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Passenger travel flows of urban rail transit during holidays usually show distinct characteristics different from normal days. To
ensure efficient operation management, it is essential to accurately predict the distribution of holiday passenger flow. Based on
Automatic Fare Collection (AFC) data, this paper explores the passengers’ destination choice differences between normal days and
holidays, as well as one-way tickets and public transportation cards, which provides support for variable selection in modeling.
&en, a forecasting model of holiday travel distribution is proposed, in which the destination choice model is established for
representing local and nonlocal passengers. Meanwhile, explanatory variables such as land matching degree, scenic spot dummy,
and level of service variables are introduced to deal with the particularity of holiday passengers’ travel behavior. &e parameters
calibrated by the improved weighted exogenous sampling maximum likelihood (WESML) method are applied to predict
passenger flow distribution in different holiday cases with annual changes in the metro network, using the data collected from
Guangzhou Metro, China. &e results show that the proposed model is valid and performs better than the other comparable
models in terms of forecasting accuracy. &e proposed model has the capability to provide a more universal and accurate
passenger flow distribution prediction method for urban rail transit in different holiday scenarios with network changes.

1. Introduction

With the development of the economic level, the travel
activities and frequencies of urban residents continue to
increase, which leads to the rapid growth of urban residents’
demand for urban public transport. Urban rail transit has
developed rapidly in recent years, and its superiority of
traffic volume, speed, and punctuality are popular among
people, which helps spur a boom in urban rail construction
[1]. In recent years, a large number of new lines have opened
and connected to the metro network, making the network
operation effect of many cities particularly evident, signif-
icantly affecting regional accessibility and passenger flow
distribution in the metro network. Furthermore, in regard to
holidays, because of the exceptional flexibility of departure
time and the diversity of destinations, the passenger travel
characteristics are quite distinct from normal days, and the

spatiotemporal distribution of holiday travel demand
presents complex characteristics [2, 3].

With the rapid change of the metro network, the op-
erations have undergone quantitative and qualitative
changes [4]. &e particularity of holidays also aggravates
travel demand’s complexity, which poses a significant
challenge to the metro system. Besides, the same holiday
only occurs once a year, which is not conducive to study the
characteristics in terms of lacking data sources. &erefore, to
effectively organize the large passenger flow and alleviate
traffic congestion during holidays, it is essential to accurately
predict the distribution of holiday passenger flow, which is
the basis of a reasonable train operation plan-making and
the development of passenger flow induction strategy.

&e traditional four-stepmethods and their modification
models have been widely used in passenger flow distribution
forecasting. It mainly includes the aggregate model method
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based on statistical rules of historical data and the disag-
gregate model method based on behavior analysis.

In the study of the aggregate model methods, many
researchers have investigated the gravity model by im-
proving it in different contexts. Grosche et al. [5] proposed
two gravity models to estimate the air passenger flow be-
tween city-pairs. &ey introduced geoeconomic variables
describing the general economic activity and geographical
characteristics as independent factors. Wang et al. [6]
combined the gravity model considering the distance and
free-flow travel time with the Fratar method to predict the
seed O-D matrix of the expressway. More recently, Ren et al.
[7] proposed three types of land-use function comple-
mentarity indices introduced into spatial interaction to
improve the gravity model. In these studies, the appropriate
variables are introduced to modify the model. Besides, the
constrained gravity model is also used as a researching point.
Tsekeris and Stathopoulos [8] used a doubly constrained
gravity model that additionally incorporates the intraperiod
evolution for forecasting the dynamic trip distribution. Jin
et al. [9] proposed an O-D estimation model based on the
doubly constrained gravity model, where the comparison of
singly and doubly constrained models was made. However,
the aggregate gravity model tends to overestimate when the
distance-deterrence function is small, and the variables are
usually less and simple, which cannot reflect the forming
mechanism of passenger flow and travel behavior
objectively.

&e disaggregate model can reveal the internal mecha-
nism of the passengers’ destination choice from the per-
spective of behavior interpretation by establishing definable
variables. Specifically, previous studies on the disaggregate
model have focused on travel behavior analysis and demand
forecasting. For example, in the research of influencing
factors of travel behavior, Tsirimpa et al. [10] proposed a
multinomial logit model and a mixed multinomial logit
model to examine the impact of information acquisition on
switching travel behavior. Yang et al. [11] proposed mul-
tinomial and nested logit models to analyze battery electric
vehicle drivers’ charging and route choice behaviors.
Nguyen-Phuoc et al. [12] adopted a multinomial logit model
to explore factors affecting changes in the event of major
public transport disruptions. In addition, the discrete choice
modeling technology based on random utility-based is
mainly used for destination choice modeling. Faghih-Imani
[13] used a multinomial logit model to study the decision
process of identifying destination locations at a bicycle
station. Kelly [14] built multinomial logit models to analyze
the destination choice behaviors of pedestrians within an
entire region. Orvin [15] developed a random parameter
latent segmentation-based logit model to investigate trip
destination choice behavior of the dockless bike-sharing
users. &ese studies show that individual attributes and
alternative factors influence passenger behavior and the
decision process, assisting transit agencies in getting man-
agement guidance.

Focusing on the demand forecasting, Timmermans [16]
proposed a model combining transportation mode selection
and destination selection and predicted shopping-oriented

travel. To strengthen the forecasting power, Jovicic and
Hansen [17] constructed a nested logit model, where log-
sums integrate generation, distribution, and mode choice
models as submodels. Ashiabor et al. [18] developed the
nested and mixed logit model to estimate county-to-county
travel demand. Travel time, cost, and traveler’s household
income were used in the explanatory variables. Furthermore,
recent studies [19] proposed a multistage demand fore-
casting model that considers the discrete choice approach,
such as the binomial and multinomial logit model, for each
decisional level. Moreover, Li [20] presented a new itinerary-
based nonlinear demand estimator that estimates the dis-
tribution of demand based on a nested logit model. &ese
studies contribute to the accurate prediction of travel de-
mand with the improved disaggregate model. However, it is
usually necessary to use questionnaires, such as the stated
and revealed preference surveys, to obtain the data that
include individual and alternative attributes for studying the
behavioral characteristics. When applied to prediction, it is
easy to be restricted by data conditions and difficult to use
effectively.

In addition, many emerging data mining technologies
and methods are used to study traffic or passenger flow
demand. Ye and Wen [21] proposed a destination choice
model based on link flows by constructing algorithms ob-
serving the detected data from part of the links. By using data
mining, Wang et al. [22] developed cell phone location
tracking algorithms to track cross-region traffic activities
and derived the O-D traffic flow and travel demand. In the
machine learning approaches, Wang et al. [23] designed a
grid embedding network via graph convolution and
established a multitask learning network for forecasting the
demands of O-D pairs in ride-hailing. Although the pre-
diction accuracy of the data-driven approach depending on
long-term collection may be higher, it is hard to apply the
network structure changes because of lacking the newly
added stations’ data in the metro. Moreover, it is often a
black-box process that does not illustrate the internal be-
havior mechanism.

Generally, due to the holidays that occurred only once a
year, it is not easy to continuously collect stable and long-
term data. And with the rapid development of the metro
system, the network structure of holidays usually changes
every year, which makes it hard to use the statistical models
for prediction. Previous relevant studies focused on
researching the passenger flow on normal days. However,
little work has explored passengers’ choice behavior to
construct special variables to effectively forecast the sce-
narios of holidays in the metro system. Besides, since the
source of disaggregate data limits the forecasting application,
new data sources are considered to replace the conventional
questionnaires in this paper.

At present, the Automatic Fare Collection (AFC) system
is widely adopted in the urban rail transit system, which is
the main support data in this paper. Under the premise of
ensuring validity, this paper applies the aggregate data
obtained by the AFC to the disaggregate model by modifying
the maximum likelihood estimation method, which over-
comes the difficulty of getting the disaggregate model data.
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Based on fully exploiting the holiday passenger travel rules
and considering the differences in the choice behavior of
different ticket type passengers, this paper constructs a
holiday passenger flow distribution prediction model, in
which some novel explanatory variables (such as land
matching degree) are introduced. &e proposed model
structure can not only be suitable for the changes of urban
rail transit network structure but also take into account the
unique characteristics of holidays so as to have good
interpretability.

&e remainder of this paper is organized as follows. In
the next section, the holidays’ data collection effort and
passenger flow characteristics are analyzed herein. &en, the
modeling methodology and the explanatory variables of the
utility function are described. After that, the proposedmodel
is estimated and applied to the holiday distribution fore-
casting with comparisons of other traditional methods.
Finally, concluding remarks are presented in the last section.

2. Data and Passenger Flow’s Characteristic

2.1. Data. Urban rail transit adopts the AFC system to im-
plement management methods such as ticketing, ticket
checking, and billing. &e data are gathered and transmitted
into the center and automatically store passenger travel in-
formation. &e data types are shown in Table 1. Under such
limited data conditions and types, how to use them to
construct a forecastingmodel suitable for the holiday scenario
is the primary goal. In data processing, the data cleaning has
been done by identifying outliers, such as judging whether the
enter and exit stations are inconsistent, whether the enter and
exit time, and the in-train time are reasonable. Besides, the
stations are regarded as transportation analysis zones (TAZs)
in the urban rail transit system. &e boarding (origin) and
alighting (destination) stations of passengers’ trips can be
obtained from the AFC system directly.

&ere are eight lines and 140 stations in Guangzhou
Metro by the beginning of 2016. &e daily average of raw
data amounts to more than 4 million that need further
processing. And more than one million passengers use one-
way tickets per day during New Year’s Day, which is almost
1.84 times the weekdays. Compared with January 1, 2016,
there are seventeen new stations and three new lines con-
nected to the network on January 1, 2017. &e road network
structure has tremendous changes.

2.2. Passenger Flow’s Characteristics. Based on Guangzhou
Metro’s AFC data, the passenger flow of each station during
the New Year’s Day holiday from 2016 to 2017 is collected,
and some travel characteristics have been found. &e pas-
senger flow, for instance, is closely related to the nature of
land-use and the intensity of development around stations.

As shown in Figure 1, the entrance passenger flows of
four typical stations from December 30, 2015, to January 4,
2016, are given. &e passenger flow of Zhujiangxincheng
station, which is dominated by office areas, declined sig-
nificantly during the New Year’s Day. Similarly, the pas-
senger flow of Dashadong station also decreased, as

residential areas surround there. However, Guangzhouta
and Beijinglu stations’ passenger flow increased significantly
during the holidays, with the main areas, respectively,
surrounded by scenic spots and commercial districts.

Similarly, the passenger flow, from the origin station to
the destination station (O-D station) during the holidays,
shows different distinct characteristics, compared with
weekdays. As shown in Figure 2, there are different pas-
senger flow trends between O-D stations with different land-
use types, and some of which increased significantly in
holidays, while others, such as residential stations to office
stations, dropped significantly.

From another perspective, there are also great differ-
ences in the distribution of people who use one-way tickets
and public transportation cards during holidays. Generally,
many one-way passengers are nonlocal passengers, who tend
to go to scenic spots, business districts, and hub stations. In
contrast, transportation card passengers are mostly local
residents, whose travel purposes are diversified. &is char-
acteristic of choice behavior is especially evident during
holidays. As shown in Figure 3, the passenger flow of one-
way tickets and public transportation cards at Guangzhouta
and Beijinglu stations has increased, while the growth rate of
one-way ticket is significantly higher, indicating that the
stronger attraction of one-way ticket passengers.

Furthermore, other characteristics can also be obtained
by analyzing the passenger flow. For example, the O-D
passenger flow on the same line is usually larger than that on
different lines. And in the case of satisfying the purpose of
passengers, they would give priority to the destination with a
short ride time and transfer time. However, these features
are influenced by many factors. &ey should be reflected in
some explanatory variables to analyze how various factors
jointly affect the behavior and improve the subsequent
forecasting performance when modeling. Next, the ap-
proach considering passenger flow’s characteristics of hol-
idays is introduced in detail.

3. Methodology

Considering that the metro network scale is rapidly devel-
oping, the spatial passenger flow distribution of O-D stations
also changes fast. New stations divert the passenger flow of
old stations, and it is not easy to obtain the development data
of all O-D pairs in time series, especially for newly added
stations. &erefore, based on the above analysis of passenger
flow’s features, this paper constructs a destination choice
model to describe the characteristics of passengers. &en, a
forecasting model of holiday passenger flow distribution is
developed, which is suitable for the structural change of the
network and does not depend on long-term data collection.
Meanwhile, considering different passengers’ characteristics,
the utility functions for passengers who use one-way tickets
and public transportation cards are constructed separately.

3.1. Model Structure. &e theory of random utility maxi-
mization refers to the alternatives in which traffic behavior
decision-makers choose the most effective ones in their
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choice sets under certain conditions. If the destination
choice sets of passengers from station i are Ai and the utility
of the alternative n is Uin, the requirement that the

passengers select the destination j from Ai is Uij >Uin.
Among them, the utility function U has divided into two
parts: a deterministic term Vij and an error term εij.
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Figure 2: Comparison of O-D passenger flow during weekdays and New Year’s Day in 2016.

Table 1: &e Automatic Fare Collection data types.

Name Field type Form
Card type Varchar One-way ticket, public transportation card, etc.
Card number Int 1000139∗∗∗
Enter line Varchar Line 1, Line 2, etc.
Enter station name Varchar Guangzhou East, Donghu station, etc.
Enter time Datetime “2016-01-01 08 : 00 : 00”
Exit line name Varchar Line 1, Line 2, etc.
Exit station name Varchar Guangzhou East, Donghu station, etc.
Exit time Datetime “2016-01-01 08 : 00 : 00”
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Figure 1: Entrance passenger flow of typical stations during New Year’s Day.
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&erefore, the utility function Uij can be formulated as
follows:

Uij � Vij + εij �  βk
X

k
ij + εij, (1)

where βk is an estimable parameter of attribute k; Xk
ij is an

observable attribute as the explanatory variable; εij is the
error term that is used to address the unobserved factors that
influence the choices taken by the passengers.

&e researcher observes some attributes of the alterna-
tives as faced by the decision maker, labeled Xij, and can
specify a function that relates these observed factors to the
decision maker’s utility [24]. &e term εij is treated as
random, and it captures the factors that affect utility but are
not included in Vij. When the error term εij obeys the
independent Gumbel distribution, multinomial logit (MNL)
models can be derived. For the origin station i, the prob-
ability for choosing j is calculated as follows:

Pij �
exp Vij 

nεAi
exp Vin( 

, jεAi. (2)

Equation (2) is the destination choice model. &e prob-
ability that a passenger chooses another station as the des-
tination can be calculated. &e production trips from each
station are then distributed to all other stations based on the
choice of probability destination. &at is, the passenger flow
distribution qij from the origin station i to the destination
station j is computed. &e formula is shown as follows:

qij � Qi · Pij, (3)

where Qi is the entrance passenger flow in station i.
Considering the different levels of sensitivity of travel

characteristics of different types of passengers in the par-
ticularity of holidays, two utility functions in the proposed
model are constructed with passengers who use one-way
tickets and public transportation cards for representing local

and nonlocal passengers. &e trip distribution is applied
separately for each ticket type of passengers who have
characteristic travel behavior, with different model param-
eters.&en, the distribution results of the two ticket types are
added together. &e formula is shown as follows:

qij � q
one
ij + q

ptc
ij , (4)

where qoneij is the one-way ticket passengers’ distribution
prediction; q

ptc
ij is the public transportation card passengers’

distribution prediction.
Equation (4) is the forecasting model of passenger flow

distribution. However, it is a singly constrained model so far.
&ere is no guarantee that the sum of the passenger flow from
each station to the destination station j is equal to the attracted
trips of station j. &erefore, it is necessary to modify the travel
flow to enforce constraints between total origins and desti-
nations. &e Fratar method is widely used in distribution
adjustment due to its fast convergence speed and high cal-
culation accuracy. &e idea of the Fratar method is a dis-
tribution of horizon year trips from a zone that is proportional
to the base year trip distribution pattern modified by the
growth factors of the zones under consideration [25, 26].
&erefore, this paper uses the Fratar method for equalization
processing. &e approach is shown as follows:
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where qij is the passenger flow of station i to station j; FOi is
the growth rate of the entrance passenger flow in station i;
FDj is the growth rate of the exit passenger flow in station j;
Li is the adjustment coefficient of station i; Lj is the ad-
justment coefficient of station j; Oi is the entrance passenger
flow in station i; Dj is the exit passenger flow in station j;m is
the m-th iteration.

3.2. Model Specifications. Although personal characteristics
affect destination choice, it is unable to obtain personal at-
tributes data from the AFC directly. &erefore, seven indexes
as the utility function of characteristic variables that could be
extracted from the urban rail transit network are considered in
the destination choice model, including in-vehicle travel time,
transfer time, station position relationship, and matching
degree of land-use types. &e seven variables are mainly used
to characterize three categories of explanatory attributes,
namely, the accessibility of the destination, the attractiveness
of the destination, and matching degree of O-D stations,
through which the choice behavior mechanism of passengers
can be characterized.

According to the choice behavior characteristics of the
one-way ticket and the public transportation card passen-
gers, and through the multiple calibration experience of the
model, the utility functions Vone

ij and V
ptc
ij of the destination

choice model are constructed, as shown in equations (6) and
(7), respectively:

V
one
ij � β1Dj + β2Zij +

β3T
train
ij

3600
+
β4N

trans
ij

3600
+ β5Gij + β6Sij + β7Lj,

(6)

V
ptc
ij � β8Dj + β9Zij +

β10T
train
ij

3600
+
β11N

trans
ij

3600
+ β12Gij + β13Sij,

(7)

where β1 − β13 is the parameter to be calibrated for each
variable; Dj is the exit passenger flow of destination station j,
ten thousand person trips; Zij is the matching degree of land-
use type; Ttrain

ij is the in-vehicle travel time from the origin
station i to the destination station j, second;Ntrans

ij is the transfer
time from the origin station i to the destination station j,
second; Gij is a dummy variable, and if the sum of trip
generation at origin station i and the attraction at destination
station j is larger than a specific scale, the value is 1; Sij is a
dummy variable, and if the origin station i and destination
station j are in the same line, the value is 1; Lj is a dummy
variable, and if the land-use type of destination station j is
scenic, commercial, or hub, the value is 1.

For one thing, these variables are introduced to fa-
cilitate data acquisition, and for another, the character-
istics of holidays are considered so as to improve the
interpretability and prediction effect of the model further.
It should be noted that the travel cost is a sensitive variable
to influence the choice behavior, which was included in
the variable sets at the beginning. However, when the
variables are checked for multicollinearity, the travel cost
shows a strong correlation with the travel time. &erefore,

the travel cost was eliminated in the utility functions.
Compared to one-way ticket passengers, the public
transportation card utility functions do not have the
variable Lj, as adding this variable would reduce the
model’s accuracy.

Moreover, the acquisition of the matching degree of land-
use types Zij and the scenic destination station variables Lj

need to be additionally explained. &e distribution of pas-
senger flow between stations is closely related to land-use
nature around the station, especially the significant difference
between holidays and normal days. It is necessary to quantify
the impact of land-use interaction. &erefore, Zij is con-
structed to describe the degree of attraction between different
types of stations. Based on this, the metro stations need to be
clustered to determine the category of the station first.

Due to the land-use properties are a relatively stable
indicator and it usually shows a certain relationship with the
passenger flow characteristics, the K-means clustering
method is used to classify the stations of the whole network
of Guangzhou Metro. K-means is a vector quantization
method that is popular for cluster analysis in data mining
[27]. &rough the analysis of passenger flow characteristics,
the morning and evening peak flow has a greater correlation
with the nature of land-use around stations. And the pro-
portion of one-way tickets and all-day passenger flow at
comprehensive transportation hubs is usually larger, while
the passenger flow at commercial and scenic stations tends
to increase significantly during holidays. &erefore, the five
variables are used as inputs for clustering as shown in Table 2.
In the clustering research of metro stations, the stations are
usually divided into five categories according to weekday
travel data [28, 29]. However, since the research scenarios are
aimed at holidays, we set eight cluster numbers as preset
categories according to the land-use and application re-
quirements of the model. &e clustering results are shown in
Table 3 (figures in brackets denote the sum number of
clustering stations), and they are representative and matched
with the preset types.

&erefore, the value of Lj can be obtained directly through
the clustering results. Besides, the matching degree of land-
use type Zij needs further processing. Based on the above
clustering results, the average O-D passenger flow with dif-
ferent cluster types could be calculated. &en, the logarithm
function is used to normalize the values of various types to
differentiate passenger flow better. &e formula is as follows:

Zij �
ln Qij − lnmini,jQij 

lnmaxi,jQij − lnmini,jQij 
, (8)

where Zij is land matching degree from type i to type j; Qij is
the average O-D passenger flow of the stations from type i to
type j.

A case result of Zij is shown in Table 4 (the vertical column
indicates the type of the origin station, and the horizontal row
indicates the type of the destination station), where the value
from Type1 to Type 1 is zero. &is means that the passenger
flow is the lowest of all type pairs, mainly because the attraction
between residential stations is less during holidays in all type
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pairs. In contrast, the connections between transportation hubs
are strengthened, reflected in the maximum value from Type 8
to Type 8.

3.3. Parameter Estimation. For the parameters β in equation
(1), the personal travel survey is generally performed by the
simple random sampling method to obtain the disaggregate
type data of the individual choice, thereby using the max-
imum likelihood estimation method to calibrate the pa-
rameters. However, in this paper, the aggregate data
obtained by the AFC should be transformed into the dis-
aggregate form for application in the destination choice
model. When being applied, it needs methods to deal with
the original aggregate data. Yao and Takayuki [30] proposed
an integrated model that combines estimation across mul-
tiple data sources such as SP, RP, and aggregate data.
&erefore, the maximum likelihood estimation method is
improved by introducing a weight factor to realize the
application of AFC data in the destination choice model’
calibration.

Manski and Lerman [31] proposed a weighted exoge-
nous sampling maximum likelihood (WESML) method,
introducing weights into log-likelihood functions to cali-
brate the bias between the sample and population data. It can
be expressed as follows:

L(θ) � 
iεAn


n

δinwi ln Pin( , (9)

wi �
Qi

Hi

, iεC, (10)

where δin is 1 if the passenger n chooses selected branch i as
destination and 0 otherwise; wi is weights; Qi is the pro-
portion of the selected branch i in the population; Hi is the
proportion of i in the sample.

To improve the practicability of the method, Cosslett’s
research [32] proves that it can be transformed as follows:

wi �
Qi

Ni/N
, (11)

where Ni is the data amount of the selected branch i; N is the
sum of the data amounts of the respective selected branch.

However, in terms of urban rail transit, passengers with
the same origin and destination station have the same
characteristics; that is, they all make the same choice for the
destination. &us, the amount of O-D passenger flow can be
expressed as the selection result of individuals. &e weight
factor is suited for adjusting the likelihood function of the
dataset. &erefore, according to the characteristics of the data
that can be extracted, equation (11) is corrected as follows:

Table 2: &e variables for K-means.

Variables Description
Morning peak hour factor &e passenger flow of morning peak hour (7 : 00–9:00) divided by all-day passenger flow
Evening peak hour factor &e passenger flow of evening peak hour (17 : 00–19 : 00) divided by all-day passenger flow
Proportion of one-way ticket &e proportion of passengers using one-way ticket
All-day passenger flow &e all-day passenger flow in the stations
Passenger flow growth rate &e passenger flow of the holiday divided by the weekdays before the holiday

Table 3: Station types’ clustering results based on the surrounding area’s land-use.

Type Attribute Description Clustering results
Type 1 Residential &e station is surrounded by residential areas Nanpu, Sanxi, Dongpu, etc. (30)

Type 2 &e majority of residential area &e station is surrounded by majority
of residential areas Shiqiao, Meihuay, Xicun, etc. (25)

Type 3 Office &e station is surrounded by office areas Haizhuguagnc, Quzhuang, etc. (20)
Type 4 &e majority of office area &e station is surrounded by majority of office areas Donghu, Ximenkou, etc. (21)
Type 5 Comprehensive &e station is surrounded by various types of land-use Shibi, Fangcun, Shiergong, etc. (28)
Type 6 Commercial &e station is surrounded by commercial areas Jinzhou, Jinronggaoxinqu, etc. (14)
Type 7 Scenic &e station is close to scenic spot Diyong, Guangzhouta, etc. (14)
Type 8 Hub center &e station functions as transportation hub center Guagnzhou South, Airport South, etc. (5)

Table 4: Land matching degree values of different types of O-D stations.

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8
Type 1 0.00 0.08 0.24 0.08 0.10 0.18 0.28 0.55
Type 2 0.09 0.15 0.28 0.15 0.16 0.24 0.29 0.63
Type 3 0.09 0.17 0.35 0.18 0.18 0.20 0.27 0.61
Type 4 0.22 0.25 0.28 0.29 0.22 0.22 0.29 0.64
Type 5 0.11 0.15 0.24 0.16 0.22 0.22 0.36 0.60
Type 6 0.17 0.23 0.25 0.18 0.23 0.14 0.26 0.59
Type 7 0.28 0.26 0.25 0.19 0.34 0.22 0.39 0.59
Type 8 0.51 0.59 0.61 0.55 0.57 0.56 0.58 1.00
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wi �
qi

 qi

· R, (12)

where qi is the O-D passenger flow in the selected branch i; R
is the number of individuals, that is, the sum of O-D station
pairs.

4. Results and Analysis

4.1. Model Estimation and Analysis. In the construction of
the selection set, there are 140 stations in the 2016 New
Year’s Day.&at is to say, 139 stations should be put into the
alternative set except for the real choice of each traveler.
However, for general disaggregate models, the size of the
alternatives is too large, which would affect the speed of
model estimation and is not conducive to application. Ben-
Akiva and Lerman [33] demonstrated that the consistency of
model parameters is not lost when extracting subselective
branches for parameter estimation in the selection set.
&erefore, this paper constructed the subselection set by
randomly extracting nine stations from the alternative set. It
could reduce the difficulty of calibration and increase the
operability while ensuring the consistency of the model’s
calibrated parameters.

In the process of parameter calibration, the values of
seven variables are obtained in combination with the net-
work topology and train operation plan of Guangzhou
Urban Rail Transit. By using the parameter estimation
method described in the section before, the undetermined
parameters of the utility function are calibrated. Especially,
after several tests, the scale dummy variable Gij was set to 1 if
it exceeds 7,000 person trips. &e calibration results of the
New Year’s Day are shown in Table 5 as a study case. All
absolute t-values are greater than 1.96, indicating statistical
significance and variables’ validation. Moreover, the ad-
justed ρ2 of this model is over 0.2, which can be regarded as a
satisfactory goodness-of-fit [34].

&e estimated parameters are provided with practical
significance and expected signs in the sense of explaining
passenger destination choice behavior in either the one-way
ticket model or public transportation card model. An ob-
vious example is that the parameter of destination attraction
variable is positive, indicating that the greater attraction of
destination station is, the more passengers choose.

As for the negative parameters of travel time and transfer
time, the longer the travel time and transfer times are, the
less probability of destination station would be chosen,
which is consistent with common sense and inversely
proportional to destination choice preference. Moreover, the
units are the same, but the estimated parameters are not
close, which means the travelers have different perceptions.
&e trade-off between travel and transfer time shows that an
increase of 10 minutes in transfer time is equivalent to an
increase of 68 minutes in travel time for one-way ticket
passengers and 55 minutes for public transportation card
passengers in the case of New Year’s Day. It reveals that
travelers have a significant negative impact on lengthy
transfer times. For public transportation card passengers, the
absolute parameters of travel time and transfer time are both

larger than the one-way ticket passengers, indicating that the
passengers who used the card care more about the time when
other variables remain unchanged.

Besides, the land matching degree’s parameter is pos-
itive, which indicates that when the relationship between
O-D station’s land-use types is strong, the destination
stations will be more likely to be chosen. &e scale and
collinear variable’s parameters are positive, revealing that
when the origin and destination stations’ travel scale is
more extensive, or the O-D station stands on the same line,
the probability of the destination station being chosen is
greater.

For the scenic variable in the one-way ticket model, its
parameter is positive. It is also in line with the charac-
teristics of passengers traveling on holidays because there
are plenty of tourists who use the one-way tickets. In
general, the estimated results are statistically significance
and can explain the choice behavior mechanism on the
New Year’s Day to some degree. However, it is worth
emphasizing that the parameters should be recalibrated so
as to regain the travel behaviors when applying other
different holidays.

4.2. Model Application and Comparison. To test the pre-
dictive effect of the proposed forecasting model, the cali-
brated results are used to predict the New Year’s Day of
Guangzhou Metro on January 1, 2017, where the data of the
predicted year are used as the test-set and do not participate
in the calibration.&ere are seventeen new stations and three
new lines connected to the network. Meanwhile, the singly
constrained gravity (SCG) model in the traditional statistical
model, the support vector machine (SVM), the back
propagation (BP) neural network, and radial basis function
(RBF) neural network in machine learning model are se-
lected for comparison under the same data source and
conditions. And the traffic impedance function in the form
of the exponential function is used in the gravity model, as
shown in equation (13). &e least-square method is used to
transform it into a linear form for parameter estimation [35]:

fij � exp −μTij − τ nij T
−c
ij , (13)

where Tij and nij are travel time and transfer time from the
origin station i to the destination station j, respectively; μ, τ,
and c are the coefficients to be determined.

As shown in Figure 4(a)–4(e), the predicted values are
compared with the actual passenger travel data, and the
prediction deviation graph is drawn.&e error fluctuation of
the singly constrained gravity model and the other three
machine learning models is larger than the proposed
forecasting model established in this paper. &e mean ab-
solute error of the whole network in the gravity model is
130.2 person trips, the SVM model is 140.9, the BP neural
network is 139.1, and the RBF neural network is 157.3, while
the proposed model is 54.6 that is far better.

Furthermore, the detailed prediction error statistics of
the five models, in this case, are shown in Table 6. Compared
with the other four models, the mean absolute error of the
proposed model is reduced by 58.05%, 61.21%, 60.72%, and
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Figure 4: Prediction deviation of the proposed model and the comparison models on the New Year’s Day. (a)&e proposed model. (b)&e
gravity model. (c) &e support vector machine model. (d) &e back propagation neural network model. (e) &e radial basis function neural
network model.

Table 5: Model estimation results.

Characteristic variable

Case1: the New Year’s Day Case2: the National Day

One-way ticket Public transport
card One-way ticket Public transport

card
βi t-value βi t-value βi t-value βi t-value

Destination attraction (Dj) 0.301 37.989 0.084 26.818 0.290 38.791 0.211 28.646
Land matching degree (Zij) 0.311 3.641 0.424 6.802 0.257 2.367 0.532 8.481
Collinear variable (Sij) 0.533 18.190 0.549 18.759 0.493 17.179 0.553 18.812
Scale variable (Gij) 0.638 29.106 0.533 23.835 0.629 29.519 0.517 23.696
Travel time (T train

ij ) −0.815 −18.286 −1.172 −25.162 −0.508 −11.884 −1.094 −23.556
Transfer time (N trans

ij ) −5.507 −18.324 −6.449 −20.833 −5.975 −20.316 −6.766 −21.519
Scenic variables (Lij) 0.084 3.971 — — 0.092 3.350 — —

Model summary

Observations 17954 18314 17534 17747
L(θmax) −32640.37 −33441.36 −31654.83 −32615.35

L(0) −41340.61 −42169.54 −40373.53 −40863.98
Adjusted ρ2 0.210 0.207 0.216 0.202
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65.26%, respectively.&e proportion of absolute errors of the
proposed model under 50 person trips reaches 73.1%, and
the relative error less than 50% is 66.83%, where the errors
are better than that of the other four models.

A detailed comparison of absolute error and its cu-
mulative percentage can be seen in Figure 5. &e statistics
also show that the proposed model accuracy is better than
the conventional gravity model, SVM, and the two neural
network models as a whole. However, the proposed model
has a slightly weak performance in terms of relative error,
mainly because there are many O-D stations with small basic
flow, leading to a large relative error. For example, the
proportion of relative error more than 200% is 6.78%, where
the average absolute error is 41.0 person trips. Moreover, the
proportion of relative error more than 500% is 1.70%, where
the average absolute error is 35.40 person trips, which is
below the total average absolute error. &erefore, it does not

mean that the poorer the relative error, the larger the ab-
solute error, and the worse the prediction performance. &e
prediction effect of the proposed model can still be
guaranteed.

Besides that, the error results of different categories
between new lines and existing lines in the models are shown
in Table 7.&e proposed model’s mean absolute error results
are relatively low when predicting the new line, namely, only
23.14 and 23.26 person trips. In the prediction performance
of the existing line to existing line, the error is relatively
larger than that of others, mainly because of the large basic
flow between existing stations.

In this case, the holiday of New Year’s Day is chosen for
analysis. However, other holidays might be a little longer in
time, and passenger flow patterns and choice behavior would
be different in some ways. &e proposed destination choice
model could be used to reflect the choice behavior

Table 6: Statistics of model deviation in the New Year’s Day.

Case1: the New Year’s Day SCG SVM BP RBF &e proposed model
Maximum of absolute error (person trips) 5071 6099 6240 5932 2506
Mean absolute error (person trips) 130.22 140.86 139.08 157.27 54.63
Proportion of absolute errors over 50 trips (%) 50.13 56.12 57.57 66.3 26.90
Proportion of absolute errors over 100 trips (%) 31.31 31.83 35.71 39.29 14.78
Proportion of absolute errors over 200 trips (%) 16.27 15.17 14.74 17.15 5.90
Proportion of relative error over 20% (%) 84.60 85.11 84.00 85.95 62.74
Proportion of relative error over 50% (%) 66.78 64.34 64.08 68.37 33.17
Proportion of relative error over 100% (%) 40.45 37.55 45.70 46.07 16.39
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Figure 5: Comparison of absolute error and cumulative percentage.
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characteristics and passenger flow rules, so the methodology
applies to all holidays. Considering the validation and
portability of the proposed method, this study supplemented
a case of the National Day (seven-day holiday) for a rela-
tively comprehensive experimental design. One day of the
National Day in 2014 was randomly selected for model

estimation (that is, October 2, 2014), and the proposed
method was used to predict the passenger flow distribution
on the same day of next year.

&ere is one small difference in the calibrated parameters
as shown in Table 5 above, which reflects the slight distinction
of the travel characteristics in different holidays. However, all

Table 7: Mean absolute error of prediction results.

Category
Mean absolute error (person trips)

SCG SVM BP RBF &e proposed model
Existing to new lines 49.92 99.81 67.26 82.96 23.14
New line to existing line 48.07 76.62 119.80 105.64 23.26
New line to new line 90.03 141.72 96.56 131.55 41.30
Existing line to existing line 154.94 152.50 152.12 171.68 64.10
Whole network 130.22 140.86 139.08 157.27 54.63
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Figure 6: Prediction deviation of the proposed model on the National Day.
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Figure 7: Scatter plot of predicted and actual value result presentation.

Table 8: Statistics of model deviation in the National Day.

Case2: the National Day SCG SVM BP RBF &e proposed model
Maximum of absolute error (person trips) 5681 8931 6730 4320 2467
Mean absolute error (person trips) 129.07 110.29 109.25 79.58 51.63
Proportion of absolute errors over 50 trips (%) 51.58 43.63 48.34 37.53 23.49
Proportion of absolute errors over 100 trips (%) 32.44 26.16 26.99 20.68 12.55
Proportion of absolute errors over 200 trips (%) 16.53 12.58 12.40 9.70 5.47
Proportion of relative error over 20% (%) 81.10 84.66 82.45 73.06 65.15
Proportion of relative error over 50% (%) 55.40 62.93 59.80 43.66 31.61
Proportion of relative error over 100% (%) 31.86 35.73 38.52 26.56 14.06
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absolute t-values are still greater than 1.96, and the adjusted ρ2
is over 0.2, which indicates that the model is still applicable
and reliable. &e prediction deviation graph is also drawn to
show the overall error, as shown in Figure 6. For the con-
venience of reading, the scatter plot is given as shown in
Figure 7, which is consistent with the meaning expressed in
Figure 6. &e graph plots values for the modeled prediction
along the Y-axis and the corresponding actual count along the
X-axis. If all of the predictions match the actual value exactly,
the points on the graph would match up with the red line (45
degree line) drawn in the graph. &e prediction results of the
proposed model are mostly close to the red line, illustrating
that the prediction performs well. &e National Day’s com-
parison models’ error statistics are shown in Table 8. In
summary, the prediction effect and accuracy are still ideal
than the other models. &e validation and applicability in
other holiday scenarios can still be guaranteed. And it can be
more effectively applied to practical engineering.

5. Conclusions

&is paper utilizes AFC data to propose a forecasting model
for passenger flow distribution for urban rail transit, which is
suitable for network structure and the unique characteristics
of holidays. &e weighted exogenous sampling maximum
likelihood (WESML) estimation method is used to calibrate
the parameters. &e aggregate data extracted from AFC are
transformed into the disaggregate form, which realizes the
valid calibration of the parameters. It reduces the difficulty of
data acquisition and enhances the applicability of the model,
meanwhile ensuring acceptable accuracy.

In the proposed model, the destination choice model
defines destination attraction, land matching degree, and
others as explanatory variables.&is is the main advantage of
the model’s interpretability and predictive power.&emodel
presents reasonable performance because t-values are all
greater than 1.96, and the moderately adjusted ρ2 is over 0.2.
Moreover, the calibration results show that both travel and
transfer time have significant negative effects on passengers’
destination choice, while other variables such as destination
attraction and land matching degree have a positive influ-
ence. &e results also show that the public transportation
card passengers care more about both travel and transfer
time when other variables remain unchanged. &e dummy
variables used to describe the attractiveness and accessibility
of the destination also have reasonable interpretability and
significance. &e proposed model is applied to predict two
cases of Guangzhou Metro on New Year’s Day and National
Day. Compared with the gravity model, SVM, BP, and RBF
models, the proposedmodel’s error is greatly reduced, which
proves the validation and applicability of the prediction
model in different holiday scenarios with network changes.

As more cities rely on metro systems, accurately fore-
casted holiday passenger flow distribution could provide
important primary data for the metro operation manage-
ment department to develop a useful organization scheme
before the holiday period, which is conducive to easing
congestion and improving holiday emergency response
capabilities.

Since it is difficult to obtain real land-use data around
stations, this paper clusters the stations with similar pas-
senger flow characteristics and defines new variables de-
scribing the land-use connection into the model.
Nonetheless, the impact of significant land-use changes on
passenger flow is hard to capture accurately. Furthermore,
the dynamic characteristics of traffic flow distribution could
be an extending study, which has not yet been considered in
this paper. In future research, more land-use attributes and
dynamic traffic distribution could be taken into account to
develop the distribution forecasting model.
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