and robustness.

4.1. Experimental Settings and Dataset

4.1.1. Experimental Environment Setup. .e network
training of Faster R-CNN was performed using TensorFlow
1.9.0 on a machine with Intel®CoreTM i7-8700K a
3.70GHz × 12. .e detection experiments were conducted
using CUDA 9.0 and cuDNN 7.0.5 in Ubuntu18.04-based
TensorFlow environment. In contrast, YOLOv4 was trained
using PyTorch 1.5.1, which is a library specially developed
for the deep learning model.

4.1.2. Experimental Dataset. .e original dataset adopted in
our experiments contains 2000 clean maritime images
collected by ourselves and downloaded from the Internet.
Several typical images in our garbage dataset are visually
illustrated in Figure 3. .is developed dataset is mainly
composed of glass and plastic materials. We manually
operated the garbage-type labels and high-precision
bounding boxes to annotate these experimental images. We
further augmented each training image by flipping hori-
zontally, translating randomly, and cropping randomly,
which makes the training dataset 3 times larger than the
original version. .ese images will be adopted to evaluate

the performance of our intelligent vision-enabled garbage
detection method for IoT-based maritime video
surveillance.

4.2. Evaluation Criteria. To evaluate the performance of
water-surface target detection under different weather
conditions, we propose to simultaneously adopt several
evaluation criteria in this work. .e quantitative evaluation
indexes mainly include the intersection over union (IoU),
Precision and Recall, mean average precision (mAP), and
frames per second (FPS).

4.2.1. Intersection over Union (IoU). To objectively evaluate
object detectors (i.e., YOLOv4 and Faster R-CNN in this
work), IoU has become the most popular metric to compare
the similarity between any two arbitrary shapes [50]. .e
IoU is mathematically defined as follows:

IoU �
|A∩B|

|A∪B|
, (4)

where A and B, respectively, denote the prediction and
ground-truth bounding boxes. In particular, IoU has the
attractive property of scale invariance. It means that it takes
into consideration the width, height, and location of the
bounding boxes. Because of this appealing property, IoU has
also been successfully utilized in other tasks, e.g., segmen-
tation [51] and object tracking [52].

4.2.2. Precision and Recall. Both Precision and Recall are
adopted to measure the target detection results in this
work. In particular, Precision indicates the proportion of
positive detection which is actually correctly obtained
through detection methods. In contrast, Recall is the
proportion of actual positives which are correctly de-
tected. To calculate both Precision and Recall, the true
positive (TP), true negative (TN), false positive (FP), and
false negative (FN) should be considered in practice.
Mathematically, the definitions of Precision and Recall are
given by
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Figure 1: .e garbage dataset, which contains 2000 color images in different scales, is developed for deep learning-based automatic
detection of water-surface garbage. .is current dataset is mainly composed of glass and plastic materials. More types of water-surface
garbage will be incorporated into our dataset in the future work.
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Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
.

(5)

4.2.3. F1 Score. Sometimes, these two indicators (i.e., Pre-
cision and Recall) cannot be directly adopted to accurately
evaluate the detection performance. By combining both
Precision and Recall, the calculation of F1 score is defined as
follows:

2
F1

�
1
P

+
1
R

, (6)

where P and R denote the Precision and Recall scores, re-
spectively. In particular, the F1 score is exploited as the
evaluation index as follows:

F1 �
2PR

P + R
. (7)

4.2.4. Mean Average Precision (mAP). .e commonly used
evaluation index in target detection is mean average pre-
cision (mAP), which indicates the average of average pre-
cision (AP) scores over all of the types. .e AP can be
calculated according to the area under the Precision-Recall
curve. In particular, mAP is mathematically defined as
follows:

mAP �
􏽐n Rn − Rn−1( 􏼁Pn

Nc

, (8)

where Rn and Pn, respectively, represent the Recall ratio and
Precision ratio for the n-th preselected threshold. In addi-
tion, Nc indicates the number of target types, which is set to
Nc � 1 in this work.

Figure 3: .e water-surface garbage dataset, which contains 2000 color images in different scales, is developed for deep learning-based
automatic detection of water-surface garbage. .is current dataset is mainly composed of glass and plastic materials. More types of water-
surface garbage will be incorporated into our dataset in the future work.
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Figure 2: .e garbage dataset, which contains 2000 color images in different scales, is developed for deep learning-based automatic
detection of water-surface garbage. .is current dataset is mainly composed of glass and plastic materials. More types of water-surface
garbage will be incorporated into our dataset in the future work.
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4.2.5. Frames per Second (FPS). FPS represents the number
of image frames handled using a specific detection method
in one second. It has been widely adopted to evaluate the
detection speed in practice.

4.3. Experimental Results on Detection Accuracy. .is sub-
section is devoted to evaluating the water-surface target
detection results in terms of accuracy and robustness. In
particular, both YOLOv4 and Faster R-CNN were trained
directly using the original dataset. Five different objective
criteria (i.e., F1, Recall, Precision, mAP, and FPS) are jointly
adopted to quantitatively evaluate the detection accuracy
and robustness. To further investigate the influences of
different weather conditions on detection performance, the
degraded images, synthetically generated under hazy, low-
light, and rainy imaging conditions, are collected to measure
the detection results. In particular, the degraded images are
simulated according to the physical imaging models in-
troduced in Section 3.2. .e detailed evaluation results are
summarized in Table 1. It can be observed that YOLOv4 is
able to real timely implement target detection and generates
slightly more accurate detection results compared with
Faster R-CNN for clean images, i.e., under normal light
conditions, shown in Figure 4. If the observed images are
degraded due to poor imaging conditions, the detection
accuracy will be obviously decreased for both YOLOv4 and
Faster R-CNN.

To further evaluate the detection results, Figure 5 shows
the original images and degraded versions synthetically
generated under hazy, low-light, and rainy imaging con-
ditions, respectively. .e visibility-degraded images theo-
retically lead to reduced detection accuracy. .e
experimental results are visually displayed in Figure 6. If
the image degradation becomes more severe, the detection
accuracy and robustness will be obviously decreased,
leading to unreliable water quality monitoring. .is phe-
nomenon has been confirmed by the quantitative evalua-
tion results in Table 1.

4.4. Influences of Visibility Enhancement onDetection Results.
As discussed in Section 4.3, the detection accuracy and
robustness are highly depended upon the visual image
quality. (Note that both YOLOv4 and Faster R-CNN were
trained directly using the sharp images from original dataset.
.erefore, to ensure satisfactory detection results in this
case, it is necessary to guarantee high-quality observed
images in our IoT-based maritime video surveillance.) If the
camera images are generated under poor weather condi-
tions, it is essential to improve image quality using existing
visibility enhancement methods.

4.4.1. Haze RemovalMethods. To suppress the effects of haze
degradation on detection results, three typical haze removal
methods, i.e., dark channel prior (DCP) [53], multiscale
convolutional neural networks (MSCNNs) [54], and all-in-
one dehazing network (AOD-Net) [55], are introduced in
this work to enhance image visibility. .e popular DCP is

based upon the assumption that most local patches in haze-
free images contain some pixels with greatly small intensity
at least one color channel. MSCNN firstly adopts the coarse-
scale network to estimate the rough transmission and then
utilizes the fine-scale network to refine the rough trans-
mission and generate final dehazed images. In contrast,
AOD-Net directly reconstructs the haze-free images using
an end-to-end network.

Table 2 detailedly depicts the quantitative detection results
for both YOLOv4 and Faster R-CNN based on restored
images yielded by different haze removal methods. As can be
observed, the detection performance has been obviously
improved by enhancing the visual image quality. It means that
dehazed images enable more accurate detection of water-
surface garbage, leading to more reliable monitoring of water
quality. .e detection results are visually illustrated in Fig-
ure 7. Due to the negative effects of haze degradation, it is
intractable to accurately detect some small-scale objects
shown in Figures 7(d) and 7(e). In contrast, Figures 7(f) and
7(g) illustrate that the popular DCP-based dehazing method
[53] is able to suppress the effect of haze, leading to satis-
factory detection results for both YOLOv4 and Faster R-CNN.
It means that the high-quality water-surface target detection
could be guaranteed by combining visibility enhancement
methods and deep networks under haze conditions.

4.4.2. Low-Light Image Enhancement Methods. .e adaptive
histogram equalization (AHE) [56], Retinex-Net [57], and
probabilistic method for image enhancement (PMIE) [58]
are, respectively, adopted to reconstruct the high-quality
images from their low-light versions. In particular, AHE
performs well in contrast enhancement. By introducing the
Retinex theory, Retinex-Net develops Decom-Net and En-
hance-Net networks for image decomposition and illumi-
nation adjustment, respectively. PMIE employs a linear
domain representation to simultaneously estimate both il-
lumination and reflectance components to reconstruct latent
sharp images.

.e water-surface target detection results under low-
light conditions are visually illustrated in Figure 8. It is
obvious that the low-lightness could also generate negative
effects on detection results. If the low-light images are en-
hanced via PMIE [58], the visual image quality is signifi-
cantly improved in Figures 8(f ) and 8(g), leading to more
satisfactory detection performance. .e importance of vis-
ibility enhancement can be further confirmed by quantita-
tive evaluation results in Table 3. .e preliminary visibility
enhancement methods (e.g., AHE, Retinex-Net, and PMIE)
could contribute to high-quality water-surface target de-
tection. Compared with the detection results from original
sharp images in Figures 8(b) and 8(c), the enhanced sce-
narios are able to achieve the comparable results, potentially
leading to reliable water quality monitoring under low-light
conditions.

4.4.3. Rain Removal Methods. To effectively remove the
unwanted rain streaks, three state-of-the-art methods,
i.e., lightweight pyramid networks (LP-Net) [59],
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directional gradient-guided constraints-based model
(DiG-CoM) [60], and multiscale progressive fusion net-
work (MSPFN) [61], are simultaneously introduced to
improve image quality. In particular, LP-Net adopts the
mature Gaussian–Laplacian image pyramid strategy to
simplify image deraining. By taking into consideration

the directional gradient operator, DiG-CoM performs
well in efficiently extracting rain streaks from rainy im-
ages, leading to visual quality improvement. MSPFN
enhances image quality by fully exploiting the pyramid
representation to collaboratively model the rain streaks
from multiple scales.

Table 1:.e influences of different weather conditions on water-surface target detection. Several objective criteria (i.e., F1, Recall, Precision,
mAP, and FPS) are simultaneously adopted to quantitatively evaluate the detection results.

Detection methods Weather F1 Recall Precision mAP FPS

YOLOv4 [14]

Clean 0.94 0.8971 0.9937 0.9548 27
Haze 0.90 0.8229 1.0000 0.9069 27

Low-light 0.70 0.5429 0.9694 0.6529 27
Rain 0.85 0.7543 0.9778 0.8792 27

Faster R-CNN [10]

Clean 0.93 0.9020 0.9910 0.9439 5
Haze 0.91 0.8370 0.9911 0.9122 5

Low-light 0.73 0.5563 0.9721 0.6735 5
Rain 0.84 0.7426 0.9712 0.8674 5
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Figure 4: .e water-surface garbage detection results under normal light conditions. Both YOLOv4 and Faster R-CNN are capable of
generating satisfactory detection performance. In contrast, Faster R-CNN only fails to implement small-scale target detection.
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Figure 5: .e synthetically degraded images selected to evaluate the detection performance. From top to bottom: original images and
degraded versions generated under hazy, low-light, and rainy imaging conditions, respectively.
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To evaluate the influences of visibility enhancement on
target detection, the quantitative and qualitative detection
results are indicated in Table 4 and Figure 9. .e quanti-
tative evaluations illustrate that rain removal methods are
capable of improving detection accuracy and robustness
under rainy conditions. However, it is inevitable that
derained images easily suffer from loss of some fine details,
unfortunately leading to suboptimal detection perfor-
mance, shown in Figures 9(f ) and 9(g). To guarantee re-
liable water-surface target detection, it is thus necessary to
generate high-quality derained images. .ere are almost no

deraining methods adopted to adequately remove rain
streaks while preserving all fine details. In this work, we will
propose to adopt the widely used data augmentation (DA)
strategy to retrain both YOLOv4 and Faster R-CNN to
effectively improve detection results under different severe
weather conditions.

4.5. Influences of Data Augmentation on Detection Results.
.e water-surface target detection methods introduced in
Section 4.4 are essentially two-phase detection strategies, i.e.,
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(a) Original (b) Hazy Image1 (c) Hazy Image2 (d) Low-Light Image1 (e) Low-Light Image2 (f) Rainy Image1 (g) Rainy Image2

Figure 6:.e water-surface garbage detection results under different weather conditions, i.e., hazy, low-light, and rainy conditions. It can be
found that the detection accuracy will be dramatically reduced if the image degradation becomes more severe.

Table 2: .e influences of hazy imaging condition and visibility enhancement on water-surface garbage detection.

Detection methods Enhancement methods F1 Recall Precision mAP

YOLOv4 [14]

Hazy 0.90 0.8229 1.0000 0.9069
DCP [53] 0.92 0.8433 0.9813 0.9237

MSCNN [54] 0.93 0.8511 0.9912 0.9321
AOD-Net [55] 0.93 0.8534 0.9907 0.9385

Data augmentation 0.93 0.8729 0.9928 0.9509

Faster R-CNN [10]

Hazy 0.91 0.8370 0.9911 0.9122
DCP [53] 0.92 0.8450 0.9872 0.9244

MSCNN [54] 0.92 0.8620 0.9889 0.9276
AOD-Net [55] 0.93 0.8750 0.9903 0.9322

Data augmentation 0.94 0.8970 0.9913 0.9533

(a) Original Images (b) Original + YOLOv4 (c) Original + Faster R-CNN (d) Hazy + YOLOv4 (e) Hazy + Faster R-CNN (f) Dehazed + YOLOv4 (g) Dehazed + Faster R-CNN (h) DA + YOLOv4 (i) DA + Faster R-CNN

Figure 7: .e water-surface garbage detection results under hazy conditions. From left to right: (a) original sharp images, original dataset-
trained YOLOv4, and Faster R-CNN for detection results from (b-c) sharp images, (d-e) synthetic hazy images, (f-g) dehazed images,
augmented dataset-trained YOLOv4, and Faster R-CNN for detection results from (h-i) synthetic hazy images, respectively. (a) Original
images. (b) Original + YOLOv4. (c) Original + Faster R-CNN. (d) Hazy +YOLOv4. (e) Hazy + Faster R-CNN. (f) Dehazed +YOLOv4. (g)
Dehazed + Faster R-CNN. (h) DA+YOLOv4. (i) DA+Faster R-CNN.
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first visibility enhancement and then learning-based target
detection. If both YOLOv4 and Faster R-CNN are trained
using sharp images from the original dataset, the final de-
tection results will thus depend on the qualities of enhanced
images. However, it is almost impossible to perfectly re-
construct the high-quality maritime images, resulting in
unsatisfied detection performance. In addition, this two-
phase framework may suffer from long computational cost
because the final total time is related to the computational
costs of visibility enhancement and target detection. If we
can directly and accurately detect the water-surface targets

under severe imaging conditions, it will real timely imple-
ment online water quality monitoring in practice. To achieve
this goal, we will first synthetically simulate the degraded
images according to the physical imaging models introduced
in Section 3.2. .e synthetically degraded images are col-
lected to enlarge the existing standard dataset, which only
contains original sharp images. .is DA strategy could
promote the volume and diversity of our training dataset,
which is beneficial for enhancing the generalization abilities
of our deep neural networks..e accuracy and robustness of
target detection under different severe imaging conditions

(a) Original Images (b) Original + YOLOv4 (c) Original + Faster R-CNN (d) Low-Light + YOLOv4 (e) Low-Light + Faster R-CNN (f) Enhanced + YOLOv4 (g) Enhanced + Faster R-CNN (h) DA + YOLOv4 (i) DA + Faster R-CNN

Figure 8: .e water-surface garbage detection results under low-light conditions. From left to right: (a) original sharp images, original
dataset-trained YOLOv4, and Faster R-CNN for detection results from (b-c) sharp images, (d-e) synthetic low-light images, (f-g) enhanced
images, augmented dataset-trained YOLOv4, and Faster R-CNN for detection results from (h-i) synthetic low-light images, respectively. (a)
Original images. (b) Original + YOLOv4. (c) Original + Faster R-CNN. (d) Low-light +YOLOv4. (e) Low-light + Faster R-CNN. (f)
Enhanced +YOLOv4. (g) Enhanced + Faster R-CNN. (h) DA+YOLOv4. (i) DA+Faster R-CNN.

Table 3: .e influences of low-light imaging condition and visibility enhancement on water-surface garbage detection.

Detection methods Enhancement methods F1 Recall Precision mAP

YOLOv4 [14]

Low-light 0.70 0.5429 0.9694 0.6529
AHE [56] 0.77 0.6422 0.9722 0.8006

Retinex-Net [57] 0.81 0.6934 0.9781 0.8255
PMIE [58] 0.84 0.7351 0.9793 0.8737

Data augmentation 0.92 0.8457 0.9844 0.9064

Faster R-CNN [10]

Low-light 0.73 0.5563 0.7210 0.6735
AHE [56] 0.80 0.6799 0.9735 0.8125

Retinex-Net [57] 0.83 0.7221 0.9741 0.8810
PMIE [58] 0.86 0.7431 0.9788 0.8800

Data augmentation 0.92 0.8511 0.9824 0.9123

Table 4: .e influences of rainy imaging condition and visibility enhancement on water-surface garbage detection.

Detection methods Enhancement methods F1 Recall Precision mAP

YOLOv4 [14]

Rainy 0.85 0.7543 0.9778 0.8792
LP-Net [59] 0.88 0.8127 0.9790 0.9134

DiG-CoM [60] 0.90 0.8255 0.9811 0.9199
MSPFN [61] 0.91 0.8429 0.9823 0.9234

Data augmentation 0.92 0.8437 0.9837 0.9306

Faster R-CNN [10]

Rainy 0.84 0.7426 0.9712 0.8674
LP-Net [59] 0.89 0.8245 0.9812 0.9321

DiG-CoM [60] 0.91 0.8341 0.9836 0.9376
MSPFN [61] 0.92 0.8625 0.9901 0.9340

Data augmentation 0.93 0.8635 0.9920 0.9391

10 Journal of Advanced Transportation



could be guaranteed accordingly. .e experimental results
are detailedly illustrated in Tables 2–4 and Figures 7–9. It can
be found that DA strategy has significantly improved the
representational capacities of YOLOv4 and Faster R-CNN.

.e corresponding detection accuracy and robustness are
comparable to, or even better than, the results obtained from
the original sharp images. In particular, Faster R-CNN
slightly outperforms YOLOv4 under consideration in most

(a) Original Images (b) Original + YOLOv4 (c) Original + Faster R-CNN (d) Rainy + YOLOv4 (e) Rainy + Faster R-CNN (f) Derained + YOLOv4 (g) Derained + Faster R-CNN (h) DA + YOLOv4 (i) DA + Faster R-CNN

Figure 9: .e water-surface garbage detection results under rainy conditions. From left to right: (a) original sharp images, original dataset-
trained YOLOv4, and Faster R-CNN for detection results from (b-c) sharp images, (d-e) synthetic rainy images, (f-g) derained images,
augmented dataset-trained YOLOv4, and Faster R-CNN for detection results from (h-i) synthetic rainy images, respectively. (a) Original
images. (b) Original + YOLOv4. (c) Original + Faster R-CNN. (d) Rainy +YOLOv4. (e) Rainy + Faster R-CNN. (f) Derained +YOLOv4. (g)
Derained + Faster R-CNN. (h) DA+YOLOv4. (i) DA+ Faster R-CNN.

Figure 10: .e robust detection results of our YOLOv4-based learning method in practical applications. From top to bottom: the water-
surface garbage is detected from several different images obtained under normal, hazy, and low-light imaging conditions, respectively.
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of the cases. However, YOLOv4 is exploited for more effi-
cient detection. To balance the trade-off between efficiency
and accuracy, we propose to combine the DA strategy and
YOLOv4 to directly detect water-surface targets from de-
graded images without visibility enhancement.

4.6. Experiments on Realistic Imaging-Degraded Conditions.
To demonstrate the applicability of our method, we adopt
the enlarged dataset, which contains original sharp im-
ages and synthetically degraded images, to train
YOLOv4-based garbage detection framework. Figure 10
displays the detection results under different lighting
conditions. It can be found that our IoT-based maritime
video surveillance system can provide accurate and ro-
bust detection of water-surface garbage. Compared with
traditional WSN or contact-type chemical sensors, our
intelligent vision-enabled water quality monitoring
framework is more flexible, convenient, robust, and low-
cost. .ere is thus a huge potential to extend our in-
telligent framework for indirectly evaluating water
quality in different water areas under different severe
weather conditions.

4.7. Limitations andFuture Studies. .e proposed intelligent
vision-enabled framework has the capacity of effectively and
robustly detecting water-surface targets. However, it still
suffers from some potential limitations, which constrain the
further improvement of water pollution detection in mar-
itime surveillance.

(1) .e designed garbage dataset only contains two
main types of pollution materials, which could
constrain the detection of water-surface garbage in
practice. To further improve the detection effec-
tiveness and robustness, other types, e.g., paper,
cardboard, metal, and trash, should also be con-
sidered in the future studies. .e enlarged volume
and diversity of training dataset are beneficial for
improving the generalization abilities of neural
networks, resulting in more accurate and robust
water quality monitoring in maritime
transportation.

(2) Both YOLOv4 and Faster R-CNN are not specifically
developed for detection of water-surface garbage.
.eoretically, this task is significantly different from
other detection tasks, e.g., pedestrian, vessel, car, and
animal detection. To further enhance the detection
results, it is necessary to redesign and optimize these
two neural networks according to the unique
characteristics existing in water-surface targets.

Although the proposed detection framework has several
limitations, it is still worthy of further investigation since it is
able to achieve satisfactory detection results under severe
weather conditions. .e main contributions of this work
show that there is a great potential for intelligent vision
technique which tremendously improves water quality
monitoring in maritime surveillance.

5. Conclusions

To conclude, we have proposed an intelligent vision-enabled
target detection framework to automatically recognize wa-
ter-surface garbage and make early warning in maritime
transportation. It accordingly contributes to flexible and
robust detection of harmful pollution in AI- and IoT-based
maritime video surveillance. .e major contributions of this
paper were threefold. First, an intelligent vision-enabled
water-surface target detection framework was developed to
performwater quality monitoring. Second, we have designed
a water-surface garbage dataset, which contains 2000 images
collected by ourselves and downloaded from the Internet. A
large number of synthetically degraded images were gen-
erated to further enlarge this dataset to improve the gen-
eralization abilities of our neural networks. Last, the
proposed detection framework was capable of yielding
timely, robust, and accurate garbage detection results.
Numerous experiments on both synthetic and realistic
scenarios have demonstrated the effectiveness and robust-
ness of our water-surface target detection framework under
different degraded visibility conditions. In addition, the
water quality could be accordingly monitored with our
intelligent maritime video surveillance.
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