Research Article

Modelling of the Curvature Term of the Flame Surface Density Transport Equation for Large Eddy Simulations

Mohit Katragadda and Nilanjan Chakraborty

School of Mechanical and Systems Engineering, Newcastle University, Claremont Road, Newcastle upon Tyne NE1 7RU, UK

Correspondence should be addressed to Nilanjan Chakraborty, nilanjan.chakraborty@newcastle.ac.uk

Received 27 June 2012; Accepted 19 September 2012

Academic Editor: Essam Eldin Khalil

Copyright © 2012 M. Katragadda and N. Chakraborty. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A simplified chemistry based three-dimensional Direct Numerical Simulation (DNS) database of freely propagating statistically planar turbulent premixed flames with a range of different values of turbulent Reynolds number has been used for the a priori modelling of the curvature term of the generalised Flame Surface Density (FSD) transport equation in the context of Large Eddy Simulation (LES). The curvature term has been split into the contributions arising due to the reaction and normal diffusion components of displacement speed and the term originating from the tangential diffusion component of displacement speed. Subsequently, these contributions of the curvature term have been split into the resolved and subgrid contributions. New models have been proposed for the subgrid curvature terms arising from the combined reaction and normal diffusion components and the tangential diffusion component of displacement speed. The performances of the new model and the existing models for the subgrid curvature term have been compared with the corresponding quantity extracted from the explicitly filtered DNS data. The new model for the subgrid curvature term is shown to perform satisfactorily in all cases considered in the current study, accounting for wide variations in LES filter size.

1. Introduction

Flame Surface Density (FSD) based reaction rate closure is one of the popular methods of turbulent premixed combustion modelling in the context of Reynolds Averaged Navier Stokes (RANS) simulations [1, 2]. The FSD based modelling has recently been extended to Large Eddy Simulations (LESs) [3–12]. The generalised FSD Σ_{gen} is defined as $\Sigma_{\text{gen}} = \overline{|\nabla c|}$ [3–10] where c is the reaction progress variable and the overbar indicates a LES filtering operation. The transport equation of Σ_{gen} is given by [1, 4–7, 9, 11]:

\[
\frac{\partial \Sigma_{\text{gen}}}{\partial t} + \frac{\partial (\overline{\rho u_i} \Sigma_{\text{gen}})}{\partial x_j} = - \frac{\partial}{\partial x_i} \left[\left(\delta_{ij} - \frac{\partial}{\partial x_j} \right) \frac{\partial N_i}{\partial x_j} \right] \Sigma_{\text{gen}} - \frac{\partial (S_d N_i) \Sigma_{\text{gen}}}{\partial x_i} + \left(\frac{\partial N_i}{\partial x_j} \right)_s \Sigma_{\text{gen}},
\]

where $N_i = -(\partial c/\partial x_i)/|\nabla c|$ is the ith component of flame normal speed, $S_d = (Dc/Dt)/|\nabla c|$ is the displacement speed, $\overline{Q} = \overline{Q} |\nabla c|/\Sigma_{\text{gen}}$ and $\overline{Q} = \rho \overline{Q}/\rho$ are the surface-weighted and Favre filtered values of a general quantity Q. The final term on the right hand side of (1) originates due to flame curvature $\kappa_m = (\partial N_i/\partial x_i)/2$ and thus this term (i.e., $(S_d \nabla \cdot \hat{N}) \Sigma_{\text{gen}}$) is referred to as the curvature term [4–7, 9, 11]. It is evident from (1) that the curvature dependence of S_d plays a key role in the statistical behaviours of $(S_d \nabla \cdot \hat{N}) \Sigma_{\text{gen}}$ and this was confirmed in previous a priori Direct Numerical Simulation (DNS) based analyses [9, 11]. It was previously demonstrated [9, 11] that the existing models for the subgrid curvature term C_{sg} often do not capture its correct qualitative and quantitative behaviours, particularly in the Thin Reaction Zones (TRZ) regime flames. Moreover, the model parameters for the existing C_{sg} models were found to be strong functions of LES filter width Δ [9, 11]. The modelling of $(S_d \nabla \cdot \hat{N}) \Sigma_{\text{gen}}$ therefore remains one of the weakest points in the LES modelling of the Σ_{gen} transport equation. This gap in the existing literature is addressed in
this paper by explicitly LES filtering a DNS database of freely propagating statistically planar turbulent premixed flames with different values of turbulent Reynolds number \(Re_t\). In this regard, the main objectives of the present study are as follows:

1. to analyse the statistical behaviours of the subgrid FSD curvature term in the context of LES for the flames with different values of \(Re_t\);
2. to propose models for the subgrid FSD curvature term and assess their performances in comparison to the corresponding quantities extracted from DNS data.

The necessary mathematical background and numerical details will be provided in the next section. Following this, the results will be presented and subsequently discussed. Finally the main findings will be summarised and conclusions will be drawn.

2. Mathematical Background and Numerical Implementation

Although three-dimensional DNS with detailed chemical mechanism is currently possible, it remains extremely computationally intensive [13] and is often not suitable for a detailed parametric analysis. Thus the chemical mechanism is simplified here using a single step Arrhenius type chemical reaction in order to carry out a parametric variation in terms of \(Re_t\). For the convenience of modelling, \((S_d \nabla \cdot \nabla) \Sigma_{\text{gen}}\) is often split as [4–7, 9, 11]

\[
(S_d \nabla \cdot \nabla) \Sigma_{\text{gen}} = C_{\text{mean}} + C_{\text{sg}},
\]

where \(C_{\text{mean}}\) and \(C_{\text{sg}}\) are the resolved and subgrid curvature terms, respectively. Chakraborty and Cant [9, 11] analysed the possibility of using three different expressions of \(C_{\text{mean}}\):

\[
C_{\text{mean}} = \langle S_d \rangle_s \left[\frac{\partial (N_i)}{\partial x_j} \right]_{\Sigma_{\text{gen}}} = \langle S_d \rangle_s \left[\frac{\partial M_i}{\partial x_j} \right]_{\Sigma_{\text{gen}}},
\]

\[
C_{\text{mean}} = \left(\delta_{ij} - \frac{N_i N_j}{\langle N_i N_j \rangle_s} \right) \frac{\partial \langle N_i \rangle_s}{\partial x_j}_{\Sigma_{\text{gen}}},
\]

\[
(3)
\]

where \(\langle N_i \rangle_s = -<\tau>\partial/\partial x_i>_{\Sigma_{\text{gen}}}\) and \(M_i = -<\tau>\partial/\partial x_i>_{\Sigma_{\text{gen}}}\) are the \(i\)th component of surface-weighted and resolved flame normal vector, respectively. Previous a priori DNS analyses suggested that \(C_{\text{mean}} = \langle S_d \rangle_s \left[\partial (N_i)/\partial x_j \right]_{\Sigma_{\text{gen}}}\) is the most preferred expression for the resolved curvature term out of the three options presented in (3), as it allows for the smallest magnitude of \(C_{\text{sg}}\), while satisfactorily capturing the qualitative behaviour of \((S_d \nabla \cdot \nabla) \Sigma_{\text{gen}}\) [9, 11]. Moreover, \(C_{\text{mean}} = \langle S_d \rangle_s \left[\partial (N_i)/\partial x_j \right]_{\Sigma_{\text{gen}}}\) was used in previous LES simulations [5–7, 12]. It is useful to split \(S_d = (Dc/\rho)\nabla^2c = |\nabla^2c| = |\nabla^2c| = |\nabla^2c| = \rho \nabla |\nabla c|\) in the following manner [9–11, 14, 15] for obtaining further insight into \((S_d \nabla \cdot \nabla) \Sigma_{\text{gen}}\):

\[
S_r = \frac{\rho w}{|\nabla c|}, \quad S_n = \frac{\nabla (\rho D \nabla c)}{|\nabla c|},
\]

where \(w\) is the reaction rate and \(D\) is the progress variable diffusivity. The following expression for \(C_{\text{sg}}\) can be obtained using (4) and \(C_{\text{mean}} = \langle S_d \rangle_s \left[\partial (N_i)/\partial x_j \right]_{\Sigma_{\text{gen}}}:\)

\[
C_{\text{sg}} = C_{\text{sg1}} + C_{\text{sg2}} = \langle S_d \rangle_s \frac{\partial (N_i)}{\partial x_j}_{\Sigma_{\text{gen}}} - \langle S_d \rangle_s \frac{\partial (N_i)}{\partial x_j}_{\Sigma_{\text{gen}}},
\]

where

\[
C_{\text{sg1}} = \left(S_r + S_n \right) \frac{\partial (N_i)}{\partial x_j}_{\Sigma_{\text{gen}}}, \quad C_{\text{sg2}} = \left(-D \frac{\partial (N_i)}{\partial x_j} \right)_{\Sigma_{\text{gen}}},
\]

Equation (6i) indicates that the curvature \(\kappa_{\text{sg}} = \nabla \cdot \nabla/2\) dependences of \((S_r + S_n)\) and \(|\nabla c|\) are likely to influence the statistical behavior of \(C_{\text{sg1}}\). According to (6ii), \(C_{\text{sg2}}\) remains deterministically negative throughout the flame brush. Hawkes and Cant [6, 7] modified a version of the coherent flamelet model by Candel et al. [2] as

\[
C_{\text{sg}} = -\frac{\alpha_S \beta_S \Sigma_{\text{gen}}}{(1 - \tau)},
\]

where \(\alpha_S = 1 - \langle N_k \rangle_s\langle N_k \rangle_s\) is a resolution parameter which vanishes when the flow is fully resolved and \(\beta_S\) is a model parameter. Hawkes [5] discussed a possibility of modifying the RANS model proposed by Cant et al. [1] for the purpose of LES as:

\[
C_{\text{sg}} = -\frac{C_H \Sigma_{\text{gen}}}{(1 - \tau)},
\]

where \(C_H = \alpha_S \beta_S (1 - \frac{1}{3})[1 - \exp(-10(1 - \tau)]/\tilde{k}/\Sigma_{\text{gen}} \Sigma_{\text{gen}}\Delta_t]]\) and \(\tilde{k} = (\rho \mu \tau - \rho \mu \tau)/2\pi\) is the subgrid kinetic energy and \(\beta_S\) is a model parameter. Charlette et al. [4] modelled \(C_{\text{sg}}\) as

\[
C_{\text{sg}} = -\frac{\beta_S \Sigma_{\text{gen}}}{(1 - \tau)},
\]

where \(\beta_S\) is a model parameter. The models given by (7)–(9) (henceforth will be referred to as CSGCFLM, CSGCPB, and CSGCHAR, respectively) ensure that \(C_{\text{sg}}\) vanishes when the flow is fully resolved (i.e., \(\langle N_i \rangle_s\langle N_i \rangle_s = 1.0\) and \(\Sigma_{\text{gen}} = |\nabla c|\)). Modelling of \(C_{\text{sg1}}\) and \(C_{\text{sg2}}\) using a priori analysis of DNS data, and the assessment of the models given by (7)–(9), will be addressed in Section 3 of this paper.
In the present study a compressible DNS database of freely propagating statistically planar turbulent premixed flames under decaying turbulence has been considered. The simulation domain of size $36.6 \delta_{th} \times 24.1 \delta_{th} \times 24.1 \delta_{th}$, was discretised using a Cartesian mesh of size $345 \times 230 \times 230$ with uniform mesh spacing in each direction where $\delta_{th} = (T_{ad} - T_0) / \max |\nabla T|$ is the thermal flame thickness with T_{ad}, T_0, and \hat{T} being the adiabatic flame, unburned gas, and instantaneous gas temperatures, respectively, and the subscript L refers to the unstrained planar laminar flame quantities. The domain boundaries in the direction of mean flame propagation (i.e., x_l-direction) are taken to be partially nonreflecting, whereas the transverse boundaries are taken to be periodic. The partially nonreflecting boundaries are specified using the well-known Navier Stokes Characteristic Boundary Conditions (NSCBC) technique [16]. The simulations have been carried out using a three-dimensional compressible DNS code called SENGa [17]. A 10th order central difference scheme is used for spatial differentiation for internal grid points, and the order of differentiation decreases gradually to a one-sided 2nd order scheme towards nonperiodic boundaries [17]. A third order Runge-Kutta scheme was used for the purpose of time advancement [17]. For all cases, the reacting flow field is initialised by a steady unstrained planar laminar flame solution, and the initial turbulent velocity fluctuations are specified using an initially unstrained planar laminar flame solution, and the initial values for the root-mean-square turbulent velocity fluctuation normalised by unstrained planar laminar burning velocity u' / S_l and the integral length scale to flame thickness ratio l / δ_{th} are presented in Table 1 along with the values of Damköhler number $Da = l.S_l/u' \delta_{th}$, Karlovitz number $Ka = (u' / S_l)^{1/2} (l / \delta_{th})^{-1/2}$, and turbulent Reynolds number $Re_t = \rho u' l / \nu_0$, where ρ and ν are the unburned gas density and viscosity, respectively. The heat release parameter $\tau = (T_{ad} - T_0) / T_0$ and Lewis number Le are taken to be 4.5 and 1.0 for all cases considered here. Standard values are taken for Prandtl number Pr, ratio of specific heats γ, and the Zel’dovich number $\beta = T_{ac} (T_{ad} - T_0) / T_{ad}^2$ (i.e., $Pr = 0.7$, $\gamma = 1.4$, and $\beta = 6.0$), where T_{ac} is the activation temperature. The turbulent Reynolds number Re_t scales as $Re_t \sim Da^2 Ka^2$, and thus the variation of Re_t in cases A–E is brought about by modifying Da and Ka independently from each other. In cases A, C and D, Ka is held constant, while Ka is held constant in cases B, C, and D. For all cases the Karlovitz number remains greater than unity indicating the TRZ regime combustion according to the regime diagram by Peters [18]. The range of Re_t values considered in this study remains modest, although several previous studies [3, 9, 11, 15, 19–23] with comparable values of Re_t have made valuable contributions to the fundamental understanding and the modelling of turbulent premixed combustion. Moreover, the range of Re_t considered here is comparable to that of previous laboratory-scale experiments [24].

In all cases flame-turbulence interaction takes place under decaying turbulence. The simulations were run for a time equal to one chemical time scale (i.e., $t_c = \delta_{th} / S_l$), which is equivalent to $2.0t_f$ in case D; $3.0t_f$ in cases A, C, and E; $4.34t_f$ for case B. The aforementioned simulation times remain comparable to several studies [3, 9, 11, 15, 19–23], which contributed to the FSD based modelling in the past. The global turbulent kinetic energy and burning rate were not varying significantly with time when statistics were extracted (see Figure 1 in [23]) and the qualitative nature of the statistics was found to have remained unchanged since $t = 1.0l' / u'$ for all cases [23]. At time $t = \delta_{th} / S_l$, the global level of u' / S_l had decayed from the initial values by about 45%, 55%, 40%, 25%, and 32% in cases A–E, respectively. The values of l / δ_{th} had increased from their initial values by a factor of about 1.5–2.25 at $t = \delta_{th} / S_l$, but there were still enough turbulent eddies on each side of the computational domain [23]. Values for u' / S_l and l / δ_{th} at the time when statistics were extracted were presented in Table 2 of [23] and are not repeated here. The flame thickness δ_{th} remained greater than the Kolmogorov length scale η for all cases when the statistics were extracted (see Table 2 of [23]), confirming the TRZ regime combustion.

For the purpose of a priori DNS analysis, the relevant quantities are explicitly filtered using a Gaussian kernel $G(r) = (6\pi \alpha^2)^{-3/2} \exp(-6\alpha^2 r^2 / \Delta^2)$. The filtered value of a general quantity $Q(x,t)$ is evaluated using the following convolution operation: $\tilde{Q}(x,t) = \int Q(x - \mathbf{r}) G(\mathbf{r}) d^3 \mathbf{r}$. The statistical behaviours of the FSD curvature term $S_{d \nabla \cdot N} \Sigma_{gen}$ have been analysed here for Δ ranging from $\Delta = 4 \delta_{m} \approx 0.46 \delta_{th}$ to $\Delta = 24 \delta_{m} \approx 2.4 \delta_{th}$, where δ_{th} is the DNS mesh size ($\Delta_m \approx 0.1 \delta_{th}$). These filter sizes are comparable to the range of Δ used in a priori DNS analysis in several previous studies [3, 4, 9–11] and span a useful range of length scales (i.e., from Δ comparable to 0.4δ_{th}, the flame is partially resolved, up to 2.4δ_{th}, where the flame becomes fully unresolved and Δ is comparable to the integral length scale).

3. Results and Discussion

The isosurfaces of c ranging from 0.01 to 0.99 at time $t = \delta_{th} / S_l$ for all cases are shown in Figure 1. A comparison between Figures 1(a)–1(e) reveals that the wrinkling of the flame surface with increasing $u' / S_l \sim Re_t^{1/4} Ka^{1/2} \sim Re_t^{1/4} / Da^{1/2}$. Figures 1(a)–1(e) further demonstrate that the flame surfaces in all cases show a range of different curvatures and this range increases with increasing $u' / S_l \sim Re_t^{1/4} Ka^{1/2} \sim Re_t^{1/4} / Da^{1/2}$. This indicates that the interrelations between S_d and κ_m and between $|\nabla c|$ and κ_m may lead to nonnegligible value of $(S_d \nabla \cdot N) \Sigma_{gen}$ even for statistically planar flames.
The variations of the ensemble averaged values of $(S_d \nabla \cdot N)_\Sigma_{\text{gen}}$ conditional on ζ isosurfaces for all cases are shown in Figure 2 for $\Delta = 8 \Delta_m \approx 0.8 \delta_{bh}$ and $\Delta = 24 \Delta_m \approx 2.4 \delta_{bh}$. The filter widths $\Delta = 8 \Delta_m \approx 0.8 \delta_{bh}$ and $\Delta = 24 \Delta_m \approx 2.4 \delta_{bh}$ correspond to two representative situations, where the flame is partially resolved and where the flame is fully unresolved, respectively. Figure 2 shows that $(S_d \nabla \cdot N)_\Sigma_{\text{gen}}$ assumes predominantly negative values throughout the flame brush. Although the resolved curvature term $C_{\text{mean}} = \langle S_d \rangle \partial (N) \partial x_i \Sigma_{\text{gen}}$ captures the qualitative behaviour of $(S_d \nabla \cdot N)_\Sigma_{\text{gen}}$ throughout the flame brush, the magnitude of C_{mean} remains smaller than the magnitude of $(S_d \nabla \cdot N)_\Sigma_{\text{gen}}$ for the major portion of the flame brush in all cases for all values of Δ (see Figure 2). This leads to predominantly negative values of C_{sg}, although the ensemble averaged values of C_{sg} on ζ isosurfaces exhibits positive values towards the unburned gas side of the flame brush for the flames with low and moderate values of turbulent Reynolds number (e.g., cases A–C). By contrast, the variation of ensemble averaged values of C_{sg} on ζ isosurfaces exhibits only negative values throughout the flame brush for the flames with high values of turbulent Reynolds number (e.g., cases D and E). The models of C_{sg} given by (7)–(9) only predicts negative values of C_{sg} and thus will not be capable of predicting the positive values of C_{sg} in cases A–C.

Comparing $(S_d \nabla \cdot N)_\Sigma_{\text{gen}}$, C_{mean}, and C_{sg} magnitudes for $\Delta = 8 \Delta_m \approx 0.8 \delta_{bh}$ and $\Delta = 24 \Delta_m \approx 2.4 \delta_{bh}$ reveals...
that the magnitudes of $\bar{(S_{l} \nabla \cdot \Sigma_{gen}}$ and C_{mean} decrease with increasing Δ, whereas the relative magnitude of C_{sg} in comparison to C_{mean} increases with increasing Δ. This observation is consistent with previous findings [9, 11]. The smearing of local information as a result of the weighted-averaging process involved in LES filtering leads to the decrease in the magnitudes of $\bar{(S_{l} \nabla \cdot \Sigma_{gen}}$ and C_{mean} for increasing values of Δ. The flow becomes increasingly unresolved with increasing Δ and thus the flame curvature and its influence on the FSD evolution are increasingly felt at the subgrid scale, which is reflected in the relatively high magnitudes of C_{sg} in comparison to C_{mean} for large values of Δ.

It is useful to examine the statistical behaviours of C_{sg1} and C_{sg2} in order to explain the differences in the behaviours of C_{sg} for flames with different Re. The variations of the ensemble averaged values of $\bar{(S_{l} + S_{n}) \nabla \cdot \Sigma_{gen}}$, $\bar{-(D \nabla \cdot \Sigma_{gen})}$, and $\bar{4(D \Sigma_{gen})}$, C_{sg1} and C_{sg2} conditional on \tilde{C} isosurfaces are shown in Figure 3 for cases A–E for $\Delta = 0.8\delta_{th}$ and $\Delta = 2.4\delta_{th}$, respectively.

Figure 3 demonstrates that both $\bar{(S_{l} + S_{n}) \nabla \cdot \Sigma_{gen}}$ and C_{sg1} remain predominantly positive (negative) towards the unburned (burned) gas side of the flame brush for all values of Δ considered here. The contribution of $\bar{4(D \Sigma_{gen})}$ and C_{sg2} remains deterministically negative throughout the flame brush (see Figure 3). It is evident from Figure 3 that $\bar{4(D \Sigma_{gen})}$ is a leading order contributor to $\bar{(S_{l} + S_{n}) \nabla \cdot \Sigma_{gen}}$ for all the flames at all values of Δ (see Figure 3), which is consistent with the expected behaviour in the TRZ regime, where $\bar{4(D \Sigma_{gen})}$ is expected to play an important role [18]. Figure 3 further shows that C_{sg1} remains close to the magnitude of $\bar{(S_{l} + S_{n}) \nabla \cdot \Sigma_{gen}}$ for all Δ for all cases considered here, indicating that $\bar{(S_{l} + S_{n}) \nabla \cdot \Sigma_{gen}}$ does not play a major role in capturing the behaviour of $\bar{(S_{l} + S_{n}) \nabla \cdot \Sigma_{gen}}$. By contrast, there is a significant difference between $\bar{4(D \Sigma_{gen})}$ and C_{sg2} for all cases for small values of Δ, and the difference between these quantities decreases with increasing Δ. As most of the contribution of $\bar{4(D \Sigma_{gen})}$ remains unresolved for large values of Δ, C_{sg2} remains the leading order contributor to $\bar{4(D \Sigma_{gen})}$, indicating that $\bar{D \nabla \cdot \Sigma_{gen}} - \bar{4(D \Sigma_{gen})}$ plays a progressively less important role for increasing values of Δ, where the flame is fully unresolved. However, the contribution of $\bar{D \nabla \cdot \Sigma_{gen}} - \bar{4(D \Sigma_{gen})}$ remains significant for small values of Δ when the flame is partially resolved. Figure 3 further shows that the order of magnitudes of both C_{sg1} and C_{sg2} remains comparable for large values of Δ (i.e., $\Delta > \delta_{th}$) and thus accurate modelling of C_{sg1} and C_{sg2} is necessary for accurate modelling of C_{sg}. As the range of Kn values obtained on a flame surface increases with increasing flame wrinkling at higher values of $u'/S_{l} \sim Re^{1/4}Ka^{1/2} \sim Re^{1/2}/Da^{1/2}$, the magnitude of $4(D \Sigma_{gen})$ increases with increasing Re, which in turn leads to increasing magnitude of $4(D \Sigma_{gen})$ and C_{sg2} with increasing Re. For a given
value of Da or Ka (see Figure 3). The positive contribution of C_{rg1} overcomes the negative contribution of C_{rg2} towards the unburned gas side of the flame brush for the flames with small and moderate values of turbulent Reynolds number (i.e., cases A–C) and yields a net positive contribution of C_{rg} towards the reactant side of the flame brush (see Figure 2).

The statistical behaviours of $((S_r+S_n) \cdot \vec{N}) \Sigma_{gen}$ and C_{rg1} depend on the nature of the correlations between (S_r+S_n) and $\kappa_m = \nabla \cdot \vec{N}/2$ and between $|\nabla c|$, κ_m, and the variation of $(\kappa_m)_s$ across the flame brush. The correlation coefficients for the $(S_r+S_n) - \kappa_m$ and $|\nabla c| - \kappa_m$ dependences for five different c isosurfaces across the flame brush for all cases are shown in Figures 4(a) and 4(b), respectively. For unity Lewis number flames $S_t = -2D \kappa_m$ is deterministically negatively correlated with κ_m with a correlation coefficient equal to -1.0. Figure 4(a) suggests that $(S_r+S_n) - \kappa_m$ correlation is much weaker than the $S_t - \kappa_m$ correlation in all cases. Moreover, Figure 4(b) demonstrates that $|\nabla c|$ and κ_m remain weakly correlated throughout the flame brush for all cases. Figures 4(a) and 4(b) demonstrate that the curvature dependences of (S_r+S_n) and $|\nabla c|$ remain qualitatively similar for all the flames [25]. The physical explanations of the observed curvature dependences of (S_r+S_n) and $|\nabla c|$ have been discussed elsewhere [25] and will not be repeated here.

The variation of the ensemble averaged values of $(\kappa_m)_s$ conditional on $\tilde{\zeta}$ isosurfaces for all cases are shown in Figures 4(c) and 4(d) for $\Delta = 8\Delta_m \approx 0.8\delta_{th}$ and $\Delta = 24\Delta_m \approx 2.4\delta_{th}$, respectively, which demonstrates that $(\kappa_m)_s$ predominantly assumes positive (negative) values towards the unburned (burned) gas side of the flame brush and the magnitude of $(\kappa_m)_s$ increases with increasing Δ. The quantity $(\kappa_m)_s$ approaches κ_m for small values of Δ (i.e., $\lim_{\Delta \to 0} (\kappa_m)_s = \lim_{\Delta \to 0} \kappa_m |\nabla c|/|\nabla c| = \kappa_m$) and the mean value of $\kappa_m = \nabla \cdot \vec{N}/2$ remains negligible for all the c isosurfaces due to the statistical planar nature of the flames. However, subgrid level curvature increases with increasing Δ and thus the magnitude of $(\kappa_m)_s$ increases with increasing values of Δ. Relatively weak curvature dependences of (S_r+S_n) and $|\nabla c|$ lead to positive (negative) values of $((S_r+S_n) \cdot \vec{N}) \Sigma_{gen}$ and C_{rg1} towards the unburned
(burned) gas side of the flame brush due to positive (negative) value of \(\kappa_m \). The contribution of resolved curvature term \((S_t + S_s) \partial\Sigma/\partial x_i \Sigma_{gen}\) remains negligible in comparison to \((S_t + S_s) \nabla \cdot \nabla \Sigma_{gen}\), due to relatively small values of \(\partial\Sigma/\partial x_i \) in comparison to \(2(\kappa_m) = (\partial\Sigma/\partial x_i)\) in statistically planar flames. Thus the contributions of \((S_t + S_s) \nabla \cdot \nabla \Sigma_{gen}\) and \(C_{sg1}\) remain close to each other for all values of \(\Delta\) (see Figure 3).

The subgrid fluctuations of the surface-weighted contributions of \((S_t + S_s)\) and \(\nabla \cdot \nabla\) are taken to scale with \(S_t\) and \(\Sigma_{gen} - |\nabla \tau|\), respectively, to propose the following model for \(C_{sg1}\) in this analysis:

\[
C_{sg1} = -\beta_4 (\Sigma_{gen} - |\nabla \tau|)(\tau - c^*) S_t \Sigma_{gen} \left\{ \exp[-\alpha_2 (1 - \tau)/\tau (1 - \tau)^m] \right\}, \tag{10}
\]

where \(\beta_4, c^*, \alpha_2,\) and \(m\) are the model parameters. The function \((\tau - c^*)/\exp[-\alpha_2 (1 - \tau)/\tau (1 - \tau)^m]\) in (10) is used to capture the correct qualitative behaviour of \(C_{sg1}\) across the flame brush. In a compressible LES simulation \(\tilde{c}\) is readily available and \(\overline{\tau}\) needs to be extracted from \(\tilde{c}\). The methodology of extracting \(\overline{\tau}\) from \(\tilde{c}\) in the context of LES was discussed elsewhere [9, 11] and will not be discussed in detail in this paper. The model parameter \(c^*\) ensures that the transition from positive to negative value of \(C_{sg1}\) takes place at the correct location within the flame brush. The quantity \((\Sigma_{gen} - |\nabla \tau|)\) vanishes when the flow is fully resolved (i.e., \(\lim_{\Delta \to 0} (\Sigma_{gen} - |\nabla \tau|) = \lim_{\Delta \to 0} (|\nabla \tau| - |\nabla \tau|) = |\nabla \tau| - |\nabla \tau| = 0.0\) and thus \(C_{sg1}\) becomes exactly equal to zero when the flow is fully resolved (i.e., \(\Delta \to 0\)) according to (10). It has been found that \(m = 1.85\) enables (10) to capture the qualitative behaviour of \(C_{sg1}\) when the optimum values of \(c^*\) and \(\alpha_2\) are chosen. The optimum value of \(c^* (\alpha_2)\) tends to increase with decreasing (increasing) \(\Delta\). The \(\kappa_m\) dependences of \((S_t + S_s)\) and \(\nabla \cdot \nabla\) are reflected mostly in the resolved scale but these effects weaken with increasing values of \(\Delta\) [9, 11]. As the resolved and subgrid curvature terms are closely related [9, 11], the qualitative behaviour of \(C_{sg1}\) is also affected by the \(\kappa_m\) dependences of \((S_t + S_s)\) and \(\nabla \cdot \nabla\), which leads to the variation of the optimum values of \(\alpha_2\) and \(c^*\).

The model parameter \(\beta_4\) is found to decrease with decreasing values of \(\Sigma_{gen}\) for satisfactory quantitative prediction of \(C_{sg1}\), which is accounted for by expressing \(\beta_4\) as \(\beta_4 = 9.80(\Sigma_{gen} \times \delta_{th})\).

The prediction of (10) ensemble averaged on \(\tilde{c}\) iso-surfaces is compared with the ensemble averaged values of \(C_{sg1}\) in Figure 5 for all cases for the optimum values of \(c^*\) and \(\alpha_2\), for \(\Delta = 0.8\delta_{th}\) and \(\Delta = 2.4\delta_{th}\), when \(\beta_4\) and \(m\) are taken to be \(\beta_4 = 9.80\Sigma_{gen} \times \delta_{th}\) and \(m = 1.85\). The optimum values of \(c^*\) and \(\alpha_2\) are estimated by calibrating the prediction of (10) with respect to the values of \(C_{sg1}\) obtained from DNS data and the variation of the global mean optimum values of \(c^*\) and \(\alpha_2\) with \(\Delta/\delta_{th}\) for all cases are shown in Figure 6. The optimum values of \(c^*\) and \(\alpha_2\) are parameterised here as

\[
c^* = k_1 + \frac{(k_2 - k_1)}{1.0 + \exp(-2.0(\Delta/\delta_{th} - 1.5))},
\]

\[
\alpha_2 = \frac{k_3}{1.0 + \exp(-5.0(\Delta/\delta_{th} - 1.0))}, \tag{11i}
\]
Figure 6: Variations of the model parameters $\beta_1, \beta_2, \beta_3, \beta_5, a_\Sigma$ and c^* with Δ/δ_{th} for cases: (a–e) A–E.

where

$$
\begin{align*}
 k_1 &= 0.75 + \frac{0.15}{1.0 + \exp(-5.0(k_4 - 4.6))}, \\
 k_2 &= 0.65 + \frac{0.15}{1.0 + \exp(-9.0(k_4 - 4.0))}, \\
 k_3 &= 0.81 - \frac{0.67}{1.0 + \exp(-5.0(k_4 - 4.6))}, \\
 k_4 &= \left(\frac{\text{Re}_{\Delta}^{0.83} + 0.1}{(\Delta/\delta_{th})^{1.73} + 0.1}\right), \\
 \text{Re}_{\Delta} &= 4\rho_0 \sqrt{\frac{2k_4}{3\mu_0}}.
\end{align*}
$$

Figure 5 shows that (10) satisfactorily predicts C_{sg1} when $\beta_4 = 9.80\Sigma_{\text{gen}} \times \delta_{th}$ and $m = 1.85$, and (11), (11i), and (11ii) are used for c^* and a_Σ.

Here the contribution of \((\Delta k_{\Sigma_{\text{gen}}}) - (\Delta\nabla N_j/\Sigma_{\text{gen}}/\Sigma_{\text{gen}})\partial N_j/\partial x_i\) is scaled with \((\Xi_{\Delta} - 1)^\delta S_{\Sigma_{\text{gen}}}/\Sigma_{\text{gen}}\) (i.e., \(\Delta \sim S_{\Sigma_{\text{gen}}}^\delta\)). The above relations are utilised here to propose a model for C_{sg2} (see (6iii)) in the following manner:

$$
C_{\text{sg2}} = -\frac{\beta_5 S_{\Sigma_{\text{gen}}} (\Xi_{\Delta} - 1)^\delta}{c^*},
$$

(12)

where $\Xi_{\Delta} = \Sigma_{\text{gen}}/|\nabla c|$ is the wrinkling factor [8, 10, 19], β_5 is a model parameter, and $c^*(1 - \Xi)$ is used to capture the correct qualitative behaviour of C_{sg2}. According to (12), C_{sg2} vanishes when the flow is fully resolved (i.e., $\lim_{\Delta \to 0} \Xi = \lim_{\Delta \to 0} \Sigma_{\text{gen}}/|\nabla c| = |\nabla c|/|\nabla c| = 1.0$). It has been found that (12) satisfactorily captures the behaviour of C_{sg2} throughout the flame brush for $n = 1.0$ in all cases considered here when a suitable value of β_5 is used. The variation of the global mean optimum values of β_5 with Δ/δ_{th} for all cases is shown in Figure 6. The optimum values of β_5 has been parameterised here in the following manner:

$$
\beta_5 = \left\{ \frac{\text{Re}_{\Delta}}{(\text{Re}_{\Delta} + 1.0)} \right\} \times \left\{ r_1 + \frac{(r_2 - r_1)}{1.0 + \exp(-5.0(\text{Re}_{\Delta} - r_3))} \right\},
$$

(13i)
where

\[
 r_1 = 1.6 \left(\frac{r_{1,23}^{+} + 6.24}{7.17r_{1,23}^{+} + 0.26} \right),
\]

\[
 r_2 = 1.35 \left(\frac{r_{4,353}^{+} + 6.10}{13.25r_{4,353}^{+} + 0.56} \right),
\]

\[
 r_3 = 35.0 \text{erf}\left[\exp\{5.3 \times (1.37r_4 - 1.0)\}\right],
\]

\[
 r_4 = \frac{\Delta}{(\Delta + \delta_{th})}.
\]

The predictions of (12) ensemble averaged on \(\bar{c}\) isosurfaces are compared with the ensemble averaged values of \(C_{sg}\) in Figure 5 all for cases for \(\Delta = 0.8\delta_{th}\) and \(\Delta = 2.4\delta_{th}\), which show that (12) satisfactorily predicts the statistical behaviour of \(C_{sg}\) when \(n = 1.0\) and (13ii), (13ii), and (13iii) are used for \(\beta_3\).

Equations (10) and (12) can be combined to propose a model for \(C_{sg}\) in the following manner:

\[
 C_{sg} = -\frac{\beta_4 (\Sigma_{gen} - |\nabla \tau|)(\tau - c^\ast)S_t \Sigma_{gen}}{\left\{ \exp[-\alpha_3 (1-\tau)]\tau(1-\tau)\right\}^m}
\]

\[
 + \frac{\beta_5 S_t (\Sigma_{E} - 1)^p \Sigma_{gen}}{\tau(1-\tau)}.
\]

The above model will henceforth be referred to as CSGNEW model in this paper. Equation (14) allows for a positive contribution of \(C_{sg}\) through the contribution of \(-\beta_4 (\Sigma_{gen} - |\nabla \tau|)(\tau - c^\ast)S_t \Sigma_{gen}/\left\{ \exp[-\alpha_3 (1-\tau)]\tau(1-\tau)\right\}^m\), which is absent in the CSGCAND, CSGCANT, and CSGCHAR models. The predictions of the CSGCAND, CSGCANT, CSGCHAR, and CSGNEW models for \(\Delta = 0.8\delta_{th}\) and \(\Delta = 2.4\delta_{th}\) are compared with \(C_{sg}\) obtained from DNS in Figure 7 for optimum values of \(\beta_1, \beta_2, \text{ and } \beta_3\), where the optimum values are estimated by calibrating the models based on the ensemble averaged value of \(C_{sg}\) obtained from DNS data. The variations of the optimum values of \(\beta_1, \beta_2, \text{ and } \beta_3\) with \(\Delta\) for cases A–E are also shown in Figures 6(a)–6(e), respectively, which demonstrate that the model constants \(\beta_1, \beta_2, \text{ and } \beta_3\) remain greater than unity for all cases. This is found to be consistent with the realizability analysis by Hawkes and Cant [26]. Figures 6(a)–6(e) demonstrate that the optimum values of \(\beta_1, \beta_2, \text{ and } \beta_3\) change with respect to \(\Delta\), which is also consistent with earlier findings [9]. Moreover, the optimum values of \(\beta_1, \beta_2, \text{ and } \beta_3\) for a given value of \(\Delta\) vary between cases considered here (see Figures 6(a)–6(e)). The optimum values of \(\beta_1, \beta_2, \text{ and } \beta_3\) can also be parameterised in the same manner in which \(\beta_3\) is parameterised in (13i), (13ii), and (13iii). However, this is not presented here as the models given by (7)–(9) fail to capture the positive contribution of \(C_{sg}\) for cases A–C. Moreover, the CSGCAND, CSGCANT, and CSGCHAR models do not capture the correct qualitative behaviour of \(C_{sg}\) even when the optimum values of \(\beta_1, \beta_2, \beta_3\),
and β_3 are used. The CSGCHAR model tends to overpredict the negative values of C_{sg} towards the unburned gas side and this behaviour becomes more prominent with increasing filter size. Figure 7 shows that for $\Delta = 24\Delta_m = 2.4\delta_b$, the CSGCHAR model predicts the maximum magnitude of C_{sg} near the middle of the flame whereas the actual maximum magnitude of C_{sg} is attained slightly towards the burned gas side. The CSGCAND and CSGCANT models predict the correct magnitude of C_{sg} for optimum values of β_1 and β_2, but they do not satisfactorily capture the qualitative behaviour of C_{sg} and underpredict (overpredict) its magnitude towards the burned gas side (middle) of the flame brush. Figure 7 demonstrates that the CSGNEW model captures the qualitative behaviour of C_{sg} in a better manner than the CSGCAND and CSGCANT models, and the quantitative agreement between C_{sg} and the CSGNEW model remains better than the CSGCAND, CSGCANT, and CSGCHAR models for the major part of the flame brush for all cases, when optimum values of β_4, β_5, a_2, and c^* are used.

4. Conclusions

The LES modelling of the curvature term $(\frac{\partial}{\partial t} \nabla \cdot \hat{N})_{gen}$ of the Σ_{gen} transport equation has been analysed using a simplified chemistry based DNS database of freely propagating statistically planar turbulent premixed flames with a range of different turbulent Reynolds numbers Re_t. The variation of Re_t is brought about by modifying Da and Ka independently from each other. The statistical behaviours of the subgrid curvature term C_{sg} for a range of different values of Δ have been analysed in terms of its contributions C_{sg1} and C_{sg2}, which arise from $(S_i + S_{th})$ and $S_i = -2\Delta x_{m}$, respectively. Detailed physical explanations have been provided for the observed filter size dependences of the different components of $(\frac{\partial}{\partial t} \nabla \cdot \hat{N})_{gen}$. Models have been identified for individual components of the subgrid curvature term (i.e., C_{sg1} and C_{sg2}) and the performances of these models have been compared to the corresponding quantities extracted from DNS data. It has been found that the new models for C_{sg1} and C_{sg2} satisfactorily capture the statistical behaviours of the corresponding terms extracted from DNS data. The performance of the new model for C_{sg} has been found to be either better than or comparable to the performances of the existing models. It is worth noting that the present analysis has been carried out using a DNS database with moderate values of Re_t in the absence of the effects of detailed chemistry and differential diffusion. Thus, three-dimensional DNS data with detailed chemistry and experimental data at higher values of Re_t will be necessary for more comprehensive modelling of $(\frac{\partial}{\partial t} \nabla \cdot \hat{N})_{gen}$ and C_{sg} in the context of LES.

Nomenclature

Arabic

a_2: Model parameter for the newly proposed C_{sg1} model

c: Reaction progress variable

c^*: Model parameter for the newly proposed C_{sg1} model

D: Progress variable diffusivity

Da: Damkohler number

$G(r)$: Gaussian Kernel used for filtering DNS data

Ka: Karlovitz number

k: Subgrid turbulent kinetic energy

k_1, k_2, k_3, and k_4: Model parameter for the newly proposed C_{sg1} model

Le: Lewis number

M, M_i: Resolved flame normal vector and its ith component

m: Model parameter for the newly proposed C_{sg1} model

N, N_i: Local flame normal vector and its ith component

n: Model parameter for the newly proposed C_{sg2} model

Pr: Prandtl number

Re_i: Turbulent Reynolds number

Re_{2i}: Subgrid turbulent Reynolds number

r_1, r_2, r_3, and r_4: Model parameter for the newly proposed C_{sg2} model

S_i: Displacement speed

S_{th}: Laminar flame speed

S_n: Normal diffusion component of displacement speed

S_r: Reaction diffusion component of displacement speed

S_t: Tangential diffusion component of displacement speed

T: Nondimensional temperature

\hat{T}: Instantaneous gas temperature (dimensional)

T_{ac}: Activation temperature

T_{ad}: Adiabatic flame temperature

T_0: Reactant temperature

t_c: Chemical time scale

$t_{f,i}$: Initial eddy turnover time

τ_{sim}: Simulation time

ω_i: ith component of nondimensional fluid velocity

C_{II}: Model parameter for Cant et al. [1] Model

C_{mean}: Mean curvature term of flame surface density transport equation

C_{sg}: Subgrid curvature term of flame surface density transport equation

C_{sg1}: Subgrid curvature term component due to the combined reaction and normal diffusion components of displacement speed

C_{sg2}: Subgrid curvature term due to the tangential diffusion component of displacement speed

β: Model parameter for the newly proposed C_{sg1} model.
u': Initial root-mean-square velocity fluctuation
u'_s: Subgrid scale turbulent velocity fluctuation
x_i: ith Cartesian coordinate
\dot{w}: Reaction rate of reaction progress variable.

Greek

α_N: Resolution parameter of Cant et al. [1] and Candel et al. [2] models
α_2: Model parameter for the newly proposed C_{sg1} model
β: Zel'dovich number
β_1: Model parameter for Candel et al. [2] model
β_2: Model parameter for Cant et al. [1] model
β_3: Model parameter for Charlette et al. [4] model
β_4: Model parameter for the newly proposed C_{sg1} model
β_5: Model parameter for the newly proposed C_{sg2} model
γ: Ratio of specific heats
Δ: Large eddy simulation filter width
Δ_m: DNS mesh size
δ: Thermal flame thickness
η: Kolmogorov length scale
κ: Flame curvature
μ: Dynamic viscosity
μ_0: Dynamic viscosity of unburned gas
Ξ: Wrinkling factor
ρ: Density
ρ_0: Unburned gas density
Σ_{gen}: Generalised flame surface density
τ: Heat release parameter
τ_{η}: Kolmogorov eddy turn-over time.

Symbols

(···): LES filtering operation
(· · ·): LES Favre filtering operation
(· · ·): LES surface averaging operation.

Acronyms

CSGCFM: Subgrid curvature model proposed by Candel et al. [2]
CSGCPB: Subgrid curvature model proposed by Cant et al. [1]
CSGCHAR: Subgrid curvature model proposed by Charlette et al. [4]
CSGNEW: Newly proposed subgrid curvature model
DNS: Direct Numerical Simulation
FSD: Flame Surface Density
LES: Large Eddy Simulation

NSCBCs: Navier Stokes Characteristic Boundary Conditions
TRZ: Thin Reaction Zones.

Acknowledgment

The financial support by EPSRC, UK is gratefully acknowledged.

References

Submit your manuscripts at http://www.hindawi.com