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Reducing a feature vector to an optimized dimensionality is a common problem in biomedical signal analysis. This analysis
retrieves the characteristics of the time series and its associated measures with an adequate methodology followed by an appropriate
statistical assessment of these measures (e.g., spectral power or fractal dimension). As a step towards such a statistical assessment,
we present a data resampling approach. The techniques allow estimating o?(F), that is, the variance of an F-value from variance
analysis. Three test statistics are derived from the so-called F-ratio 6% (F)/F?. A Bayesian formalism assigns weights to hypotheses
and their corresponding measures considered (hypothesis weighting). This leads to complete, partial, or noninclusion of these
measures into an optimized feature vector. We thus distinguished the EEG of healthy probands from the EEG of patients diagnosed

as schizophrenic. A reliable discriminance performance of 81% based on Taken’s y, a-, and §-power was found.

1. Introduction

The reduction of a feature vector to an optimized dimension-
ality is a common problem in the context of signal analysis.
Consider for example, the assessment of the dynamics of
biomedical/biophysical signals (e.g., EEG time series). These
may be assessed with either linear (mainly: power spectral)
and/or nonlinear (mainly: fractal dimension) analysis meth-
ods [1-5]. Each of the methods used for analysis of the
time series extracts one or several measures out of a signal
like peak frequency, band power, correlation dimension, K-
entropy, and so forth. Some, but not necessarily all of these
measures are supposed to exhibit state-specific information
connected to the underlying biological/physiological process.
Let us denote a collection of these measures a feature vector.
An appropriately weighted collection of these information,
specific measures may span an optimal feature vector in the
sense that the states may be best separated.

The temporal variation of these signals often has to be
regarded as being almost stationary over limited segments
only and not as being stationary in a strict sense, a property

which is sometimes denoted as “quasistationarity”. This
suggests regarding a specific outcome as being randomly
drawn from a distribution of outcomes around a state-
specific mean. Hence any inference made on such outcomes
must be based on statistics relating the effect of interest
to that stochastic variation even when regarding a single
individual. If a comparative study is conducted, one has to
select samples of probands, and this again introduces sources
of random variations into analysis. The problem to solve is
hence twofold. Efforts must be made (1) to retrieve effects
out of the random variations for the different measures and
(2) to reduce the set of all measures to the set of those which
allow for a reliable state identification.

A widespread statistical method used to attack the first
type of problem is known as analysis of variance. Given
the ith measurement of a biophysical/biomedical signal, the
perhaps most simple variance analytic model for this signal
reads as

signalj; = «; + error;, (1)



where i denotes the ith measurement of the signal which was
obtained under experimental condition j. The so-called effect
(or treatment) term «; may be a fixed or a random effect
and either continuous or discrete (cf. below). With regard to
model (1), the analysis of variance infers the extent to which
the estimates of the squared differences among the effects «;
rise above the squared error. Testing the significance of the
effect then depends upon whether the levels «; are regarded
as fixed or random, whereby the null hypothesis is normally
formulated as having equal levels.

A typical situation for this problem is when a study
is based on a sample of probands. The probands must be
viewed as a random sample drawn out of the reservoir of all
possible individuals.

If no correction is made, the analysis result applies
specifically to the sample at the end. This is in most cases not
the effect hunted for because one searches results applicable
also to those (normally vast majority of) humans who were
not included in the study, for example, reliable discriminant
functions. The classical approach in variance analysis splits
the effect term into two parts, fixed and random, and also
enriches the error term with an estimate of the random part.

As an alternative to this classical approach, one may
consider the family of the so-called F-ratio tests which are
based on randomly splitting and recollecting the sample. One
hereby chooses repeatedly random subsets of the original
data to gain an estimate of the variance of F, namely,
02(F), and inspects the ratios 02 (F)/F? or variants therefrom
[6]. Here F denotes the quantity obtained from a F-test
(cf. Section 2.1). Such resampling methods have proven
capabilities to enhance statistical inference on parameter
estimates which are not available otherwise. The most
popular examples of such methods are known as Jackknife or
Bootstrap. F-ratio test statistics have indicated to (a) better
retrieve fixed effects by fading away the random parts and
(b) allow for an incremental test, that is, testing the effect of
the inclusion of additional variables into an existing feature
vector. The latter property makes them especially interesting
when one tries to reduce the dimension of a feature vector to
an optimal size. The different combinations with additional
variables included lead to different probabilities under the
hypotheses of interest which, in turn, allow for a weighted
inclusion of these measures into an optimal feature vector.
One may thus perform an adaptive model selection.

A traditional way of model selection would be to perform
analysis on all combination of features under interest and
then to make a decision with the help of some information
criterion (AIC, BIC, etc.). These try to select the optimal
combination by weighting the number of measures in
the model against residual error. This kind of selection
leads to an inclusion of a measure with weight of either
one or zero, however, and may neglect knowledge gained
from incremental tests as those mentioned above. This
pecularity motivated us to search for alternatives. Weighting
information of different sources to an optimal degree is
frequently conducted via Bayes’ theorem. The Bayesian view
will be adapted to derive weights different from zero and one
for the construction of feature vectors, that is, to allow for
partial inclusion. We note that reduced inclusion is also an
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important property of the so-called shrinkage or penalized
regression methods [7].

The rest of the paper is organized as follows. We first
recapitulate the derivation of three different F-ratio test
statistics and outline the computational scheme to construct
the corresponding confidence intervals by means of Monte
Carlo simulations. A comparison to the outcome of the
traditional method is made. We then show the inclusion of
the outcome of these multivariate statistical methods into a
selection scheme following a Bayesian heuristic by weighting
hypotheses. This allows for reliably constructing weights for
the measures. These weights are the basis for constructing
reliable feature vectors suitable for further analysis, for
example, discriminance procedures.

We demonstrate our approach on the reanalysis of an
earlier study and address the problem of state specificity:
psychosis versus nonpsychosis as expressed in the EEG. It is
shown that an optimal combination of the so-called relative
unfolding (or Taken’s) y and two power spectral estimates (a,
&) will allow for a correct classification of at least 81% of the
probands, even in absence of active mental tasks.

2. Recapitulation of the F-Ratio Test

2.1. Recapitulation of ANOVA/MANOVA. The usage of anal-
ysis of variance is the traditional approach to distinguish
systematic effects from noise. The methods of analysis of
variance (ANOVA/MANOVA) try to decompose the variance
of a population of outcomes (e.g., the results of EEG assess-
ments obtained under different well-defined conditions) into
two parts, namely, the treatment effect and the error effect.
We adopt the notation of Bortz [8] and denote the treatment
effect as h? and the error effect as e?. The treatment effect h?
explains how much of the total sum of squares may be due to
a systematic effect of the different conditions (treatments).
The second part, €%, is an estimator of the remaining sum
of squares due to other random or noise effects. In the light
of (1), the term “error” affects both, e? and h?, whereas
o affects h? only [8]. The important question is: to what
extent the treatment effect significantly rises above the level
of a possible error effect. The quantity entering this test is
(univariate case)

2
= @
As stated above, h? denotes the sum of squares due to
treatment and e? the sum of squares due to error. If the
influence of the treatment is zero, h? also reflects only the
error influence. Hence the test may be formulated as an F-
test, that is, to test whether a calculated value of F might have
occurred by chance or if the value deviates significantly from
an outcome by chance. This might be done classically by
comparing the evaluated value of F with the values in a table
displaying F-value probabilities or get it from an appropriate
statistical software package.
The F-value is given as
FZ%_%_I’IZ iﬁ._iﬁ (3)

¢ dfi e dfi o
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where g is some appropriate weight (without having an
effect in the univariate case, however), and df, and df; are
the corresponding degrees of freedom, respectively. The
univariate case (ANOVA) tests the influence of one or more
treatment effects upon the outcome of a single variable, for
example, how the nonlinear correlation-dimension estimate
by [9] is affected by group, mental situation, and proband (cf.
Section 4).

The possible existence of an overall effect must be
tested not only on by but also simultaneously on all
evaluated measures, however. So the appropriate test is not
a sequence of ANOVA tests but a multivariate approach
(MANOVA). This is because the outcome of the variables
might be statistically dependent to some degree, and thus
the simultaneous effect is different from the set of the effects
of the individual variables. Hence, (3) must be converted to
the multivariate case. The quantities 4> and e? turn into their
corresponding matrices H and E [8]. The F-fest depends now
on the eigenvalues of the matrix HE™! which is analogous to
(3), but the single weight g splits up into the weights g;, and
these may be different for different axes;. The most common
of such F-values are

FH—M dfe (4)

- X)) dfe
(i.e., g = 1/g Vi),

Sia/(l+a)  dfe
S—Z?Ci/(l+ci) dfh

(i.e, g = 1/(1 +¢)), or

Fp = (5)

_ C1/(1+C1) .%
Fe= v ey df, ©)

(e, @i = V(1 +ca); g = 0Vi = 2), where ¢ is
the ith (ordered by value) eigenvalue of the matrix HE™!,
and s = rank(HE™!). Equation (4) is known as Hotelling’s
(generalized) T2, [10], (5) as Pillais’ trace [11], and (6) as
Roy’s largest root [12]. For a sufficiently large number of
observations, Fy, Fg, and Fp become equivalent and, in the
s = 1 case, they become identical. As in the univariate case,
testing for significance of an effect is done by evaluating the
probability that a calculated F-value might occur by chance.
The software packages that perform MANOVA do normally
return this probability together with further properties on
the sum of squares involved in H and E.

2.2. Outline of the Problem Separating Fixed and Random
Effects . To motivate the derivation of our algorithm, we
consider the influence of a randomly chosen sample of
persons out of a population, whereby other effects might
also be present, but fixed. The effect term 4?> may then be
decomposed into

h? = (Aa)® + (Apa)® + (Ae)?, (7)

where (Aa)? denotes here the influence of fixed conditions,
(Apa)2 the effect of the (randomly chosen) persons, and

(Ae)? the influence of the random error effects [8]. (We
note that the quantities (Aa)* and (A pa)2 are sometimes also
called treatment effects in a biomedical context). Under the
null hypothesis of having no fixed effect, (Aa)” is assumed
to be zero. The same holds—in principle—for (Apa)®.
Generally, if an observable stems from a subpopulation
drawn from a larger set, the corresponding effect may itself
become random. This is normally the case when regarding
person as condition (one will never be able to assess all
humans). Hence, (Apa)2 is zero only within the bounds
of statistical deviations. The classical approach to solve
this problem within the ANOVA/MANOVA framework is a
modification of the F-test. The error term is hereby enhanced
from e to (e* + (Apa)z), and the effect is tested through
h2/( e* + (Apa)z) instead of (2). The obvious disadvantage
is the requirement of a higher level of the effect (Aa)* which
has to rise significantly above the “noise-"term (e?+ (A pa)z)
as compared to the pure noise level due to €.

So an attempt to test (k2 — (Apa)*)/e? seems more
favorable. But this might lead to a negative variance estimate,
and it is not clear what effective degrees of freedom would
have to be assigned to such a variance estimate.

2.3. Derivation of the F-Ratio Test Statistics . To overcome
this situation, we propose a statistic estimating the influence
of the population with the help of a resampling technique.
This statistic is based on the decreasing sample-to-sample
variation when a fixed term is present as compared to the
influence of purely random effects.

Following [6], we rely (a) upon the classical error
propagation rule and (b) upon the variance’s variance. The
error propagation rule is given as [13]

ox

where g is a smooth function, x a random variable, and
h.o.t denote higher order terms. As usual in error propaga-
tion considerations, this formula neglects correlational and
higher order effects. We mention further that neglecting vari-
ations around absolute means the variance of an empirical
variance estimate may be written as [14]

_ 2

df -
We denote the variance with 62 and the empirical variance
estimate with o2. This conforms to (3).

As our last step (c), we decompose 6% (h?), the variance of
the effect term

2 (1) = 6*((Apa)’) +62((Ae)?). (10)

We assumed here all error terms to be uncorrelated to the
rest. Essential here is the fact that the fixed effect does not
contribute to the variation of h?* and accordingly does not
enter into the variance 62 (h?). With (9), (8), and (7), we may
write the variance of the F-value defined in (3) as

2 h2 2(,2
o (F) = Fz[" ) o8

2
0% (g(x)) = (8g> o%(x) + h.o.t., (8)

52(0%)

9)

] +hot. (11)



Using (8), this turns into

v 1
O'Z(F):4F2|:2dﬁc+2dﬁk:|, (12)

where df, denotes the degrees of freedom of the effect
considered, df ,, the corresponding error degrees of freedom,
and v is the ratio

- M_ (13)

h2

We note that in the case of a pure random effect, v becomes
1 and significant deviations towards a lower value point to a
nonnegligible fixed effect. Equation (12) obviously suggests
using the statistic o?(F)/F? to test for v < 1. According
to (12), the expectation value of this statistic is—under
the null hypothesis v = 1—given by 1/2df; + 1/2dfe. To
gain an estimate for ¢>(F), one may randomly resample, m
times, a subset encompassing an equal number of probands
from the original sample and, each time, find the F-value
corresponding to the particular subset. So the method
becomes a variant of the so-called delete-d jackknife [15]. It
has been shown that the following quantity estimates o2(F)
up to a factor [16, 17]

GZ(F) — ;
m

2
-1 >

(F; - <)) (14)

where E(0?(F)) = 0%(F).The number of random splittings
conducted is denoted as 1, the average (F) is defined as

(F) = (15)

1
m z F j i
and F; denotes the found F-value obtained from the jth
of the m runs. The above mentioned factor depends on
#probands and selected #probands per random sample [15].
(We abbreviate here “number of” with the symbol #.) This is
important, because p, the probability of a person to appear
in a particular random sample, increases with the ratio
#probands per random sample/#probands per sample. In
case of a small sample size, this may impose an additional
restriction of the variance o2(F) [6].

The cumulative distribution of the ratios o2(F)/(F)?
will hence depend on the parameters (df, df ,, #random
splittings, #probands, #probands per random sample). The
#random splittings, m, hereby influences the cumulative
distribution because higher values for m lead to a narrower
deviation around 6%(F). A deviation from a random result
may be found by estimating the probability that a ratio
a2(F)/(F)* is by chance as small or smaller than the
experimentally found estimate. If this probability is too low,
the null hypothesis is rejected. We will come back to this
point in the following section.

These ideas may be extended to the multivariate case [6].
We note that the error effects may again be assumed to be
uncorrelated. Therefore the off-diagonal elements of E are
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FiGure 1: Outcome of an artificially generated signal with fixed
effect (o) for our test statistics (testat0 (16) versus (F) (15),
logarithmic scale) compared to outcomes of the corresponding
random effects (x). The deviation from the expected value (solid
line) of the latter is highly significant and below the 5% level
(dash-dotted line) and even the 1% level (dotted line). The classical
method according to Section 2.1 revealed the (insignificant) 13.95%
level only. The proposed method recognizes the nonrandom effect
correctly in this example while the classical approach does not.

random with an expectation value of zero. Furthermore, the
trace of the matrix HE™' remains unchanged when the basis
is changed such that the eigenvectors build the new basis.
Hence the diagonal terms of HE™! are expected to represent,
on the average, the individual F-values, and the trace is the
sum over the individual F;’s. In case of a fixed effect with
only two states (s = 1) and n random variables, this leads
to a multivariate F with value 1/n 3.\, F;. To test the null
hypothesis Hy of having random effects only, we may again
use the independence of 02 (F;) and find testat0, our first test
statistic,

X a)
teststatQ = WS F? (16)

whose distribution is a function of (df, df ,;, n, #random
splittings, #probands, #probands per random sample). If
random effects for the treatment term exist, things become
a bit more complicated. In that case, the contributions of
the individual 0%(F;) may be unequal, and—in extremis—
the sum may be dominated by one single term. A way to
account for this effect is to consider df .4, the effective degrees
of freedom. The effective degrees of freedom are defined
as df ¢ = (X 07)/(X(0}7 | df;)) (cf. [8], Chapter 8). This
quantity is minimized if one term is clearly dominant and
maximized when there are equal contributions.

As stated above, if an empirical value of teststatO appears
too low, one may conclude that there is a systematic
nonrandom deviation in at least one variable between the
treatment groups under consideration (see Figure 1).
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In the case of a true multivariate statistic type, one has to
replace the univariate individual F-values by the eigenvalues
of HE™! and modify testat0 into

5102 (1 S, KE))
R 2>
(S, Vg S KE)

teststatl = (17)

where k/ F; is the contribution of the individual univari-
ate F-value F; to the ith eigenvalue of (HE™') adjusted
with the degrees of freedom, namely, ¢; df,/ dfy. This
statistic depends on (df ,, df,, n, #simulations, #probands,
#probands per random sample, stattype, df ). If stattype,
the statistics type, is Hotelling’s statistics, this obviously
becomes equivalent to the s = 1 case because g = const.
and F = Y ¢ df /df, (cf. Section 2.1). In absence of a
between-variable effect, one will have

02 (F multi)
4F?

multi

testatl = (18)

This suggests two normalized versions of our test statistic in
the following way:

teststatlp =

. .
Zi_1‘72<1/gizj—1kiFj)/Gz(leﬂﬁ). (19)

4(Z Vg S k{Fj)Z 4F
The expectation value under the null hypothesis (i.e., having
no multivariate effect) is 1, and the cumulative distribu-
tion depends on (df,, df,, n, #simulations, #probands,
#probands per random sample, stattype). Significant devi-
ations from 1 indicate that at least one variable shows a fixed
effect or that a between-variable effect exists.

As a last step, we extend (19) to an incremental test
statistic. In the case of having already knowledge on certain
measures displaying a multivariate effect, one may wish to
test for the influence of an additional measure. We therefore
modify the test statistic testatlz into

» (20

22 2 2 i
teststat]y = k*0*(F,) + 0°(Fadd) / 02 (Fimulii)

4(KF, + Faqa)* 4F;,

ulti

where k is the number of those measures already showing
a multivariate effect, and F, is the F-value found with these
measures. Our assumption of an existing effect implies F, >
1, because E(F.) > E(Frandom) and GZ(FC) = Uz(Frandom)-
Hence testatly tests the null hypothesis (F, > 1, v =
v(F.)), that is, the additional variable has no influence. The
cumulative distribution function then depends on (df ,, df ,,
n, #simulations, #probands, #probands per random sample,
F., 0%(F,), df . stattype) because E(F.) > E(Frandom) and
0%(F.) < 0*(Frandom). Because 0%(F.) is assumed to be
unequal to ¢2(F,q4), we must again consider the so-called
effective degrees of freedom df . of the pooled variances.
The assumptions entering this incremental test are the
same as in teststatlg. The null hypothesis states that the
additional measure contributes its univariate F-value F,qq
to the trace while F,qq is built up from nonfixed effects
only. If the teststatl; becomes unexpectedly high, this may

be regarded as indicating an additional systematic effect
due to the inclusion of this measure. If the statistic type is
Hotelling’s statistic, this becomes again equivalent to the s =
1 case.

These statistics are useful answering questions like the
following: “are there measures providing significantly to the
treatment term?” and, if so, “which ones may be identified?”
and “to what extent do they provide to the effect?” The
knowledge of such measures and its contribution to the
treatment effect allows one, for example, to select them and
collect them with appropriate weights into a feature vector
useable for discriminance or predictive purposes.

2.4. The Computational Scheme to Determine Confidence
Intervals for the F-Ratio Test Statistics and Comparison with
the Classical Approach . The quantity of interest, namely,
the distribution of the ratios ¢?(F)/F?, must be evaluated
numerically, and the dependence of the ratios from the
number of random splittings and the number of persons
involved calls for a calculation of the confidence intervals
for each case. Generating the distribution of the F-ratios
appropriately and, therefrom, the desired confidence interval
is our method of choice to overcome this problem. This
algorithm is basically a Monte Carlo technique generating
L outcomes and their F-ratios. This leads to a population
of L random deviates of the ratio o2(F)/(F)* according to
the appropriate null hypothesis (remember Figure 1). We
note that both the F-value obtained for the whole sample as
well as (F) (15) provide an estimate for F and calculating
02(F) and (F)? is done within the same procedure, so we
prefer 0(F)/{F)*. From the population of the L ratios, one
may derive a quantile and the associated probability P, for
example, by building a histogram or ordering the population
by rank and selecting the P - Lth value. This value estimates
the quantile above which F-ratios occur by chance with
probability P.

2.4.1. General Scheme. The general scheme of our algorithm
is stated in more detail as follows [6].

(1) Restate the model through a separation of the desired
factor. The multivariate model describing our null
hypotheses may be derived from (1) and may be
formulated as

Signal,j = ai(j) + Bj + errorijk, (21)

where Signalij denotes the (uni- or multivariate)
measured quantities, $; the random factor con-
sidered (e.g., different clinical groups), «; and the
other factor(s), which may implicitly depend on the
random factor.

(2) Determine/select the constants k, L, m, #n, p, stattype
(if necessary) such that L is the number of deviates
desired to estimate the quantile with acceptable accu-
racy, m is the number of random splittings needed for
each deviate, #n the levels of the factor 8 (typically
the number of persons involved, i.e., #probands),
p the relative number of levels (or persons, i.e.,



#probands per random sample/#probands) entering
one splitting, k the number of levels of «;, and
stattype is again the multivariate statistic type. The
values k, m, #n, p, stattype must conform to the
setting with which the original data was analyzed.

(3) Perform the Monte Carlo loop. This encompasses the
following steps.

(a) Generate a sequence of #n times k random
numbers to mimic the random errors in (21).
The amplitude must be chosen to match the
value found for €? in the original analysis.

(b) Generate another random #n-sequence to
mimic the influence of the random factor.
The amplitude must be chosen to match the
null hypothesis. The random treatment effect
assumed, (Apa)z, should be chosen such that
(F) matches the found univariate outcome.

(c) Add the different contributions to the simulated
signal.

(d) Build m random splittings and analyze it by
the same procedures as the original sample was
analyzed. Typically m is chosen to lie between
12 and 50. From the m splittings, build o?(F),
(F)? (14), and (15), and the ratio o2(F)/(F)>.
The analysis is normally done by means of a sta-
tistical software package estimating an appro-
priate F-value. This is sufficient for testatO.
In the case of testatl, also build (Fmui)?,
02 (Fmuli), and the ratios 02(Fumulti){Fmuti)”
and (02(F)/<F>2)/(02(qulti)/<qulti>2)- These
are necessary for the different variants of testatl
(18)—(20).

(e) Repeat steps (a) to (d) L times and gain there-
from empirically the quantile(s) of interest.
As stated above, this may be done by means
of a histogram or a rank ordered sequence
obtained from the L F-ratios ¢*(F)/(F)* and
(02(F)/{F)*)/(0*(Fant))/{ Fmuii) ). Depending
on the probability P associated with the quantile
and the desired accuracy, L will typically be on
the order of 102,...,10°.

The statistic testatly (20) requires some attention with
respect to (a) simulation and (b) effective degrees of freedom.
This is because we estimate ¢2(F,), where F, is expected to
be larger than one due to the already recognized fixed or
common effect and, therefore, 02(F,) < 62 4om-

F, is carried over from the result obtained without the
measure under consideration, so we test the additional mea-
sure under the constraints that the known effect equals F, (or
Fiotal = Fample_total)- In the case that the measures contributing
to F, are expected to carry fixed effects, the model must
also be adjusted with a fixed effect, such that the expected
values E(0?(F)) and E(¢?(F.)) match the corresponding
values of the original sample. The quantiles must be derived
at the point where df .4 matches df . of the original sample.
This may be done by repeating step (e) thus collecting a
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FIGURE 2: Variation of quantiles of the test statistics with the
effective degrees of freedom df . 50% (*); 75% (x); 90% (0); 95%
(+) for a variety of simulations and their corresponding functional
fit. The ® denotes the results presented in Table 1. These are from
left to right y-6, y — b0, y-5-a.

population of empirical quantiles belonging to the same
probability P and building a functional dependence quantile
versus df  (cf. Figure 2, where dependencies quantile, = ap
+ bp - df 4 were fitted). The alternative is waiting until L
results with approximately equal effective degrees of freedom
emerged by chance.

2.4.2. Particular Settings . The reconstruction of the model
(21) is performed by generating streams of two types of
uncorrelated random numbers from a normal distribution.
The first type will mimic the error and has simulation
parameters (0, ¢2), that is, the estimated squared mean
of the error;; of the original sample. The second type has
simulation parameters (0, 012,), that is, the average squared
effect due to the probands. Both quantities may be read out
from the output of the classical ANOVA/MANOVA analysis
(cf. Section2.1) of the original sample. In this respect,
the expected outcome of the simulation with the classical
approach will correspond to the result obtained with the
original sample, if the parameters k and ## also correspond to
the original sample and the null hypothesis Hy: “no presence
of a fixed effect due to person group” is true.

Our clinical sample consists of 30 persons from two
clinical groups evaluated at four mental states ([18], see also
Section 4.2). So we have k = 4 and #n = 30. Because the
mental states have shown fixed effects in previous studies
[18, 19], the simulated signals were offset by four fixed
different levels. The amount of the offset values is not
relevant, however, because the offset is fixed and the F-ratio
test is set up to test for differences between the two groups.
The offsets were introduced only to mimic better the original
data. Hence a simulated person has four outcomes built by
one choosing four times the same random deviate from (0,
cr;) plus four times a different random deviate from (0, o2)
enriched with the state-specific offset. The first 15 simulated
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TaBLE 1: Outcomes of F-ratio test statistics with a considerable significance level for EEG feature vectors.

Test statistic Feature vector Fru

used (measures)

Ratio Test statistic df

Significance

value level

teststatly 6.168
(19)
teststatly
(19)
teststatly
(19)
teststatly,
(20)

x> 0-power
x> b0 10.393
x> 0-power, a-power 6.890

X> 6-power, a-power 6.890

0.233 1.412 1.507 >0.95

0.145 1.489 1.822 >0.95

0.158 1.416 2.21 >0.90

0.158 1.192 2.21 = 0.90

persons were labeled as group 1 and the last 15 labeled as
group 2. The F-ratio tests were conducted with m = 30 and
p = 2/3, if not stated otherwise. A Monte Carlo loop was
normally evaluated with L = 100 for each stattype. Hence
getting results for each of the stattypes testat0, testatlg, and
testatly requires three different runs of the Monte Carlo
loop. Roy’s largest root (6) was used as the classical method,
if not stated otherwise.

The F-ratio test statistic obviously requires more numer-
ical efforts than the classical approach. So one could ask if
its usage might be worth these efforts. We therefore tested
the sensitivity of the F-ratio tests to the presence of fixed
effects of person categories, that is, we tested for Hj in case
when Hj is false. A comparison of runs on 250 different
artificial data sets was made. We evaluated for each data set
the probability that a test outcome as high or higher may
occur by chance. This was done for both the classical test and
the F-ratio test (applying a nonparametric method). Then we
built for each set AP the difference between the probability
according to the classical and the probability according to
the F-ratio test. The resulting 250 values of AP were then
sampled into a histogram. In case of equivalence of the two
methods, one would expect a symmetric distribution around
zero. Our data (Figure 3) show a significant deviation from a
symmetric distribution towards the F-ratio test (X2 =5.6,P
= 0.02). The F-ratio test seems to be more sensitive to the
presence of a fixed effect than the classical approach, thus a
higher tendency to reject Hy in the case when the test should
reject it.

This seems not to be too surprising, however, because
the deviations from the expected value of the quantity
02(F)/(F)* occur in 4th power instead of the 2nd power
as in the classical view. A further advantage of the F-ratio
is its applicability to nonnormally distributed data because
random number generation for nonnormal data bears no
additional difficulties.

Having established this as a method for an incremental
inclusion of measures, we will now turn to the problem of
using this knowledge to construct optimized feature vectors.

3. Hypothesis Weighting

Consider the outcomes of the tests above of, say, three
measures which occur with different significance levels. We
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Ficure 3: Comparison of the F-ratio test with the classical
approach for 250 data samples. The probability of the spontaneous
occurrence of the corresponding outcome is on the average smaller
than with the classical approach. This is shown by the asymmetric
distribution of AP, the differences between the two probabilities.

make the assumption that from these measures (or variables)
the one with the least significance carries also the least
information, while the others bear more information in
accordance to their significance level. The problem with what
weight they should enter into a feature vector is regarded
from a Bayesian view. Bayes formula allows one to express
a conditional probability P [A; | B] with the conditional
probabilities P [B | A;] through

P[A|P[B | Ai]

Pl4i 1 B] = s, P[a;]P[B1 4]

(22)

This may be used to express the probability of a hypothesis
H; to be correct by means of the probabilities of the
outcomes corresponding to the different hypotheses tested
for. Consider two hypotheses Hy and H; concerning the
quality of the measures/variables. We would like to weight
the hypotheses Hy (measures display no difference between
groups) and H; (measures display a difference between
groups). The probability P(H;), namely, H; being correct,
appears as a natural weight for this hypothesis. Let b denote



the empirical outcome of an F-ratio test as obtained with the
Monte Carlo technique above. Let B denote the set of possible
outcomes which deviate at least as much as the quantile
belonging to the significance level 7. If b exceeds this quantile
it is also an element of B. The set B then allows for weighting
hypotheses by means of (22).

We may set the a priori probabilities P[Hy] =1 —P[H;] =
¢ =0.5, because we have no a priori preference neither for the
hypothesis Hy nor an alternative H;. We may further assume
the probability P[B | H,] = ¢,. The quantity P[B | Hyl:= 7 is
our present knowledge, namely, the probability assigned to
find an outcome b within B, given Hy, for example, 7 = 0.05,
m =0.1, and so forth.

The probability of “Hj = true” given the set B may be
written as (22)

cm
P[Hy | B] = rel—0 (23)
and, similarly,
p(H, | B) = 219 (24)

cr+c(l—c¢)

In general, we find the quantities p[H} |B] and may formally
assign an “expected hypothesis” through the weighted mean

S Hip[Hj | B]

" > p[Hi | B]

(25)

The formulation of an “expected alternative hypothesis”
seems somewhat purely formal at this stage. However, if
each hypothesis is intrinsically connected to a specific feature
vector f;, this approach returns the expected feature vector f
given the observation B, however,

7o 2 fiplfi | B]
SplfilB]”

because each feature vector f; is spanned by its specific
collection of measures

(26)

f=1{A,B,C,.. .} (27)

From the weights of the hypotheses one immediately also
gets the weights of the measures. In the context of EEG time
series analysis, the measures A, B, C,... denote quantities like
correlation dimension, peak frequency, spectral band power,
and so forth.

A simple weighting follows for the case of two pos-
sible alternative hypotheses. The likelihood ratio P[H,|B]/
P[Hy|B] then gives the weight with which the alternative
is preferable to Hy when the weight of H, is set to 1. It is
expressed as

(1 —c)/(cm+c(1 —¢)) _ o(l—c¢) (28)
cr/(cm+ (1 —¢)) cr

Now consider two alternatives Hll, H? and P[B! Hol =m,
P[B*| Hy] = m, and P[B | Hi] = ¢, for all H (i.e., no

Journal of Biophysics

preference for any alternative). Their likelihood ratio may be
expressed through the ratio of their likelihood ratios against
the null hypothesis [6]

(1l —c)/em _m (29)

o(l-o/m m
This may be regarded as the weight with which the second
alternative should enter when the weight of the first alterna-
tive is set to 1. If in addition H{ is a subset of the H?, that
is, the variables assigned to H 1 are a subset of the variables
assigned to H7, this weighting applies to that part of Hj
which is not common to H?.

We have to note that the formulation of ¢; is correct only
when each probability 7; is small. If this is not the case, some
correction might be required [6].

The application to the problem optimizing a feature
vector is straightforward. The ith feature vector is regarded
as the ith combination of measures corresponding to the
ith hypotheses. To find the weights with which the variables
enter the feature vector, we assume assigning the weight 1 to
that combination of measures with the highest significance
level. Taking into account the implicit dependence of ¢, as
stated above, the subsequent variables will enter with weights
according to (26). If a probability (thus weight) falls close
to zero, it may be set to zero which results in dropping that
particular feature vector and its corresponding measures.
This reduces the dimension of the optimal feature vector.

4. Application to the Problem Discriminating
EEG States

4.1. Motivation of the Problem and Results of Earlier EEG
Analysis. As an application, we choose the problem of
distinguishing the EEG of the two proband groups taken
from a neuropsychologically oriented study [19] by their
EEG. This choice was motivated by the following: it is
well known that schizophrenic patients show abnormalities
compared to healthy controls when the so-called evoked
potientials are studied [20-22]. This may point to a threshold
regulation problem in the activation of the neural network
in schizophrenics [23], and there might be differences in the
metabolism of the frontal cortex [24, 25]. Therefore one may
expect differences in the spontaneous EEG. Such differences
were indeed reported repeatedly, for example, [26-28] using
linear (FFT) or nonlinear (correlation dimension) analysis.

An earlier study conducted with our proband samples
(cf. below) revealed a significant difference between the two
samples but only for a specific mental task [18]. While
the EEG of the controls showed a drastic decrease in
dimensionality, the EEG of the patients did not exhibit any
pecularity. Other studies, however, pointed to the existence of
a difference in the “eyes-closed quiet” state [2, 9]. The degree
to which this difference is visible in the “eyes-closed quiet”
state, that is, in absence of external activation, however, is not
yet established and was examined with the method proposed
here.
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4.2. Proband Sample and EEG Analysis. The neuropsycholog-
ically oriented EEG study consisted of two groups, namely,
15 acute hospitalized subjects diagnosed as schizophrenic
and 15 controls in a healthy state. EEG measurements were
repeated for four different mental tasks [19]. A trained
clinical staff member ranked each patient’s symptoms on a
psychiatric rating scale, and the psychopharmaceuticals were
noted. Both groups were exposed to the same mental tasks,
while three 30-second segments of EEG were recorded [19].
We focus here mainly on the so-called “eyes-closed quiet”
mental situation. The EEG were recorded according to the
international 10-20 standard, which allows for the so-called
parallel embedding scheme [2].

Our nonlinear EEG analysis follows a biparametric
dimensional technique. In contrast to standard methods,
this technique also considers attractor unfolding, and the
outcomes provide several nonlinear measures, namely, the
asymptotic correlation dimension (by), the so-called unfold-
ing dimension m*, and the relative unfolding (or Taken’s)
x [9]. In addition, EEG analysis with conventional FFT
techniques [29] was performed. This provided measures
like a- or §-power, that is, the spectral power from the
so-called « ( 8-12Hz) and § (1-5Hz) frequency band. A
complete description of the proband samples, conditions,
and technical settings is given elsewhere [18, 19]. With
our experimental setup, the model consists of four fixed
conditions (i.e., the four mental tasks) and two groups
with 15 persons (i.e., patients and controls). According to
our hypothesis, the influence of the group is in the focus
of interest. Those persons building the two groups must
be suspected to provide a sample-specific (or random)
effect to the discriminant capacities between the groups (cf.
Section 2), however, and demand for the application of our
scheme. In each group, 10 from the 15 persons where chosen
for the simulation, that is, at the point p = 2/3.

4.3. Results. The findings listed in the Section 4.1 led us
to hypothesize differences in the absence of stimulated
activation or medication. Therefore we applied our method
to the EEG outcomes to the “eyes-closed quiet” situation. The
results obtained with the different test statistics of this setting
are shown in Table 1.

From here one sees that the relative unfolding y seems
to play the role of a major indicator, because y occurs in
all combinations of Table 1. This result is in agreement with
findings from an earlier study [2] and with previous results
from our sample [18, 19]. The & power seems to be the best
spectral measure because it appears in two combinations. An
effect on the § band is also in agreement with older findings
in the literature [30].

This let us expect a reliable discrimination between the
two states, schizophrenic versus healthy, by means of the
EEG outcomes, if a combination of measures is appropriately
selected. Among the triple combinations, only f; =(x, 6-
power, a-power) seems to carry information. The combi-
nation (y, §-power, by) did not show any remarkable effect.
So the effect on §-power and b, seems somewhat opposite,

Nl | ||

Number of persons
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FIGURE 4: Discriminant analysis of EEG outcomes with weighted
feature vector (eyes closed at rest). The number of persons is shown
above the value on the main axis of the discriminant function
where they appear. Upper: control group; lower: patient group
(redisplayed from [6]).

and this combination was dropped. To discriminate between
the two groups, it seems therefore reasonable to select the
variables y, 8-, and a power. The information obtained with
these outcomes is used to build an appropriate feature vector.

Following Section 3 to find weights for feature vector
components, we assume the 95% interval as significant and
assign the weight 1. This conforms to 7; and H{: y and
d-power. Applying our considerations to the 90% solution
(my = 0.1, Hi: y, 8-power, a-power) reveals the weight
0.48. Hence, the variables y, § enter with weight 1.00 into
the feature vector, while the variable « enters with weight
0.48 only. A discriminant analysis with this weighted feature
vector reveals a correct classification with more than 81%.
The result is displayed in Figure 4, where the outcome on
the main axis of the discriminant function (essentially a
rotation of the coordinate system [8], Chapter 18) is shown.
The discriminant analysis could not be done on all 15
persons of each group. Due to failure to EEG-record quality
requirements [19], one person of the control group and
two persons of the patient group could not be evaluated,
unfortunately.

We note that our F-ratio test statistics with its ability to
perform multivariate and incremental testing on fixed effects
allowed for this weighting of feature vectors. Furthermore,
we may regard this result as reliable because this variable
weighting has been done based on the emergence of fixed
effects, therefore not optimizing across random (or sample-
specific) discriminant capacities.

5. Discussion

We proposed and derived a computational scheme which
is based on a random splitting method and which allows
separating fixed and random effects in multivariate variance
analysis. This approach seems to be advantageous in two
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respects. The classical method is implemented only for the
univariate problem in most standard statistical software
packages. So the decomposition of the effect matrix H into a
fixed and a random effect requires additional matrix algebra
programming efforts anyway. This may turn out to be a more
difficult numerical problem than the generation of streams of
random numbers.

Secondly, the normality assumptions inherent to the
classical test also remain true for the multivariate test,
namely, normally distributed random deviations around the
effect levels. If this is not true, the statistics to be used do
not follow an F-distribution and may be unknown, thus
preventing a classical significance test.

In contrast, our method requires testing against quantiles
derived from simulated outcomes. Thus the calculations
can be done completely analogously when it seems more
appropriate to use a distribution other than the normal
distribution. Because our test statistic is based on relative
ratios rather than absolute ratios, one might expect that an
effect due to a particular distribution in the denominator will
have a related effect in the numerator which could make our
test statistic more robust.

Our tests for partial inclusion followed a Bayesian
weighting of hypothesis. This leads to an optimized feature
vector. This feature vector comprises those measures relevant
to the fixed effect being tested for. This exceeds the classical
model selection because each measure enters with an appro-
priate weight between one and zero rather than in an all or
none fashion.

Another advantage of this approach is the simultaneous
inclusion of linear and nonlinear measures. We note that
the interpretation of the latter must be done with caution.
It has been recognized for a long time that these measures
are affected by noise and estimation errors when they are
used for EEG analysis which then may circumvent their
interpretation as chaos indicators (cf. e.g., [9, 31, 32] and
the references concerning this matter therein). Despite this
fact, these measures proved the ability to display individual
properties of the EEG not seen with linear measures (cf. e.g.,
[2, 3]), and this is confirmed here.

As was shown with our EEG data, the above mentioned
properties of our methods allowed for a clear distinction
(>81%) between the two proband groups, controls versus
schizophrenic patients, in a resting state with eyes closed.
Earlier results stating that § and y seem to differentiate
between the two groups are confirmed, but such a clear result
has not yet been found in previous studies.
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