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Abstract. 
We prove Caccioppoli type estimates and consequently establish local Hölder continuity
for a class of weak contact 
	
		
			
				(
				2
				𝑛
				+
				2
				)
			

		
	
-harmonic maps from the
Heisenberg group 
	
		
			

				ℍ
			

			

				𝑛
			

		
	
 into the sphere 
	
		
			

				𝑆
			

			
				2
				𝑚
				−
				1
			

		
	
.


1. Introduction
 The study of pseudoharmonic maps was started by Barletta et al. [1] (cf. also [2, 3] for successive investigations) as a generalization of the theory of harmonic maps among Riemannian manifolds (cf., e.g., [4]) and by identifying the results of Jost and Xu [5], Zhou [6], Hajłasz and Strzelecki [7], and Wang [8] as local aspects of the theory of pseudoharmonic maps from a strictly pseudoconvex CR manifold into a Riemannian manifold (cf. also [9, pages 225-226]). 
A similar class of maps, yet with values in another CR manifold, was studied in [10]. These are critical points of the functional 
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				1
				𝐸
				(
				𝜙
				)
				=
			

			
				
			
			
				2
				
			

			

				𝑀
			

			
				𝑄
				(
				𝜙
				)
				𝑑
				𝑣
				,
				𝜙
				∈
				𝐶
			

			

				∞
			

			
				(
				𝑀
				,
				𝑁
				)
				,
			

		
	

					where 
	
		
			

				𝑀
			

		
	
 is a compact strictly pseudoconvex CR manifold of CR dimension 
	
		
			

				𝑛
			

		
	
,  
	
		
			
				𝑄
				(
				𝜙
				)
				=
				‖
				(
				𝑑
				𝜙
				)
			

			
				𝐻
				,
				𝐻
			

			

				′
			

			

				‖
			

			

				2
			

			
				,
				𝑑
				𝑣
				=
				𝜃
				∧
				(
				𝑑
				𝜃
				)
			

			

				𝑛
			

		
	
, and 
	
		
			

				𝜃
			

		
	
 is a contact form on 
	
		
			

				𝑀
			

		
	
. Also 
	
		
			

				𝑁
			

		
	
 is a contact Riemannian manifold and in particular an almost CR manifold (of CR codimension 
	
		
			

				1
			

		
	
). 
 A moment's thought reveals the augmented difficulties such a theory may present. For instance, if 
	
		
			

				𝑀
			

		
	
 and 
	
		
			

				𝑁
			

		
	
 are two strictly pseudoconvex CR manifolds endowed, respectively, with contact forms 
	
		
			

				𝜃
			

		
	
 and 
	
		
			

				𝜂
			

		
	
, then the pseudohermitian analog of the notion of a harmonic morphism (among Riemannian manifolds) is quite obvious: one may consider continuous maps 
	
		
			
				𝜙
				∶
				𝑀
				→
				𝑁
			

		
	
 such that the pullback 
	
		
			
				𝑣
				∘
				𝜙
			

		
	
 of any local solution 
	
		
			
				𝑣
				∶
				𝑈
			

			

				
			

			
				⊆
				𝑁
				→
				ℝ
			

		
	
 to 
	
		
			

				Δ
			

			
				𝑁
				𝑏
			

			
				𝑣
				=
				0
			

		
	
 in 
	
		
			

				𝑉
			

		
	
 satisfies 
	
		
			

				Δ
			

			

				𝑏
			

			
				(
				𝑣
				∘
				𝜙
				)
				=
				0
			

		
	
 in 
	
		
			
				𝑈
				=
				𝜙
			

			
				−
				1
			

			
				(
				𝑈
			

			

				
			

			

				)
			

		
	
 in distribution sense. Here 
	
		
			

				Δ
			

			

				𝑏
			

		
	
 and 
	
		
			

				Δ
			

			
				𝑁
				𝑏
			

		
	
 are the sublaplacians of 
	
		
			
				(
				𝑀
				,
				𝜃
				)
			

		
	
 and 
	
		
			
				(
				𝑁
				,
				𝜂
				)
			

		
	
, respectively. Unlike the situation in [2] (where the target manifold 
	
		
			

				𝑁
			

		
	
 is Riemannian and 
	
		
			

				𝜙
			

		
	
 pulls back local harmonic functions on 
	
		
			

				𝑁
			

		
	
 to distribution solutions of 
	
		
			

				Δ
			

			

				𝑏
			

			
				𝑢
				=
				0
			

		
	
) such 
	
		
			

				𝜙
			

		
	
 is not necessarily smooth (since it is unknown whether local coordinate systems 
	
		
			
				(
				𝑈
			

			

				
			

			
				,
				𝑥
			

			
				
				𝑖
			

			

				)
			

		
	
 on 
	
		
			

				𝑁
			

		
	
 such that 
	
		
			

				Δ
			

			
				𝑁
				𝑏
			

			

				𝑥
			

			
				
				𝑖
			

			
				=
				0
			

		
	
 in 
	
		
			

				𝑈
			

			

				
			

		
	
 might be produced). To give another example, should one look for a pseudohermitian analog to the Fluglede-Ishihara theorem (cf. [3] when 
	
		
			

				𝑀
			

		
	
 is CR and 
	
		
			

				𝑁
			

		
	
 is Riemannian), one would face the lack of an Ishihara type lemma (cf. [11]) as it is unknown whether 
	
		
			

				Δ
			

			
				𝑁
				𝑏
			

			
				𝑣
				=
				0
			

		
	
 admits local solutions whose (horizontal) gradient and hessian have prescribed values at a point. Moreover, what would be the appropriate notion of a hessian (cf. [12] for a possible choice)? 
 A third example, discussed at some length in this paper, is that of the “degeneracy” of the Euler-Lagrange equations 
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				
				
				𝜑
			

			

				2
			

			

				
			

			
				𝑖
				𝑗
			

			
				
				×
				
				
				∘
				𝜙
				d
				i
				v
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			

				∇
			

			

				𝐻
			

			

				𝜙
			

			

				𝑗
			

			
				
				+
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
				2
				𝑛
			

			

				
			

			
				𝑎
				=
				1
			

			
				
				Γ
			

			
				
				𝑗
				𝑘
				ℓ
			

			
				
				𝑋
				∘
				𝜙
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑘
			

			
				
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				ℓ
			

			
				
				
				=
				0
				,
				1
				≤
				𝑖
				≤
				2
				𝑚
				−
				1
				,
			

		
	

					associated to the variational principle
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				𝛿
				
				𝑄
				(
				𝜙
				)
			

			
				𝑝
				/
				2
			

			
				𝑑
				𝑣
				=
				0
				,
			

		
	

					when 
	
		
			

				𝑁
			

		
	
 is a Sasakian manifold. Indeed the 
	
		
			
				(
				2
				𝑚
				−
				1
				)
				×
				(
				2
				𝑚
				−
				1
				)
			

		
	
 matrix 
	
		
			
				(
				𝜑
			

			

				2
			

			

				)
			

			
				𝑖
				𝑗
			

			
				=
				−
				𝛿
			

			
				𝑖
				𝑗
			

			
				+
				𝜉
			

			

				𝑖
			

			

				𝜂
			

			

				𝑗
			

		
	
 has but rank 
	
		
			
				2
				𝑚
				−
				2
			

		
	
 at each point (a well-known phenomenon in contact Riemannian geometry, cf., e.g., [13]. See also [14]). Consequently, in general one may not expect regularity of weak solutions to (2). For instance, if 
	
		
			
				𝑁
				=
				ℍ
			

			
				𝑚
				−
				1
			

		
	
 is the Heisenberg group and 
	
		
			
				𝜙
				=
				(
				𝜙
			

			

				
			

			
				,
				𝜙
			

			
				2
				𝑚
				−
				1
			

			
				)
				∶
				𝑈
				⊆
				𝑀
				→
				ℍ
			

			
				𝑚
				−
				1
			

		
	
 is a solution to (2), then 
	
		
			

				𝜙
			

			

				
			

			
				∶
				𝑈
				→
				ℝ
			

			
				2
				𝑚
				−
				2
			

		
	
 is subject to 
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				2
				𝑛
			

			

				
			

			
				𝑎
				=
				1
			

			

				𝑋
			

			
				∗
				𝑎
			

			
				
				|
				|
				𝑋
				𝜙
			

			

				
			

			
				|
				|
			

			
				𝑝
				−
				2
			

			

				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑖
			

			
				
				
				=
				0
				,
				1
				≤
				𝑖
				≤
				2
				𝑚
				−
				2
				,
			

		
	

					yet 
	
		
			

				𝜙
			

			
				2
				𝑚
				−
				1
			

		
	
 is an arbitrary function (cf. Section 3). For the more appealing case, where 
	
		
			
				𝑀
				=
				ℍ
			

			

				𝑛
			

		
	
 is the Heisenberg group and 
	
		
			
				𝑁
				=
				𝑆
			

			
				2
				𝑚
				−
				1
			

		
	
 is the sphere, (2) may be written as 
						
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			

				𝑋
			

			

				∗
			

			
				⋅
				𝑉
			

			

				𝐴
			

			
				=
				𝑄
				(
				𝜙
				)
			

			
				𝑝
				/
				2
			

			

				𝜙
			

			

				𝐴
			

			
				,
				1
				≤
				𝐴
				≤
				2
				𝑚
				,
			

		
	

					(cf. Proposition 15) which is indeed the form assumed by the Euler-Lagrange equations in [7], yet unlike the situation there 
	
		
			

				𝑋
			

			

				∗
			

			
				⋅
				𝐸
			

			
				𝐴
				,
				𝐵
			

			
				≠
				0
			

		
	
 in general (cf. Proposition 16 for the notations). Although 
	
		
			

				𝑋
			

			

				∗
			

			
				⋅
				𝐸
			

			
				𝐴
				,
				𝐵
			

		
	
 has a quite explicit form (yielding—for a class of weak solutions 
	
		
			
				𝜙
				∶
				ℍ
			

			

				𝑛
			

			
				→
				𝑆
			

			
				2
				𝑚
				−
				1
			

		
	
 which are close to being horizontal maps—simple estimates on 
	
		
			

				𝑋
			

			

				∗
			

			
				⋅
				𝐸
			

			
				𝐴
				,
				𝐵
			

		
	
), only a weaker form of the duality inequality lemma in [7] may be proved (cf. Lemma 17) leading nevertheless (together with a hole filling argument) to Caccioppoli type estimates 
						
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			

				
			

			

				𝐵
			

			

				𝑋
			

			
				(
				𝑥
				,
				𝑟
				)
			

			
				|
				|
				|
				|
				𝑋
				𝜙
			

			
				2
				𝑛
				+
				2
			

			
				𝑑
				𝑣
				≤
				𝐶
				𝑟
			

			

				𝛾
			

			

				,
			

		
	

					for some 
	
		
			
				𝐶
				>
				0
			

		
	
 and 
	
		
			
				0
				<
				𝛾
				<
				1
			

		
	
, which are known (cf., e.g., [7] for a very general argument based on work in [15]) to imply the local Hölder continuity of the given weak solution. 
 The paper is organized as follows. In Section 2 we recall a few conventions and basic results obtained in [10]. Sections 3 and 4 are devoted to the study of the local properties of weak contact 
	
		
			

				𝑝
			

		
	
-harmonic maps. We show that weak contact 
	
		
			
				(
				2
				𝑛
				+
				2
				)
			

		
	
-maps 
	
		
			
				𝜙
				∶
				𝑈
				⊂
				ℍ
			

			

				𝑛
			

			
				→
				𝑆
			

			
				2
				𝑚
				−
				1
			

		
	
 are locally Hölder continuous (cf. Corollary 21) provided they are close to being horizontal maps; that is, the assumptions (96) are satisfied. The relevance of the number 
	
		
			
				𝑝
				=
				2
				𝑛
				+
				2
			

		
	
 stems from the facts that 
	
		
			

				∫
			

			

				𝑀
			

			
				‖
				(
				𝑑
				𝜙
				)
			

			
				𝐻
				,
				𝐻
			

			

				′
			

			

				‖
			

			
				2
				𝑛
				+
				2
			

			
				𝑑
				𝑣
			

		
	
 is a CR invariant and 
	
		
			
				2
				𝑛
				+
				2
			

		
	
 is the homogeneous dimension of 
	
		
			

				ℍ
			

			

				𝑛
			

		
	
. The authors believe that subelliptic theory should play within CR geometry, as a branch of complex analysis in several complex variables, the strong role played by elliptic theory in Riemannian geometry, and the present paper is a step in this direction.
2. Basic Conventions and Results
 For all notions of CR and pseudohermitian geometry we adopt the conventions and notations in the monograph [9]. For the approach to contact structures within Riemannian geometry we rely on the presentation in Blair [13], (cf. also Tanno [16]). Given a real 
	
		
			
				(
				2
				𝑛
				+
				1
				)
			

		
	
-dimensional 
	
		
			

				𝐶
			

			

				∞
			

		
	
 differentiable manifold 
	
		
			

				𝑀
			

		
	
, an almost CR structure is a complex subbundle 
	
		
			

				𝑇
			

			
				1
				,
				0
			

			
				(
				𝑀
				)
				⊂
				𝑇
				(
				𝑀
				)
				⊗
				ℂ
			

		
	
 of the complexified tangent bundle, of complex rank 
	
		
			

				𝑛
			

		
	
, such that 
	
		
			

				𝑇
			

			
				1
				,
				0
			

			
				(
				𝑀
				)
			

			

				𝑥
			

			
				∩
				𝑇
			

			
				0
				,
				1
			

			
				(
				𝑀
				)
			

			

				𝑥
			

			
				=
				(
				0
				)
			

		
	
 for any 
	
		
			
				𝑥
				∈
				𝑀
			

		
	
. Here 
	
		
			

				𝑇
			

			
				0
				,
				1
			

			
				(
				𝑀
				)
				=
			

			
				
			
			

				𝑇
			

			
				1
				,
				0
			

			
				(
				𝑀
				)
			

		
	
 and overbars indicate complex conjugates. The integer 
	
		
			

				𝑛
			

		
	
 is the CR dimension of the almost CR manifold 
	
		
			
				(
				𝑀
				,
				𝑇
			

			
				1
				,
				0
			

			
				(
				𝑀
				)
				)
			

		
	
. Almost CR structures are a bundle theoretic recast of the tangential Cauchy-Riemann operator 
	
		
			
				
			
			

				𝜕
			

			

				𝑏
			

			
				∶
				𝐶
			

			

				∞
			

			
				(
				𝑀
				,
				ℂ
				)
				→
				𝐶
			

			

				∞
			

			
				(
				𝑇
			

			
				0
				,
				1
			

			
				(
				𝑀
				)
			

			

				∗
			

			

				)
			

		
	
 given by 
	
		
			

				(
			

			
				
			
			

				𝜕
			

			

				𝑏
			

			
				𝑓
				)
			

			
				
			
			
				𝑍
				=
			

			
				
			
			
				𝑍
				(
				𝑓
				)
			

		
	
 for any 
	
		
			
				𝑓
				∈
				𝐶
			

			

				∞
			

			
				(
				𝑀
				,
				ℂ
				)
			

		
	
 and any 
	
		
			
				𝑍
				∈
				𝑇
			

			
				1
				,
				0
			

			
				(
				𝑀
				)
			

		
	
. An almost CR structure is (formally or Frobenius) integrable if 
	
		
			
				[
				𝑍
				,
				𝑊
				]
				∈
				𝐶
			

			

				∞
			

			
				(
				𝑈
				,
				𝑇
			

			
				1
				,
				0
			

			
				(
				𝑀
				)
				)
			

		
	
 for any 
	
		
			
				𝑍
				,
				𝑊
				∈
				𝐶
			

			

				∞
			

			
				(
				𝑈
				,
				𝑇
			

			
				1
				,
				0
			

			
				(
				𝑀
				)
				)
			

		
	
 and any open set 
	
		
			
				𝑈
				⊂
				𝑀
			

		
	
. The tangential C-R operator may be extended to arbitrary 
	
		
			
				(
				0
				,
				𝑞
				)
			

		
	
-forms on 
	
		
			

				𝑀
			

		
	
 and the resulting pseudocomplex 
	
		
			
				
			
			

				𝜕
			

			

				𝑏
			

			
				∶
				Ω
			

			
				0
				,
				𝑞
			

			
				(
				𝑀
				)
				→
				Ω
			

			
				0
				,
				𝑞
				+
				1
			

			
				(
				𝑀
				)
			

		
	
, 
	
		
			
				𝑞
				≥
				0
			

		
	
, is a complex (i.e., 
	
		
			
				
			
			

				𝜕
			

			
				2
				𝑏
			

			
				=
				0
			

		
	
) if and only if the given almost CR structure is integrable (cf. [9]). Integrable almost CR structures are commonly referred to as CR structures and appear mainly on real hypersurfaces of complex manifolds, as induced by the complex structure of the ambient space; that is, for any complex manifold 
	
		
			

				𝑉
			

		
	
 and any real hypersurface 
	
		
			
				𝑀
				⊂
				𝑉
			

		
	

	
 		
 			
				(
				7
				)
			
 		
	

	
		
			

				𝑇
			

			
				1
				,
				0
			

			
				(
				𝑀
				)
			

			

				𝑥
			

			
				=
				
				𝑇
			

			

				𝑥
			

			
				(
				𝑀
				)
				⊗
			

			

				ℝ
			

			
				ℂ
				
				∩
				𝑇
			

			
				1
				,
				0
			

			
				(
				𝑉
				)
			

			

				𝑥
			

			
				,
				𝑥
				∈
				𝑀
				,
			

		
	

					is a CR structure on 
	
		
			

				𝑀
			

		
	
. Here 
	
		
			

				𝑇
			

			
				1
				,
				0
			

			
				(
				𝑉
				)
				→
				𝑉
			

		
	
 is the holomorphic tangent bundle over 
	
		
			

				𝑉
			

		
	
 (locally the span of 
	
		
			
				{
				𝜕
				/
				𝜕
				𝑧
			

			

				𝑗
			

			
				∶
				1
				≤
				𝑗
				≤
				𝑁
				}
			

		
	
 for any local system of complex coordinates 
	
		
			
				(
				𝑧
			

			

				𝑗
			

			

				)
			

		
	
 on 
	
		
			

				𝑉
			

		
	
). Also 
	
		
			

				𝑁
			

		
	
 is the complex dimension of 
	
		
			

				𝑉
			

		
	
, and then the CR dimension of 
	
		
			

				𝑀
			

		
	
 is 
	
		
			
				𝑛
				=
				𝑁
				−
				1
			

		
	
. Integrability of (7) follows from the Nijenhuis integrability of the complex structure on 
	
		
			

				𝑉
			

		
	
. A solution 
	
		
			

				𝑓
			

		
	
 to 
	
		
			
				
			
			

				𝜕
			

			

				𝑏
			

			
				𝑓
				=
				0
			

		
	
 (the tangential C-R equations) is a CR function on 
	
		
			

				𝑀
			

		
	
 and, in the context of real hypersurfaces carrying the induced CR structure (7), CR functions appear as traces on 
	
		
			

				𝑀
			

		
	
 of holomorphic functions defined on a neighborhood of 
	
		
			

				𝑀
			

		
	
 in 
	
		
			

				𝑉
			

		
	
. Hence to say that the CR structure is given by (7) is to say that the tangential C-R equations are induced by the ordinary Cauchy-Riemann system on 
	
		
			

				𝑉
			

		
	
. CR functions which are not traces of holomorphic functions may exist (cf., e.g., [17]). CR structures which are not given by (7), and for which there is not any embedding of 
	
		
			

				𝑀
			

		
	
 into some complex manifold 
	
		
			

				𝑉
			

		
	
 yielding (7), do exist as well (cf. again [17, page 172]). An array of geometric objects, such as pseudohermitian structures, the Levi form (cf. [9, 18]) and successively (in the nondegenerate case) contact structures, the Tanaka-Webster connection (cf. [18, 19]), the sublaplacian 
	
		
			

				Δ
			

			

				𝑏
			

		
	
 and the Fefferman metric (cf. [9, 20]), springs from the given CR structure very much the way the complex structure determines the metric structure (up to a conformal invariant) on a Riemann surface and are thought of as geometric tools whose use will ultimately shed light on the properties of solutions, local and global, to the tangential C-R equations. Integrability of 
	
		
			

				𝑇
			

			
				1
				,
				0
			

			
				(
				𝑀
				)
			

		
	
 appears as a built-in ingredient of objects such as the Tanaka-Webster connection or the Fefferman metric, yet it is believed to lack the geometric meaning of involutivity of real smooth distributions on manifolds (cf., e.g., [21, page 16]). On the other hand nonintegrable examples of almost CR structures occur frequently, either on real hypersurfaces of almost complex manifolds or on contact Riemannian manifolds (cf. [13, 16]). A remedy was indicated by Tanno [16], showing that the wealth of additional structure 
	
		
			
				(
				𝜑
				,
				𝜉
				,
				𝜂
				,
				𝑔
				)
			

		
	
 on a given contact Riemannian manifold 
	
		
			

				𝑁
			

		
	
 compensates for the lack of integrability of 
	
		
			

				𝑇
			

			
				1
				,
				0
			

			
				(
				𝑁
				)
				=
				{
				𝑋
				−
				𝑖
				𝜑
				𝑋
				∶
				𝑋
				∈
				K
				e
				r
				(
				𝜂
				)
				}
			

		
	
 and specifically providing a generalization of the Tanaka-Webster connection to the nonintegrable context. 
Given a CR manifold 
	
		
			
				(
				𝑀
				,
				𝑇
			

			
				1
				,
				0
			

			
				(
				𝑀
				)
				)
			

		
	
, let 
	
		
			
				𝐻
				=
				R
				e
				{
				𝑇
			

			
				1
				,
				0
			

			
				(
				𝑀
				)
				⊕
				𝑇
			

			
				0
				,
				1
			

			
				(
				𝑀
				)
				}
			

		
	
 be the Levi, or maximally complex, distribution and 
	
		
			
				𝐽
				(
				𝑍
				+
			

			
				
			
			
				𝑍
				)
				=
				𝑖
				(
				𝑍
				−
			

			
				
			
			
				𝑍
				)
			

		
	
, 
	
		
			
				𝑍
				∈
				𝑇
			

			
				1
				,
				0
			

			
				(
				𝑀
				)
			

		
	
, its complex structure. Let 
	
		
			

				𝐻
			

			
				⟂
				𝑥
			

			
				=
				{
				𝜔
				∈
				𝑇
			

			
				∗
				𝑥
			

			
				(
				𝑀
				)
				∶
				K
				e
				r
				(
				𝜔
				)
				⊇
				𝐻
			

			

				𝑥
			

			

				}
			

		
	
, 
	
		
			
				𝑥
				∈
				𝑀
			

		
	
, be the conormal bundle associated to 
	
		
			

				𝐻
			

		
	
, a real line bundle over 
	
		
			

				𝑀
			

		
	
. Since 
	
		
			

				𝑀
			

		
	
 is assumed to be connected and orientable, the conormal bundle 
	
		
			

				𝐻
			

			

				⟂
			

			
				→
				𝑀
			

		
	
 is trivial. A globally defined nowhere zero section 
	
		
			
				𝜃
				∈
				Γ
			

			

				∞
			

			
				(
				𝐻
			

			

				⟂
			

			

				)
			

		
	
 is a pseudohermitian structure on 
	
		
			

				𝑀
			

		
	
. For each pseudohermitian structure 
	
		
			

				𝜃
			

		
	
 on 
	
		
			

				𝑀
			

		
	
 the Levi form is 
						
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			

				𝐺
			

			

				𝜃
			

			
				(
				𝑋
				,
				𝑌
				)
				=
				(
				𝑑
				𝜃
				)
				(
				𝑋
				,
				𝐽
				𝑌
				)
				,
				𝑋
				,
				𝑌
				∈
				𝐻
				.
			

		
	

					Two pseudohermitian structures 
	
		
			
				̂
				𝜃
				,
				𝜃
				∈
				Γ
			

			

				∞
			

			
				(
				𝐻
			

			

				⟂
			

			

				)
			

		
	
 are related by 
	
		
			
				̂
				𝜃
				=
				𝜆
				𝜃
			

		
	
 for some 
	
		
			

				𝐶
			

			

				∞
			

		
	
 function 
	
		
			
				𝜆
				∶
				𝑀
				→
				ℝ
				⧵
				{
				0
				}
			

		
	
. If this is the case, then 
	
		
			
				𝐺
				̂
				𝜃
				=
				𝜆
				𝐺
			

			

				𝜃
			

		
	
. A CR manifold 
	
		
			

				𝑀
			

		
	
 is nondegenerate (resp., strictly pseudoconvex) if 
	
		
			

				𝐺
			

			

				𝜃
			

		
	
 is nondegenerate (resp., positive definite) for some 
	
		
			

				𝜃
			

		
	
. If 
	
		
			

				𝑀
			

		
	
 is a nondegenerate CR manifold, of CR dimension 
	
		
			

				𝑛
			

		
	
, then each pseudohermitian structure 
	
		
			

				𝜃
			

		
	
 is a contact form; that is, 
	
		
			
				𝜃
				∧
				(
				𝑑
				𝜃
				)
			

			

				𝑛
			

		
	
 is a volume form on 
	
		
			

				𝑀
			

		
	
. If 
	
		
			

				𝑀
			

		
	
 is nondegenerate and 
	
		
			

				𝜃
			

		
	
 is a contact form on 
	
		
			

				𝑀
			

		
	
, there is a unique globally defined, nowhere zero, tangent vector field 
	
		
			
				𝑇
				∈
				𝔛
			

			

				∞
			

			
				(
				𝑀
				)
			

		
	
 (the Reeb vector field of (
	
		
			
				𝑀
				,
				𝜃
			

		
	
)) such that 
	
		
			
				𝜃
				(
				𝑇
				)
				=
				1
			

		
	
 and 
	
		
			
				(
				𝑑
				𝜃
				)
				(
				𝑇
				,
				⋅
				)
				=
				0
			

		
	
. The Webster metric is the semi-Riemannian metric 
	
		
			

				𝑔
			

			

				𝜃
			

		
	
 on 
	
		
			

				𝑀
			

		
	
 given by 
						
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			

				𝑔
			

			

				𝜃
			

			
				(
				𝑋
				,
				𝑌
				)
				=
				𝐺
			

			

				𝜃
			

			
				(
				𝑋
				,
				𝑌
				)
				,
				𝑔
			

			

				𝜃
			

			
				(
				𝑋
				,
				𝑇
				)
				=
				0
				,
				𝑔
			

			

				𝜃
			

			
				(
				𝑇
				,
				𝑇
				)
				=
				1
				,
			

		
	

					for any 
	
		
			
				𝑋
				,
				𝑌
				∈
				𝐻
			

		
	
. If 
	
		
			

				𝑀
			

		
	
 is strictly pseudoconvex and 
	
		
			

				𝜃
			

		
	
 is chosen such that 
	
		
			

				𝐺
			

			

				𝜃
			

		
	
 is positive definite, then 
	
		
			

				𝑔
			

			

				𝜃
			

		
	
 is a Riemannian metric on 
	
		
			

				𝑀
			

		
	
. 
 Let 
	
		
			

				𝑁
			

		
	
 be a 
	
		
			
				(
				2
				𝑚
				−
				1
				)
			

		
	
-dimensional 
	
		
			

				𝐶
			

			

				∞
			

		
	
 manifold (
	
		
			
				𝑚
				≥
				2
			

		
	
). An almost contact structure on 
	
		
			

				𝑁
			

		
	
 is a synthetic object 
	
		
			
				(
				𝜙
				,
				𝜉
				,
				𝜂
				)
			

		
	
 consisting of a 
	
		
			
				(
				1
				,
				1
				)
			

		
	
-tensor field 
	
		
			

				𝜑
			

		
	
, a vector field 
	
		
			
				𝜉
				∈
				𝔛
			

			

				∞
			

			
				(
				𝑁
				)
			

		
	
, and a 
	
		
			

				1
			

		
	
-form 
	
		
			
				𝜂
				∈
				Ω
			

			

				1
			

			
				(
				𝑁
				)
			

		
	
 such that 
						
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			

				𝜑
			

			
				𝑖
				𝑘
			

			

				𝜑
			

			
				𝑘
				𝑗
			

			
				=
				−
				𝛿
			

			
				𝑖
				𝑗
			

			
				+
				𝜂
			

			

				𝑗
			

			

				𝜉
			

			

				𝑖
			

			
				,
				𝜂
			

			

				𝑖
			

			

				𝜑
			

			
				𝑖
				𝑗
			

			
				𝜑
				=
				0
				,
			

			
				𝑖
				𝑗
			

			

				𝜉
			

			

				𝑗
			

			
				=
				0
				,
				𝜂
			

			

				𝑖
			

			

				𝜉
			

			

				𝑖
			

			
				=
				1
				,
			

		
	

					with respect to any local coordinate system 
	
		
			
				(
				𝑈
			

			

				
			

			
				,
				𝑥
			

			
				
				𝑖
			

			

				)
			

		
	
 on 
	
		
			

				𝑁
			

		
	
. A Riemannian metric 
	
		
			

				𝑔
			

		
	
 on 
	
		
			

				𝑁
			

		
	
 is associated, or compatible, to the almost contact structure 
	
		
			
				(
				𝜑
				,
				𝜉
				,
				𝜂
				)
			

		
	
 (and 
	
		
			
				(
				𝜑
				,
				𝜉
				,
				𝜂
				,
				𝑔
				)
			

		
	
 is an almost contact metric structure on 
	
		
			

				𝑁
			

		
	
) if 
						
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			

				𝑔
			

			
				𝑖
				𝑗
			

			

				𝜑
			

			
				𝑖
				𝑘
			

			

				𝜑
			

			
				𝑗
				ℓ
			

			
				=
				𝑔
			

			
				𝑘
				ℓ
			

			
				−
				𝜂
			

			

				𝑘
			

			

				𝜂
			

			

				ℓ
			

			
				,
				𝑔
			

			
				𝑖
				𝑗
			

			

				𝜉
			

			

				𝑗
			

			
				=
				𝜂
			

			

				𝑖
			

			

				.
			

		
	

					Associated metrics always exist (cf. [13]). A contact metric structure is an almost contact metric structure 
	
		
			
				(
				𝜑
				,
				𝜉
				,
				𝜂
				,
				𝑔
				)
			

		
	
 such that 
	
		
			
				Ω
				=
				𝑑
				𝜂
			

		
	
, where 
	
		
			
				Ω
				∈
				Ω
			

			

				2
			

			
				(
				𝑁
				)
			

		
	
 is the 
	
		
			

				2
			

		
	
-form given by 
	
		
			

				Ω
			

			
				𝑖
				𝑗
			

			
				=
				𝑔
			

			
				𝑖
				𝑘
			

			

				𝜑
			

			
				𝑘
				𝑗
			

		
	
. 
 Let 
	
		
			
				𝜙
				∶
				𝑀
				→
				𝑁
			

		
	
 be a 
	
		
			

				𝐶
			

			

				∞
			

		
	
 map from a strictly pseudoconvex CR manifold 
	
		
			

				𝑀
			

		
	
 of CR dimension 
	
		
			

				𝑛
			

		
	
 into a contact Riemannian manifold 
	
		
			
				(
				𝑁
				,
				𝜑
				,
				𝜉
				,
				𝜂
				,
				𝑔
				)
			

		
	
. Let 
	
		
			

				𝜃
			

		
	
 be a contact form on 
	
		
			

				𝑀
			

		
	
 such that the Levi form 
	
		
			

				𝐺
			

			

				𝜃
			

		
	
 is positive definite. Let 
	
		
			

				𝐻
			

			

				
			

			
				=
				K
				e
				r
				(
				𝜂
				)
			

		
	
 and let us consider the vector bundle valued form 
	
		
			
				(
				𝑑
				𝜙
				)
			

			
				𝐻
				,
				𝐻
			

			

				′
			

			
				∈
				Γ
			

			

				∞
			

			
				(
				𝐻
			

			

				∗
			

			
				⊗
				𝜙
			

			
				−
				1
			

			

				𝐻
			

			

				
			

			

				)
			

		
	
 given by 
						
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				
				(
				𝑑
				𝜙
				)
			

			
				𝐻
				,
				𝐻
			

			

				′
			

			

				
			

			

				𝑥
			

			
				=
				Π
			

			

				𝐻
			

			

				′
			

			
				,
				𝜙
				(
				𝑥
				)
			

			
				∘
				
				𝑑
			

			

				𝑥
			

			
				𝜙
				
				∶
				𝐻
			

			

				𝑥
			

			
				⟶
				𝐻
			

			
				
				𝜙
				(
				𝑥
				)
			

			
				,
				𝑥
				∈
				𝑀
				,
			

		
	

					where 
	
		
			

				Π
			

			

				𝐻
			

			

				′
			

			
				∶
				𝑇
				(
				𝑁
				)
				→
				𝐻
			

			

				
			

		
	
 is the natural projection associated to the decomposition 
	
		
			
				𝑇
				(
				𝑁
				)
				=
				𝐻
			

			

				
			

			
				⊕
				ℝ
				𝜉
			

		
	
. Let 
	
		
			
				𝑥
				∈
				𝑀
			

		
	
 and let 
	
		
			
				{
				𝑋
			

			

				𝑎
			

			
				∶
				1
				≤
				𝑎
				≤
				2
				𝑛
				}
			

		
	
 be a local 
	
		
			

				𝐺
			

			

				𝜃
			

		
	
-orthonormal frame of 
	
		
			

				𝐻
			

		
	
 defined on an open neighborhood 
	
		
			
				𝑈
				⊆
				𝑀
			

		
	
 of 
	
		
			
				𝑥
				∈
				𝑈
			

		
	
. We set
						
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				𝑄
				(
				𝜙
				)
			

			

				𝑥
			

			
				=
				‖
				‖
				(
				𝑑
				𝜙
				)
			

			
				𝐻
				,
				𝐻
			

			

				′
			

			
				‖
				‖
			

			
				2
				𝑥
			

			

				=
			

			
				2
				𝑛
			

			

				
			

			
				𝑎
				=
				1
			

			

				𝑔
			

			
				𝜙
				(
				𝑥
				)
			

			
				
				
				(
				𝑑
				𝜙
				)
			

			
				𝐻
				,
				𝐻
			

			

				′
			

			

				
			

			

				𝑥
			

			

				𝑋
			

			
				𝑎
				,
				𝑥
			

			
				,
				
				(
				𝑑
				𝜙
				)
			

			
				𝐻
				,
				𝐻
			

			

				′
			

			

				
			

			

				𝑥
			

			

				𝑋
			

			
				𝑎
				,
				𝑥
			

			
				
				.
			

		
	

					Note that
						
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				𝑄
				(
				𝜙
				)
				=
			

			
				t
				r
				a
				c
				e
			

			

				𝐺
			

			

				𝜃
			

			
				
				Π
			

			

				𝐻
			

			
				
				𝜙
			

			

				∗
			

			
				𝑔
				−
				‖
				‖
				Π
				
				
			

			

				𝐻
			

			

				𝜙
			

			

				∗
			

			
				𝜂
				‖
				‖
			

			

				2
			

			

				.
			

		
	

Definition 1. Let 
	
		
			
				𝑝
				∈
				(
				0
				,
				+
				∞
				)
			

		
	
. A 
	
		
			

				𝐶
			

			

				∞
			

		
	
 map 
	
		
			
				𝜙
				∶
				𝑀
				→
				𝑁
			

		
	
 is said to be contact  
	
		
			

				𝑝
			

		
	
-harmonic if 
	
		
			

				𝜙
			

		
	
 is a critical point of the energy functional
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			

				𝐸
			

			
				Ω
				,
				𝑝
			

			
				
				(
				𝜙
				)
				=
			

			

				Ω
			

			
				‖
				‖
				(
				𝑑
				𝜙
				)
			

			
				𝐻
				,
				𝐻
			

			

				′
			

			
				‖
				‖
			

			

				𝑝
			

			
				𝜃
				∧
				(
				𝑑
				𝜃
				)
			

			

				𝑛
			

		
	

						for any relatively compact domain 
	
		
			
				Ω
				⊆
				𝑀
			

		
	
. Contact 
	
		
			

				2
			

		
	
-harmonic maps are called contact harmonic maps. 
 Let 
	
		
			

				∇
			

		
	
 be the Tanaka-Webster connection of 
	
		
			
				(
				𝑀
				,
				𝜃
				)
			

		
	
 that is the unique linear connection on 
	
		
			

				𝑀
			

		
	
 obeying to (i) 
	
		
			

				𝐻
			

		
	
 is 
	
		
			

				∇
			

		
	
-parallel (i.e., 
	
		
			

				∇
			

			

				𝑋
			

			
				𝑌
				∈
				𝐻
			

		
	
 for any 
	
		
			
				𝑋
				∈
				𝔛
			

			

				∞
			

			
				(
				𝑀
				)
			

		
	
 and any 
	
		
			
				𝑌
				∈
				𝐻
			

		
	
), (ii) 
	
		
			
				∇
				𝐽
				=
				0
			

		
	
 and 
	
		
			
				∇
				𝑔
			

			

				𝜃
			

			
				=
				0
			

		
	
, and (iii) the torsion tensor field 
	
		
			

				𝑇
			

			

				∇
			

		
	
 of 
	
		
			

				∇
			

		
	
 is pure (i.e., 
	
		
			

				𝑇
			

			

				∇
			

			
				(
				𝑍
				,
				𝑊
				)
				=
				0
			

		
	
, 
	
		
			

				𝑇
			

			

				∇
			

			
				(
				𝑍
				,
			

			
				
			
			
				𝑊
				)
				=
				2
				𝑖
				𝐺
			

			

				𝜃
			

			
				(
				𝑍
				,
			

			
				
			
			
				𝑊
				)
				𝑇
			

		
	
 for any 
	
		
			
				𝑍
				,
				𝑊
				∈
				𝑇
			

			
				1
				,
				0
			

			
				(
				𝑀
				)
			

		
	
 and 
	
		
			
				𝜏
				∘
				𝐽
				+
				𝐽
				∘
				𝜏
				=
				0
			

		
	
, where 
	
		
			
				𝜏
				(
				𝑋
				)
				=
				𝑇
			

			

				∇
			

			
				(
				𝑇
				,
				𝑋
				)
			

		
	
 for any 
	
		
			
				𝑋
				∈
				𝔛
			

			

				∞
			

			
				(
				𝑀
				)
			

		
	
 (cf. Theorem 1.3 and Definition 1.25 in [9, pages 25-26]). The vector valued 
	
		
			

				1
			

		
	
-form 
	
		
			

				𝜏
			

		
	
 is the pseudohermitian torsion of 
	
		
			

				∇
			

		
	
. Let 
	
		
			

				∇
			

			

				
			

		
	
 be the generalized Tanaka-Webster connection of 
	
		
			
				(
				𝑁
				,
				𝜂
				,
				𝑔
				)
			

		
	
 given locally by 
						
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			

				Γ
			

			
				
				𝑖
				𝑗
				𝑘
			

			
				=
				Γ
			

			
				𝑖
				𝑗
				𝑘
			

			
				+
				𝜂
			

			

				𝑗
			

			

				𝜑
			

			
				𝑖
				𝑘
			

			
				−
				𝜂
			

			

				𝑘
			

			

				∇
			

			

				𝑗
			

			

				𝜉
			

			

				𝑖
			

			
				+
				𝜉
			

			

				𝑖
			

			

				∇
			

			

				𝑗
			

			

				𝜂
			

			

				𝑘
			

			

				,
			

		
	

					(cf., e.g., [16]), where 
	
		
			

				Γ
			

			
				𝑖
				𝑗
				𝑘
			

		
	
 are the Christoffel symbols of 
	
		
			

				𝑔
			

			
				𝑖
				𝑗
			

		
	
. Covariant derivatives are meant with respect to the Levi-Civita connection of 
	
		
			
				(
				𝑀
				,
				𝑔
				)
			

		
	
. For each 
	
		
			
				𝑋
				∈
				𝔛
			

			

				∞
			

			
				(
				𝑀
				)
			

		
	
 we consider 
	
		
			

				𝜙
			

			

				∗
			

			
				𝑋
				∈
				Γ
			

			

				∞
			

			
				(
				𝜙
			

			
				−
				1
			

			
				𝑇
				𝑁
				)
			

		
	
 given by 
						
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				
				𝜙
			

			

				∗
			

			
				𝑋
				
				
				𝑑
				(
				𝑥
				)
				=
			

			

				𝑥
			

			
				𝜙
				
				𝑋
			

			

				𝑥
			

			
				∈
				𝑇
			

			
				𝜙
				(
				𝑥
				)
			

			
				
				𝜙
				(
				𝑁
				)
				=
			

			
				−
				1
			

			
				
				𝑇
				𝑁
			

			

				𝑥
			

			
				,
				𝑥
				∈
				𝑀
				.
			

		
	

					Let 
	
		
			

				∇
			

			

				𝜙
			

			
				=
				𝜙
			

			
				−
				1
			

			

				∇
			

			

				
			

		
	
 be the connection induced by 
	
		
			

				∇
			

			

				
			

		
	
 in the pullback bundle 
	
		
			

				𝜙
			

			
				−
				1
			

			
				𝑇
				𝑁
				→
				𝑀
			

		
	
. We set
						
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				𝛽
			

			

				𝜙
			

			
				(
				𝑋
				,
				𝑌
				)
				=
				∇
			

			
				𝜙
				𝑋
			

			

				𝜙
			

			

				∗
			

			
				𝑌
				−
				𝜙
			

			

				∗
			

			

				∇
			

			

				𝑋
			

			
				𝑌
				,
				𝑋
				,
				𝑌
				∈
				𝔛
			

			

				∞
			

			
				(
				𝑀
				)
				.
			

		
	

					Let 
	
		
			
				𝑥
				∈
				𝑀
			

		
	
 and let 
	
		
			
				{
				𝑋
			

			

				𝑎
			

			
				∶
				1
				≤
				𝑎
				≤
				2
				𝑛
				}
			

		
	
 be a local 
	
		
			

				𝐺
			

			

				𝜃
			

		
	
-orthonormal frame of 
	
		
			

				𝐻
			

		
	
 defined on an open neighborhood 
	
		
			

				𝑈
			

		
	
 of 
	
		
			

				𝑥
			

		
	
. We define a 
	
		
			

				𝐶
			

			

				∞
			

		
	
 section 
	
		
			
				Γ
				(
				𝜙
				)
			

		
	
 in 
	
		
			

				𝜙
			

			
				−
				1
			

			
				𝑇
				𝑁
				→
				𝑀
			

		
	
 by setting 
						
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				Γ
				(
				𝜙
				)
			

			

				𝑥
			

			

				=
			

			
				t
				r
				a
				c
				e
			

			

				𝐺
			

			

				𝜃
			

			
				
				Π
			

			

				𝐻
			

			

				𝛽
			

			

				𝜙
			

			

				
			

			

				𝑥
			

			

				=
			

			
				2
				𝑛
			

			

				
			

			
				𝑎
				=
				1
			

			

				𝛽
			

			

				𝜙
			

			
				
				𝑋
			

			

				𝑎
			

			
				,
				𝑋
			

			

				𝑎
			

			

				
			

			

				𝑥
			

			

				,
			

		
	

					where 
	
		
			

				Π
			

			

				𝐻
			

			

				𝛽
			

			

				𝜙
			

		
	
 denotes the restriction of 
	
		
			

				𝛽
			

			

				𝜙
			

		
	
 to 
	
		
			
				𝐻
				⊗
				𝐻
			

		
	
. By a result in [10] the Euler-Lagrange equations associated to the variational principle 
	
		
			
				𝛿
				𝐸
			

			
				Ω
				,
				𝑝
			

			
				(
				𝜙
				)
				=
				0
			

		
	
 are 
						
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				𝑄
				(
				𝜙
				)
			

			
				−
				(
				𝑝
				−
				2
				)
				/
				2
			

			
				
				
				𝜑
			

			

				2
			

			

				
			

			
				𝑖
				𝑗
			

			
				
				
				∘
				𝜙
				d
				i
				v
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			

				∇
			

			

				𝐻
			

			

				𝜙
			

			

				𝑗
			

			
				
				=
			

			
				t
				r
				a
				c
				e
			

			

				𝐺
			

			

				𝜃
			

			
				
				Π
			

			

				𝐻
			

			

				𝜙
			

			

				∗
			

			
				
				𝜂
				⊗
				𝜏
			

			

				𝑁
			

			
				−
				
				
			

			
				2
				𝑛
			

			

				
			

			
				𝑎
				=
				1
			

			
				
				
				𝜑
			

			

				2
			

			

				
			

			
				𝑖
				𝑗
			

			
				
				
				Γ
				∘
				𝜙
			

			
				
				𝑗
				𝑘
				ℓ
			

			
				
				𝑋
				∘
				𝜙
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑘
			

			
				
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				ℓ
			

			
				
				,
			

			
				t
				r
				a
				c
				e
			

			

				𝐺
			

			

				𝜃
			

			
				
				Π
			

			

				𝐻
			

			

				𝜙
			

			

				∗
			

			

				𝐴
			

			

				𝑁
			

			
				
				=
				0
				,
			

		
	

					here 
	
		
			

				𝜑
			

			

				2
			

			
				=
				−
				𝐼
				+
				𝜂
				⊗
				𝜉
			

		
	
 (cf., e.g., [13]). Also 
	
		
			

				𝜏
			

			

				𝑁
			

		
	
 is the pseudohermitian torsion of 
	
		
			
				(
				𝑁
				,
				𝜑
				,
				𝜉
				,
				𝜂
				,
				𝑔
				)
			

		
	
; that is, 
	
		
			

				𝜏
			

			

				𝑁
			

			
				(
				𝑋
				)
				=
				𝑇
			

			

				∇
			

			

				′
			

			
				(
				𝜉
				,
				𝑋
				)
			

		
	
, and 
	
		
			

				𝐴
			

			

				𝑁
			

			
				(
				𝑋
				,
				𝑌
				)
				=
				𝑔
				(
				𝜏
			

			

				𝑁
			

			
				𝑋
				,
				𝑌
				)
			

		
	
 for any 
	
		
			
				𝑋
				,
				𝑌
				∈
				𝔛
			

			

				∞
			

			
				(
				𝑁
				)
			

		
	
. 
	
		
			

				Γ
			

			
				
				𝑖
				𝑗
				𝑘
			

		
	
 are again the local coefficients of 
	
		
			

				∇
			

			

				
			

		
	
 with respect to 
	
		
			
				(
				𝑈
			

			

				
			

			
				,
				𝑥
			

			
				
				𝑖
			

			

				)
			

		
	
. In particular if 
	
		
			

				𝑔
			

		
	
 is a Sasakian metric, then 
	
		
			
				𝜙
				∶
				𝑀
				→
				𝑁
			

		
	
 is contact 
	
		
			

				𝑝
			

		
	
-harmonic if and only if 
						
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				
				
				𝜑
			

			

				2
			

			

				
			

			
				𝑖
				𝑗
			

			
				
				×
				
				
				∘
				𝜙
				d
				i
				v
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			

				∇
			

			

				𝐻
			

			

				𝜙
			

			

				𝑗
			

			
				
				+
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
				2
				𝑛
			

			

				
			

			
				𝑎
				=
				1
			

			
				
				Γ
			

			
				
				𝑗
				𝑘
				ℓ
			

			
				
				𝑋
				∘
				𝜙
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑘
			

			
				
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				ℓ
			

			
				
				
				=
				0
				,
				1
				≤
				𝑖
				≤
				2
				𝑚
				−
				1
				.
			

		
	

3. Weak Contact Harmonic Maps
Sections 3 and 4 are devoted to the study of local properties of weak critical points of the functional (15). A study of the regularity of weak solutions to subelliptic systems (such as (53)) was started by Wang [8], and Capogna and Garofalo [22], though only for maps from Carnot groups, (cf. also Zhou [23]). 
Let 
	
		
			

				𝑀
			

		
	
 be a strictly pseudoconvex CR manifold and 
	
		
			

				𝜃
			

		
	
 a contact form on 
	
		
			

				𝑀
			

		
	
. Let 
	
		
			
				{
				𝑋
			

			

				𝑎
			

			
				∶
				1
				≤
				𝑎
				≤
				2
				𝑛
				}
			

		
	
 be a local 
	
		
			

				𝐺
			

			

				𝜃
			

		
	
-orthonormal frame of 
	
		
			

				𝐻
			

		
	
 defined on the open set 
	
		
			
				𝑈
				⊆
				𝑀
			

		
	
 and 
	
		
			

				𝑋
			

			
				∗
				𝑎
			

		
	
 the formal adjoint of 
	
		
			

				𝑋
			

			

				𝑎
			

		
	
; that is, 
						
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			

				𝑋
			

			
				∗
				𝑎
			

			
				𝑢
				=
				−
				𝑋
			

			

				𝑎
			

			
				𝑢
				−
				𝑓
			

			

				𝑎
			

			
				𝑢
				,
				𝑢
				∈
				𝐶
			

			
				1
				0
			

			
				(
				𝑈
				)
				,
			

		
	

					where 
	
		
			

				𝑓
			

			

				𝑎
			

			
				=
				𝜕
				𝑏
			

			
				𝐴
				𝑎
			

			
				/
				𝜕
				𝑥
			

			

				𝐴
			

			
				+
				𝑏
			

			
				𝐵
				𝑎
			

			

				Γ
			

			
				𝐴
				𝐴
				𝐵
			

		
	
 and 
	
		
			

				𝑋
			

			

				𝑎
			

			
				=
				𝑏
			

			
				𝐴
				𝑎
			

			
				𝜕
				/
				𝜕
				𝑥
			

			

				𝐴
			

		
	
. Also 
	
		
			

				Γ
			

			
				𝐶
				𝐴
				𝐵
			

		
	
 are the local coefficients of the Tanaka-Webster connection of 
	
		
			
				(
				𝑀
				,
				𝜃
				)
			

		
	
 with respect to the local coordinate system 
	
		
			
				(
				𝑈
				,
				𝑥
			

			

				𝐴
			

			

				)
			

		
	
 on 
	
		
			

				𝑀
			

		
	
. Clearly 
	
		
			
				(
				𝑋
			

			
				∗
				𝑎
			

			
				𝑢
				,
				𝑣
				)
				=
				(
				𝑢
				,
				𝑋
			

			

				𝑎
			

			
				𝑣
				)
			

		
	
 for any 
	
		
			
				𝑢
				∈
				𝐶
			

			
				1
				0
			

			
				(
				𝑈
				)
			

		
	
, where 
	
		
			
				∫
				(
				𝑢
				,
				𝑣
				)
				=
			

			

				𝑈
			

			

				𝑢
			

			
				
			
			
				𝑣
				𝑑
				𝑣
			

		
	
.
Proposition 2.   Let 
	
		
			
				𝜙
				∶
				𝑀
				→
				𝑁
			

		
	
 be a smooth map and 
	
		
			

				𝑔
			

		
	
 a Sasakian metric on 
	
		
			

				𝑁
			

		
	
. Then 
	
		
			

				𝜙
			

		
	
 is contact 
	
		
			

				𝑝
			

		
	
-harmonic if and only if 
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				
				
				𝜑
			

			

				2
			

			

				
			

			
				𝑖
				𝑗
			

			
				
				×
				∘
				𝜙
			

			
				2
				𝑛
			

			

				
			

			
				𝑎
				=
				1
			

			
				
				−
				𝑋
			

			
				∗
				𝑎
			

			
				
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			

				𝑋
			

			

				𝑎
			

			

				𝜙
			

			

				𝑗
			

			
				
				+
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			
				
				Γ
			

			
				
				𝑗
				𝑘
				ℓ
			

			
				
				𝑋
				∘
				𝜙
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑘
			

			
				
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				ℓ
			

			
				
				
				=
				0
			

		
	

						for any local orthonormal frame 
	
		
			
				{
				𝑋
			

			

				𝑎
			

			
				∶
				1
				≤
				𝑎
				≤
				2
				𝑛
				}
			

		
	
 of 
	
		
			

				𝐻
			

		
	
. 
Proof. Let us note that 
	
		
			
				d
				i
				v
				(
				𝑋
			

			

				𝑎
			

			
				)
				=
			

			
				t
				r
				a
				c
				e
			

			
				{
				𝜕
			

			

				𝐴
			

			
				↦
				∇
			

			

				𝜕
			

			

				𝐴
			

			

				𝑋
			

			

				𝑎
			

			
				}
				=
				𝑓
			

			

				𝑎
			

		
	
, where 
	
		
			

				𝜕
			

			

				𝐴
			

			
				=
				𝜕
				/
				𝜕
				𝑥
			

			

				𝐴
			

		
	
. Thus (by (22)) 
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				
				d
				i
				v
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			

				∇
			

			

				𝐻
			

			

				𝜙
			

			

				𝑖
			

			
				
				=
				−
			

			
				2
				𝑛
			

			

				
			

			
				𝑎
				=
				1
			

			

				𝑋
			

			
				∗
				𝑎
			

			
				
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			

				𝑋
			

			

				𝑎
			

			

				𝜙
			

			

				𝑖
			

			

				
			

		
	

						on 
	
		
			

				𝑈
			

		
	
. Then (23) follows from (21). 
Example 3 (contact 
	
		
			

				𝑝
			

		
	
-harmonic maps into the Heisenberg group). Let 
	
		
			
				𝑁
				=
				ℍ
			

			
				𝑚
				−
				1
			

		
	
, 
	
		
			
				𝑚
				≥
				2
			

		
	
, be the Heisenberg group (cf., e.g., [9, pages 11–14]). Let 
	
		
			
				(
				𝑥
			

			

				𝛼
			

			
				,
				𝑦
			

			

				𝛼
			

			
				,
				𝑡
				)
			

		
	
 be the Cartesian coordinates on 
	
		
			

				ℝ
			

			
				2
				𝑚
				−
				1
			

		
	
 and let
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			

				𝑋
			

			

				𝛼
			

			
				=
				𝜕
			

			
				
			
			
				𝜕
				𝑥
			

			

				𝛼
			

			
				+
				2
				𝑦
			

			

				𝛼
			

			

				𝜕
			

			
				
			
			
				𝜕
				𝑡
				,
				𝑌
			

			

				𝛼
			

			
				=
				𝜕
			

			
				
			
			
				𝜕
				𝑦
			

			

				𝛼
			

			
				−
				2
				𝑥
			

			

				𝛼
			

			

				𝜕
			

			
				
			
			
				,
				𝜕
				𝑡
				1
				≤
				𝛼
				≤
				𝑚
				−
				1
				.
			

		
	

						Let 
	
		
			

				𝜑
			

		
	
 be the 
	
		
			
				(
				1
				,
				1
				)
			

		
	
-tensor field on 
	
		
			

				ℍ
			

			
				𝑚
				−
				1
			

		
	
 determined by 
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				𝜑
				
				𝑋
			

			

				𝛼
			

			
				
				=
				𝑌
			

			

				𝛼
			

			
				
				𝑌
				,
				𝜑
			

			

				𝛼
			

			
				
				=
				−
				𝑋
			

			

				𝛼
			

			
				,
				𝜑
				(
				𝜉
				)
				=
				0
				,
			

		
	

						where 
	
		
			
				𝜉
				=
				−
				𝜕
				/
				𝜕
				𝑡
			

		
	
. Next the differential 
	
		
			

				1
			

		
	
-form 
	
		
			
				𝜂
				∈
				Ω
			

			

				1
			

			
				(
				ℍ
			

			
				𝑚
				−
				1
			

			

				)
			

		
	
 given by
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				𝜂
				=
				2
			

			
				2
				𝑚
				−
				2
			

			

				
			

			
				𝛼
				=
				1
			

			
				(
				𝑦
			

			

				𝛼
			

			
				𝑑
				𝑥
			

			

				𝛼
			

			
				−
				𝑥
			

			

				𝛼
			

			
				𝑑
				𝑦
			

			

				𝛼
			

			
				)
				−
				𝑑
				𝑡
			

		
	

						is a contact form on 
	
		
			

				ℍ
			

			
				𝑚
				−
				1
			

		
	
; that is, 
	
		
			
				𝜂
				∧
				(
				𝑑
				𝜂
				)
			

			
				𝑚
				−
				1
			

		
	
 is a volume form. Let 
	
		
			
				𝐻
				=
				K
				e
				r
				(
				𝜂
				)
			

		
	
. Finally we shall need the Riemannian metric 
	
		
			

				𝑔
			

		
	
 on 
	
		
			

				ℍ
			

			
				𝑚
				−
				1
			

		
	
 given by 
	
		
			
				𝑔
				=
				−
				𝑑
				𝜂
				(
				⋅
				,
				𝜑
				⋅
				)
			

		
	
 on 
	
		
			
				𝐻
				⊗
				𝐻
			

		
	
, 
	
		
			
				𝑔
				(
				⋅
				,
				𝜉
				)
				=
				0
			

		
	
 on 
	
		
			

				𝐻
			

		
	
, and 
	
		
			
				𝑔
				(
				𝜉
				,
				𝜉
				)
				=
				1
			

		
	
. Then 
	
		
			

				𝑔
			

		
	
 is a Sasakian metric on 
	
		
			

				ℍ
			

			
				𝑚
				−
				1
			

		
	
 (and actually 
	
		
			
				(
				ℍ
			

			
				𝑚
				−
				1
			

			
				,
				𝑔
				)
			

		
	
 is a Sasakian space form of 
	
		
			

				𝜑
			

		
	
-sectional 
	
		
			
				−
				3
			

		
	
; cf., e.g., [13]). A calculation shows that 
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			

				𝜑
			

			

				2
			

			
				∶
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				−
				𝛿
			

			
				𝛼
				𝛽
			

			
				0
				0
				0
				−
				𝛿
			

			
				𝛼
				𝛽
			

			
				0
				−
				2
				𝑦
			

			

				𝛽
			

			
				2
				𝑥
			

			

				𝛽
			

			
				0
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				,
			

		
	

						where 
	
		
			

				𝑥
			

			

				𝛼
			

			
				=
				𝑥
			

			

				𝛼
			

		
	
 and 
	
		
			

				𝑦
			

			

				𝛼
			

			
				=
				𝑦
			

			

				𝛼
			

		
	
. Let 
	
		
			

				𝑇
			

			

				𝛼
			

			
				=
				𝑋
			

			

				𝛼
			

			
				−
				𝑖
				𝑌
			

			

				𝛼
			

		
	
 and let 
	
		
			

				𝑇
			

			
				1
				,
				0
			

			
				(
				ℍ
			

			
				𝑚
				−
				1
			

			

				)
			

			

				𝑥
			

		
	
 be the span of 
	
		
			
				{
				𝑇
			

			

				𝛼
			

			
				(
				𝑥
				)
				∶
				1
				≤
				𝛼
				≤
				𝑚
				−
				1
				}
			

		
	
 over 
	
		
			

				ℂ
			

		
	
. Then 
	
		
			

				𝑇
			

			
				1
				,
				0
			

			
				(
				ℍ
			

			
				𝑚
				−
				1
			

			

				)
			

		
	
 is a strictly pseudoconvex CR structure on 
	
		
			

				ℍ
			

			
				𝑚
				−
				1
			

		
	
 and 
	
		
			
				𝜃
				=
				−
				𝜂
			

		
	
 is a contact form such that the Levi form 
	
		
			

				𝐺
			

			

				𝜃
			

		
	
 is positive definite. Let 
	
		
			

				∇
			

			

				
			

		
	
 be the Tanaka-Webster connection of 
	
		
			
				(
				ℍ
			

			
				𝑚
				−
				1
			

			
				,
				𝜃
				)
			

		
	
. A calculation shows that 
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			

				∇
			

			
				
				𝜕
			

			

				𝛼
			

			

				𝜕
			

			

				𝛽
			

			
				=
				0
				,
				∇
			

			
				
				𝜕
			

			

				𝛼
			

			

				𝜕
			

			
				𝛽
				+
				𝑚
				−
				1
			

			
				=
				−
				2
				𝛿
			

			
				𝛼
				𝛽
			

			
				∇
				𝜉
				,
			

			
				
				𝜕
			

			
				𝛼
				+
				𝑚
				−
				1
			

			

				𝜕
			

			

				𝛽
			

			
				=
				2
				𝛿
			

			
				𝛼
				𝛽
			

			
				𝜉
				,
				∇
			

			

				𝜕
			

			
				𝛼
				+
				𝑚
				−
				1
			

			

				𝜕
			

			
				𝛽
				+
				𝑚
				−
				1
			

			
				=
				0
				,
			

		
	

						where 
	
		
			

				𝜕
			

			

				𝛼
			

			
				=
				𝜕
				/
				𝜕
				𝑥
			

			

				𝛼
			

		
	
 and 
	
		
			

				𝜕
			

			
				𝛼
				+
				𝑚
				−
				1
			

			
				=
				𝜕
				/
				𝜕
				𝑦
			

			

				𝛼
			

		
	
 for simplicity. Hence
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			

				Γ
			

			
				
				2
				𝑚
				−
				1
				𝛼
				,
				𝛽
				+
				𝑚
				−
				1
			

			
				=
				−
				Γ
			

			
				2
				𝑚
				−
				1
				𝛼
				+
				𝑚
				−
				1
				,
				𝛽
			

			
				=
				2
				𝛿
			

			
				𝛼
				𝛽
			

		
	

						and the remaining connection coefficients vanish. The Webster metric 
	
		
			

				𝑔
			

		
	
 of 
	
		
			
				(
				ℍ
			

			
				𝑚
				−
				1
			

			
				,
				𝜃
				)
			

		
	
 is given by 
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				𝑔
				∶
				2
				𝛿
			

			
				𝛼
				𝛽
			

			
				+
				4
				𝑦
			

			

				𝛼
			

			

				𝑦
			

			

				𝛽
			

			
				−
				4
				𝑦
			

			

				𝛼
			

			

				𝑥
			

			

				𝛽
			

			
				−
				2
				𝑦
			

			

				𝛼
			

			
				−
				4
				𝑥
			

			

				𝛼
			

			

				𝑦
			

			

				𝛽
			

			
				2
				𝛿
			

			
				𝛼
				𝛽
			

			
				+
				4
				𝑥
			

			

				𝛼
			

			

				𝑥
			

			

				𝛽
			

			
				2
				𝑥
			

			

				𝛼
			

			
				−
				2
				𝑦
			

			

				𝛽
			

			
				2
				𝑥
			

			

				𝛽
			

			
				1
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				,
			

		
	

						hence (by a straightforward calculation) 
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				𝑄
				(
				𝜙
				)
				=
				2
			

			
				2
				𝑛
			

			

				
			

			
				𝑎
				=
				1
				2
				𝑚
				−
				2
			

			

				
			

			
				𝑖
				=
				1
			

			
				|
				|
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑖
			

			
				
				|
				|
			

			

				2
			

			
				|
				|
				=
				2
				𝑋
				𝜙
			

			

				
			

			
				|
				|
			

			

				2
			

			

				,
			

		
	

						where 
	
		
			
				𝜙
				=
				(
				𝜙
			

			

				
			

			
				,
				𝜙
			

			
				2
				𝑚
				−
				1
			

			
				)
				∶
				𝑀
				→
				ℍ
			

			
				𝑚
				−
				1
			

		
	
 and 
	
		
			

				𝜙
			

			

				
			

			
				=
				(
				𝜙
			

			

				1
			

			
				,
				…
				,
				𝜙
			

			
				2
				𝑚
				−
				2
			

			

				)
			

		
	
. Let us substitute (28)–(32) into (23) so that to obtain 
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				2
				𝑛
			

			

				
			

			
				𝑎
				=
				1
			

			

				𝑋
			

			
				∗
				𝑎
			

			
				
				|
				|
				𝑋
				𝜙
			

			

				
			

			
				|
				|
			

			
				𝑝
				−
				2
			

			

				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑖
			

			
				
				
				=
				0
				,
				1
				≤
				𝑖
				≤
				2
				𝑚
				−
				2
				.
			

		
	

						Hence if 
	
		
			
				𝜙
				∶
				𝑀
				→
				ℍ
			

			
				2
				𝑚
				−
				1
			

		
	
 is a contact 
	
		
			

				𝑝
			

		
	
-harmonic map, then 
	
		
			

				𝜙
			

			

				
			

		
	
 is subject to (33) while 
	
		
			

				𝜙
			

			
				2
				𝑚
				−
				1
			

		
	
 is an arbitrary function. Therefore, in general one may not expect regularity for a given (weak) contact 
	
		
			

				𝑝
			

		
	
-harmonic map. 
 The identity (23) in Proposition 2 leads naturally to the notion of a weak solution to the contact 
	
		
			

				𝑝
			

		
	
-harmonic map system. Indeed we may establish the following.
Lemma 4.  A smooth map 
	
		
			
				𝜙
				∶
				𝑀
				→
				𝑁
			

		
	
 of a strictly pseudoconvex CR manifold 
	
		
			

				𝑀
			

		
	
 into a Sasakian manifold 
	
		
			

				𝑁
			

		
	
 is contact 
	
		
			

				𝑝
			

		
	
-harmonic if and only if 
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				2
				𝑛
			

			

				
			

			
				𝑎
				=
				1
			

			
				
				𝑋
			

			
				∗
				𝑎
			

			
				
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			
				
				
				𝜑
			

			

				2
			

			

				
			

			
				𝑖
				𝑗
			

			
				
				𝑋
				∘
				𝜙
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑗
			

			
				
				
				−
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			
				
				
				𝜑
			

			

				2
			

			

				
			

			
				𝑗
				𝑘
			

			
				Γ
				∘
				𝜙
				
				
			

			
				
				𝑖
				𝑗
				ℓ
			

			
				
				𝑋
				∘
				𝜙
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑘
			

			
				
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				ℓ
			

			
				
				
				=
				0
			

		
	

						for any local orthonormal frame 
	
		
			
				{
				𝑋
			

			

				𝑎
			

			
				∶
				1
				≤
				𝑎
				≤
				2
				𝑛
				}
			

		
	
 of 
	
		
			

				𝐻
			

		
	
 on 
	
		
			

				𝑈
			

		
	
 and any local coordinate system 
	
		
			
				(
				𝑈
			

			

				
			

			
				,
				𝑥
			

			
				
				𝑖
			

			

				)
			

		
	
 on 
	
		
			

				𝑁
			

		
	
 such that 
	
		
			

				𝜙
			

			
				−
				1
			

			
				(
				𝑈
			

			

				
			

			
				)
				⊇
				𝑈
			

		
	
. 
Proof. Let us multiply (23) by a test function 
	
		
			
				𝜓
				∈
				𝐶
			

			
				∞
				0
			

			
				(
				𝑈
				)
			

		
	
 and integrate by parts 
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			

				
			

			

				𝑎
			

			

				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑗
			

			
				
				𝑋
			

			

				𝑎
			

			
				
				
				𝜑
			

			

				2
			

			

				
			

			
				𝑖
				𝑗
			

			
				𝜓
				
				=
				
				𝑑
				𝑣
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			

				
			

			

				𝑎
			

			
				
				𝜑
			

			

				2
			

			

				
			

			
				𝑖
				𝑗
			

			

				Γ
			

			
				
				𝑗
				𝑘
				ℓ
			

			

				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑘
			

			
				
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				ℓ
			

			
				
				𝜓
				𝑑
				𝑣
				.
			

		
	

						On the other hand (as both 
	
		
			

				𝜉
			

		
	
 and 
	
		
			

				𝜂
			

		
	
 are parallel with respect to 
	
		
			

				∇
			

			

				
			

		
	
) 
							
	
 		
 			
				(
				3
				6
				)
			
 			
				(
				3
				7
				)
			
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				𝜕
				𝜉
			

			

				𝑖
			

			
				
			
			
				𝜕
				𝑥
			

			
				
				𝑘
			

			
				=
				−
				Γ
			

			
				
				𝑖
				𝑘
				ℓ
			

			

				𝜉
			

			

				ℓ
			

			
				,
				𝜕
				𝜂
			

			

				𝑗
			

			
				
			
			
				𝜕
				𝑥
			

			
				
				𝑘
			

			
				=
				Γ
			

			

				′
			

			
				ℓ
				𝑘
				𝑗
			

			

				𝜂
			

			

				ℓ
			

			
				,
				𝜕
				
				𝜑
			

			

				2
			

			

				
			

			
				𝑖
				𝑗
			

			
				
			
			
				𝜕
				𝑥
			

			
				
				𝑘
			

			
				=
				𝜉
			

			

				𝑖
			

			

				𝜂
			

			

				ℓ
			

			

				Γ
			

			

				′
			

			
				ℓ
				𝑘
				𝑗
			

			
				−
				𝜂
			

			

				𝑗
			

			

				𝜉
			

			

				ℓ
			

			

				Γ
			

			
				
				𝑖
				𝑘
				ℓ
			

			
				,
				
				𝜑
			

			

				2
			

			

				
			

			
				𝑖
				𝑗
			

			

				Γ
			

			
				
				𝑖
				𝑘
				ℓ
			

			
				+
				𝜂
			

			

				ℓ
			

			

				𝜉
			

			

				𝑗
			

			

				Γ
			

			
				
				𝑖
				𝑗
				𝑘
			

			
				−
				𝜉
			

			

				𝑖
			

			

				𝜂
			

			

				𝑗
			

			

				Γ
			

			
				
				𝑗
				𝑘
				ℓ
			

			
				=
				
				𝜑
			

			

				2
			

			

				
			

			
				𝑗
				ℓ
			

			

				Γ
			

			
				
				𝑖
				𝑗
				𝑘
			

			
				−
				𝑇
			

			
				𝑖
				𝑘
				ℓ
			

			

				,
			

		
	

						where 
	
		
			

				𝑇
			

			
				𝑖
				𝑘
				ℓ
			

		
	
 are the coefficients of 
	
		
			

				𝑇
			

			

				∇
			

			

				′
			

		
	
 with respect to 
	
		
			
				(
				𝑈
			

			

				
			

			
				,
				𝑥
			

			
				
				𝑖
			

			

				)
			

		
	
. Therefore (35) may be written as
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			
				
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			
				×
				
			

			

				𝑎
			

			
				
				
				𝜑
			

			

				2
			

			

				
			

			
				𝑖
				𝑗
			

			

				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑗
			

			
				
				𝑋
			

			

				𝑎
			

			
				−
				
				𝜑
				(
				𝜓
				)
			

			

				2
			

			

				
			

			
				𝑗
				𝑘
			

			

				Γ
			

			
				
				𝑖
				𝑗
				ℓ
			

			

				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑘
			

			
				
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				ℓ
			

			
				
				𝜓
				
				𝑑
				𝑣
				=
				0
			

		
	

						and Lemma 4 is proved.
 Let us consider the function spaces
						
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			

				𝑊
			

			
				𝑋
				1
				,
				𝑝
			

			
				
				(
				𝑈
				)
				=
				𝑢
				∈
				𝐿
			

			

				𝑝
			

			
				(
				𝑈
				)
				∶
				𝑋
			

			

				𝑎
			

			
				𝑢
				∈
				𝐿
			

			

				𝑝
			

			
				
				,
				(
				𝑈
				)
				,
				1
				≤
				𝑎
				≤
				2
				𝑛
			

		
	

					where 
	
		
			

				𝑋
			

			

				𝑎
			

			

				𝑢
			

		
	
 are understood as weak derivatives. If 
	
		
			
				1
				≤
				𝑝
				<
				∞
			

		
	
, then 
	
		
			

				𝑊
			

			
				𝑋
				1
				,
				𝑝
			

			
				(
				𝑈
				)
			

		
	
 are separable Banach spaces with the norms 
						
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			
				‖
				𝑢
				‖
			

			

				𝑊
			

			
				𝑋
				1
				,
				𝑝
			

			
				(
				𝑈
				)
			

			
				=
				
				‖
				𝑢
				‖
			

			
				𝑝
				𝐿
			

			

				𝑝
			

			
				(
				𝑈
				)
			

			

				+
			

			
				2
				𝑛
			

			

				
			

			
				𝑎
				=
				1
			

			
				‖
				‖
				𝑋
			

			

				𝑎
			

			
				𝑢
				‖
				‖
			

			
				𝑝
				𝐿
			

			

				𝑝
			

			
				(
				𝑈
				)
			

			

				
			

			
				1
				/
				𝑝
			

			

				.
			

		
	

					Also 
	
		
			

				𝑊
			

			
				𝑋
				1
				,
				𝑝
			

			
				(
				𝑈
				)
			

		
	
 is reflexive provided that 
	
		
			
				1
				<
				𝑝
				<
				∞
			

		
	
. The central concept of this section may be introduced as follows. Let 
	
		
			
				{
				𝑋
			

			

				𝑎
			

			
				∶
				1
				≤
				𝑎
				≤
				2
				𝑛
				}
			

		
	
 be a 
	
		
			

				𝐺
			

			

				𝜃
			

		
	
-orthonormal frame of 
	
		
			

				𝐻
			

		
	
 defined on the open set 
	
		
			
				𝑈
				⊆
				𝑀
			

		
	
. Let 
	
		
			

				𝑈
			

			

				
			

			
				⊆
				𝑁
			

		
	
 be an open set which is relatively compact in a larger coordinate neighborhood in 
	
		
			

				𝑁
			

		
	
. 
Definition 5. A map 
	
		
			
				𝜙
				∶
				𝑈
				→
				𝑈
			

			

				
			

		
	
 is said to be weak contact  
	
		
			

				𝑝
			

		
	
-harmonic if it is a weak solution to (34); that is, 
	
		
			

				𝜙
			

			

				𝑗
			

			
				∈
				𝑊
			

			
				𝑋
				1
				,
				𝑝
			

			
				(
				𝑈
				)
			

		
	
 for any 
	
		
			
				1
				≤
				𝑗
				≤
				2
				𝑚
				−
				1
			

		
	
 and the identities (39) are satisfied for any test function 
	
		
			
				𝜓
				∈
				𝐶
			

			
				∞
				0
			

			
				(
				𝑈
				)
			

		
	
.
 Let 
	
		
			
				𝜙
				∶
				𝑈
				→
				𝑈
			

			

				
			

		
	
 be a weak contact 
	
		
			

				𝑝
			

		
	
-harmonic map. By (14) 
						
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			
				
				𝑄
				(
				𝜙
				)
				=
			

			

				𝑎
			

			
				
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑖
			

			
				
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑗
			

			
				𝑔
				
				
			

			
				𝑖
				𝑗
			

			
				
				−
				
				𝑋
				∘
				𝜙
			

			

				𝑎
			

			
				(
				𝜙
			

			

				𝑖
			

			
				)
				(
				𝜂
			

			

				𝑖
			

			
				
				∘
				𝜙
				)
			

			

				2
			

			

				
			

		
	

					on 
	
		
			

				𝑈
			

		
	
, hence
						
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				|
				|
				𝑄
				(
				𝜙
				)
				≤
				𝐶
				𝑋
				𝜙
			

			

				2
			

			

				a
			

			

				.
			

			

				e
			

			

				.
			

			
				i
				n
			

			
				|
				|
				|
				|
				𝑈
				,
				𝑋
				𝜙
			

			

				2
			

			

				=
			

			
				2
				𝑛
			

			

				
			

			
				𝑎
				=
				1
				2
				𝑚
				−
				1
			

			

				
			

			
				𝑖
				=
				1
			

			
				|
				|
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑖
			

			
				
				|
				|
			

			

				2
			

			

				,
			

		
	

					where 
	
		
			
				𝐶
				=
				m
				a
				x
				{
				s
				u
				p
			

			
				
			
			

				𝑈
			

			

				′
			

			
				|
				𝑔
			

			
				𝑖
				𝑗
			

			
				|
				,
				s
				u
				p
			

			
				
			
			

				𝑈
			

			

				′
			

			
				|
				𝜂
			

			

				𝑖
			

			
				|
				∶
				1
				≤
				𝑖
				,
				𝑗
				≤
				2
				𝑚
				−
				1
				}
			

		
	
. Then both integrals in (39) are convergent and the adopted definition is legitimate. 
Example 6 (Example 3 continued).  A weak solution to (33) is a map 
	
		
			
				𝜙
				=
				(
				𝜙
			

			

				
			

			
				,
				𝜙
			

			
				2
				𝑚
				−
				1
			

			
				)
				∶
				𝑈
				→
				𝑈
			

			

				
			

			
				⊂
				⊂
				ℍ
			

			
				𝑚
				−
				1
			

		
	
 such that 
	
		
			

				𝜙
			

			

				
			

			
				∈
				𝑊
			

			
				𝑋
				1
				,
				𝑝
			

			
				(
				𝑈
				,
				ℝ
			

			
				2
				𝑚
				−
				2
			

			

				)
			

		
	
 and 
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			
				2
				𝑛
			

			

				
			

			
				𝑎
				=
				1
			

			

				
			

			

				𝑈
			

			
				|
				|
				𝑋
				𝜙
			

			

				
			

			
				|
				|
			

			
				𝑝
				−
				2
			

			

				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑖
			

			
				
				𝑋
			

			

				𝑎
			

			
				(
				𝜓
				)
				𝑑
				𝑣
				=
				0
				,
				1
				≤
				𝑖
				≤
				2
				𝑚
				−
				2
				,
			

		
	

						for any 
	
		
			
				𝜓
				∈
				𝐶
			

			
				∞
				0
			

			
				(
				𝑈
				)
			

		
	
. We need to recall the following general result, due to Xu and Zuily [24]. Let 
	
		
			
				𝑋
				=
				{
				𝑋
			

			

				1
			

			
				,
				…
				,
				𝑋
			

			

				𝑚
			

			

				}
			

		
	
 be a Hörmander system on an open set 
	
		
			
				𝑈
				⊆
				ℝ
			

			

				𝑁
			

		
	
, 
	
		
			
				𝑁
				≥
				2
			

		
	
, and 
	
		
			
				Ω
				⊂
				ℝ
			

			

				𝑁
			

		
	
 a domain such that 
	
		
			
				𝑈
				⊃
			

			
				
			
			

				Ω
			

		
	
. Let 
	
		
			

				𝑎
			

			
				𝑖
				𝑗
			

			
				(
				𝑥
				,
				𝑦
				)
			

		
	
 be a symmetric and positive definite matrix defined in 
	
		
			
				Ω
				×
				ℝ
			

			

				𝜈
			

		
	
. If 
	
		
			
				|
				𝑓
				(
				𝑥
				,
				𝑦
				,
				𝑝
				)
				|
				≤
				𝑎
				|
				𝑝
				|
			

			

				2
			

			
				+
				𝑏
			

		
	
 for any 
	
		
			
				(
				𝑥
				,
				𝑦
				,
				𝑝
				)
				∈
				Ω
				×
				ℝ
			

			

				𝜈
			

			
				×
				ℝ
			

			
				𝑚
				𝜈
			

		
	
, then any continuous solution 
	
		
			
				𝜙
				=
				(
				𝜙
			

			

				1
			

			
				,
				…
				,
				𝜙
			

			

				𝜈
			

			

				)
			

		
	
 to 
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			

				𝑚
			

			

				
			

			
				𝑖
				,
				𝑗
				=
				1
			

			

				𝑋
			

			
				∗
				𝑗
			

			
				
				𝑎
			

			
				𝑖
				𝑗
			

			
				(
				𝑥
				,
				𝜙
				(
				𝑥
				)
				)
				𝑋
			

			

				𝑖
			

			

				𝜙
			

			

				𝛼
			

			
				
				(
				𝑥
				)
				=
				𝑓
			

			

				𝛼
			

			
				(
				𝑥
				,
				𝜙
				(
				𝑥
				)
				,
				𝑋
				𝜙
				(
				𝑥
				)
				)
				,
				1
				≤
				𝛼
				≤
				𝜈
				,
			

		
	

						in 
	
		
			

				Ω
			

		
	
 is actually smooth. Let us assume that 
	
		
			

				𝑈
			

		
	
 is a domain such that 
	
		
			
				
			
			

				𝑈
			

		
	
 is contained in a coordinate neighborhood in 
	
		
			

				𝑀
			

		
	
. By the result in [24] quoted above.
Proposition 7.  For any weak solution 
	
		
			
				𝜙
				=
				(
				𝜙
			

			

				
			

			
				,
				𝜙
			

			
				2
				𝑚
			

			
				)
				∶
				𝑈
				→
				𝑈
			

			

				
			

			
				⊂
				ℍ
			

			
				𝑚
				−
				1
			

		
	
 to the contact 
	
		
			

				𝑝
			

		
	
-harmonic map system (33) if 
	
		
			

				𝜙
			

			

				
			

			
				∈
				𝐶
			

			

				0
			

			
				(
				𝑈
				,
				ℝ
			

			
				2
				𝑚
				−
				2
			

			

				)
			

		
	
, then 
	
		
			

				𝜙
			

			

				
			

			
				∈
				𝐶
			

			

				∞
			

			
				(
				𝑈
				,
				ℝ
			

			
				2
				𝑚
				−
				2
			

			

				)
			

		
	
. 
 Of course in the particular case 
	
		
			
				𝑝
				=
				2
			

		
	
 any distribution solution 
	
		
			

				𝜙
			

			

				
			

		
	
 is 
	
		
			

				𝐶
			

			

				∞
			

		
	
 (as the operator 
	
		
			

				∑
			

			
				2
				𝑛
				𝑎
				=
				1
			

			

				𝑋
			

			
				∗
				𝑎
			

			

				𝑋
			

			

				𝑎
			

		
	
 is hypoelliptic). 
Example 8 (contact 
	
		
			

				𝑝
			

		
	
-harmonic maps into the sphere). Let 
	
		
			
				𝑁
				=
				𝑆
			

			
				2
				𝑚
				−
				1
			

			
				⊂
				ℝ
			

			
				2
				𝑚
			

		
	
 and let 
	
		
			

				𝑔
			

		
	
 be the canonical Sasakian metric on 
	
		
			

				𝑆
			

			
				2
				𝑚
				−
				1
			

		
	
. Then a 
	
		
			

				𝐶
			

			

				∞
			

		
	
 contact 
	
		
			

				𝑝
			

		
	
-harmonic map 
	
		
			
				𝜙
				=
				(
				𝜙
			

			

				1
			

			
				,
				…
				,
				𝜙
			

			
				2
				𝑚
			

			
				)
				∶
				𝑀
				→
				𝑆
			

			
				2
				𝑚
				−
				1
			

		
	
 is a solution to 
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			
				
				
				𝜑
			

			

				2
			

			

				
			

			
				𝑖
				𝑗
			

			
				
				∘
				𝜙
			

			
				2
				𝑛
			

			

				
			

			
				𝑎
				=
				1
			

			

				𝑋
			

			
				∗
				𝑎
			

			
				
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			

				𝑋
			

			

				𝑎
			

			

				𝜙
			

			

				𝑗
			

			
				
				=
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			
				×
				
				
				
				𝜑
			

			

				2
			

			

				
			

			
				𝑖
				𝑗
			

			
				
				|
				|
				|
				|
				∘
				𝜙
				𝑋
				𝜙
			

			

				2
			

			

				𝜙
			

			

				𝑗
			

			
				+
				2
			

			
				2
				𝑛
			

			

				
			

			
				𝑎
				=
				1
			

			
				
				𝜙
			

			

				∗
			

			
				𝜂
				𝑋
				
				
			

			

				𝑎
			

			
				
				
				𝜑
			

			
				𝑖
				𝑗
			

			
				
				𝑋
				∘
				𝜙
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑗
			

			
				
				
				,
			

		
	

						for any 
	
		
			
				1
				≤
				𝑖
				≤
				2
				𝑚
				−
				1
			

		
	
. Here 
	
		
			
				|
				𝑋
				𝜙
				|
			

			

				2
			

			
				=
				∑
			

			
				2
				𝑚
				𝛽
				=
				1
			

			

				∑
			

			
				2
				𝑛
				𝑎
				=
				1
			

			
				|
				𝑋
			

			

				𝑎
			

			

				𝜙
			

			

				𝛽
			

			

				|
			

			

				2
			

		
	
 and 
	
		
			

				∑
			

			
				2
				𝑚
				𝛽
				=
				1
			

			

				𝜙
			

			
				2
				𝛽
			

			
				=
				1
			

		
	
 with 
	
		
			

				𝜙
			

			

				𝛽
			

			
				=
				𝜙
			

			

				𝛽
			

		
	
, 
	
		
			
				1
				≤
				𝛽
				≤
				2
				𝑚
			

		
	
. Equation (46) follows from (23) by computing the Christoffel symbols of 
	
		
			

				𝑆
			

			
				2
				𝑚
				−
				1
			

		
	
 with respect to the local coordinate system 
							
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			

				𝜒
			

			

				
			

			
				∶
				𝑈
			

			

				
			

			
				→
				ℝ
			

			
				2
				𝑚
				−
				1
			

			
				,
				𝜒
			

			

				
			

			
				(
				𝑥
				)
				=
				𝑥
			

			

				
			

			
				
				𝑥
				,
				𝑥
				=
			

			

				
			

			
				,
				𝑥
			

			
				2
				𝑚
			

			
				
				∈
				𝑈
			

			

				
			

			
				,
				𝑈
			

			

				
			

			
				=
				𝑆
			

			
				2
				𝑚
				−
				1
			

			
				∩
				
				𝑥
			

			
				2
				𝑚
			

			
				
				>
				0
				,
				𝑥
			

			

				
			

			
				=
				
				𝑥
			

			

				1
			

			
				,
				…
				,
				𝑥
			

			
				2
				𝑚
				−
				1
			

			
				
				,
			

		
	

						that is 
							
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				𝑖
				|
				|
				|
				|
				|
				|
				𝑗
				𝑘
				=
				𝑥
			

			

				𝑖
			

			

				𝑔
			

			
				𝑗
				𝑘
			

			
				,
				𝑔
			

			
				𝑗
				𝑘
			

			
				=
				𝛿
			

			
				𝑗
				𝑘
			

			
				+
				𝑥
			

			

				𝑗
			

			

				𝑥
			

			

				𝑘
			

			
				
			
			
				|
				|
				𝑥
				1
				−
			

			

				
			

			
				|
				|
			

			

				2
			

			

				,
			

		
	

						so that 
							
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			
				2
				𝑛
			

			

				
			

			
				𝑎
				=
				1
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
				|
				|
				|
				|
				|
				|
				𝑖
				|
				|
				|
				|
				|
				|
				⎞
				⎟
				⎟
				⎟
				⎠
				𝑋
				𝑗
				𝑘
				∘
				𝜙
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑗
			

			
				
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑘
			

			
				
				=
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				2
			

			

				𝜙
			

			

				𝑖
			

			
				,
				1
				≤
				𝑖
				≤
				2
				𝑚
				−
				1
				.
			

		
	

						On the other hand (cf. [9]) 
							
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				𝑖
				|
				|
				|
				|
				|
				|
				𝑗
				𝑘
				=
				Γ
			

			
				
				𝑖
				𝑗
				𝑘
			

			
				+
				𝜔
			

			
				𝑗
				𝑘
			

			

				𝜉
			

			

				𝑖
			

			
				+
				𝜂
			

			

				𝑗
			

			

				𝜑
			

			
				𝑖
				𝑘
			

			
				+
				𝜂
			

			

				𝑘
			

			

				𝜑
			

			
				𝑖
				𝑗
			

		
	

						so that
							
	
 		
 			
				(
				5
				1
				)
			
 		
	

	
		
			
				⎛
				⎜
				⎜
				⎜
				⎝
				|
				|
				|
				|
				|
				|
				𝑖
				|
				|
				|
				|
				|
				|
				⎞
				⎟
				⎟
				⎟
				⎠
				𝑋
				𝑗
				𝑘
				∘
				𝜙
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑗
			

			
				
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑘
			

			
				
				=
				
				Γ
			

			
				
				𝑖
				𝑗
				𝑘
			

			
				
				𝑋
				∘
				𝜙
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑗
			

			
				
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑘
			

			
				
				
				𝜙
				+
				2
			

			

				∗
			

			
				𝜂
				𝑋
				
				
			

			

				𝑎
			

			
				
				
				𝜑
			

			
				𝑖
				𝑗
			

			
				
				𝑋
				∘
				𝜙
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑗
			

			

				
			

		
	

						for any Sasakian metric 
	
		
			

				𝑔
			

		
	
. When 
	
		
			
				𝑁
				=
				𝑆
			

			
				2
				𝑚
				−
				1
			

		
	
, the identities (49)–(51) lead to 
							
	
 		
 			
				(
				5
				2
				)
			
 		
	

	
		
			
				2
				𝑛
			

			

				
			

			
				𝑎
				=
				1
			

			
				
				Γ
			

			
				
				𝑖
				𝑗
				𝑘
			

			
				
				𝑋
				∘
				𝜙
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑗
			

			
				
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑘
			

			
				
				=
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				2
			

			

				𝜙
			

			

				𝑖
			

			

				−
			

			
				2
				𝑛
			

			

				
			

			
				𝑎
				=
				1
			

			
				2
				
				𝜙
			

			

				∗
			

			
				𝜂
				𝑋
				
				
			

			

				𝑎
			

			
				
				
				𝜑
			

			
				𝑖
				𝑗
			

			
				
				𝑋
				∘
				𝜙
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑗
			

			

				
			

		
	

						and then to (46) by taking into account that 
	
		
			

				𝜑
			

		
	
 is an 
	
		
			

				𝑓
			

		
	
-structure on 
	
		
			

				𝑆
			

			
				2
				𝑚
				−
				1
			

		
	
; that is, 
	
		
			

				𝜑
			

			

				3
			

			
				+
				𝜑
				=
				0
			

		
	
. Our next purpose in this example is to prove the following result.
Proposition 9.  Let 
	
		
			
				𝜙
				∶
				ℍ
			

			

				𝑛
			

			
				→
				𝑆
			

			
				2
				𝑚
				−
				1
			

		
	
 be a horizontal map. Then 
	
		
			

				𝜙
			

		
	
 is contact 
	
		
			

				𝑝
			

		
	
-harmonic if and only if 
	
		
			

				𝜙
			

		
	
 is subelliptic 
	
		
			

				𝑝
			

		
	
-harmonic with respect to the canonical Hörmander system 
	
		
			
				𝑋
				=
				{
				𝑋
			

			

				𝛾
			

			
				,
				𝑌
			

			

				𝛾
			

			
				∶
				1
				≤
				𝛾
				≤
				𝑛
				}
			

		
	
 on 
	
		
			

				ℍ
			

			

				𝑛
			

		
	
. 
 According to [7] given a Hörmander system of vector fields 
	
		
			
				{
				𝑋
			

			

				𝑎
			

			

				}
			

		
	
 defined on an open set 
	
		
			
				𝑂
				⊆
				ℝ
			

			

				𝑁
			

		
	
, one may adopt the following. 
Definition 10. A subelliptic 
	
		
			

				𝑝
			

		
	
-harmonic map is a 
	
		
			

				𝐶
			

			

				∞
			

		
	
 solution 
	
		
			
				𝜙
				∶
				𝑂
				→
				ℝ
			

			
				2
				𝑚
			

		
	
 to the system (the formal adjoint of 
	
		
			

				𝑋
			

			

				𝑎
			

		
	
 in [7] is 
	
		
			
				−
				𝑋
			

			
				∗
				𝑎
			

		
	
 under the conventions adopted in the present paper)
	
 		
 			
				(
				5
				3
				)
			
 		
	

	
		
			

				
			

			

				𝑎
			

			

				𝑋
			

			
				∗
				𝑎
			

			
				
				|
				|
				|
				|
				𝑋
				𝜙
			

			
				𝑝
				−
				2
			

			

				𝑋
			

			

				𝑎
			

			

				𝜙
			

			

				𝛼
			

			
				
				=
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				𝑝
			

			

				𝜙
			

			

				𝛼
			

			
				,
				1
				≤
				𝛼
				≤
				2
				𝑚
				,
			

		
	

						such that 
	
		
			

				∑
			

			
				2
				𝑚
				𝛼
				=
				1
			

			

				𝜙
			

			
				2
				𝛼
			

			
				=
				1
			

		
	
. 
 A horizontal map is a smooth map 
	
		
			
				𝜙
				∶
				ℍ
			

			

				𝑛
			

			
				→
				𝑆
			

			
				2
				𝑚
				−
				1
			

		
	
 such that 
						
	
 		
 			
				(
				5
				4
				)
			
 		
	

	
		
			

				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑖
			

			
				𝜂
				
				
			

			

				𝑖
			

			
				
				∘
				𝜙
				=
				0
				,
				1
				≤
				𝑎
				≤
				2
				𝑛
				.
			

		
	

					One may define weak solutions 
	
		
			
				𝜙
				∶
				ℍ
			

			

				𝑛
			

			
				→
				𝑈
			

			

				
			

		
	
 to (54) by requiring that 
	
		
			

				𝜙
			

			

				𝑖
			

			
				∈
				𝑊
			

			
				𝑋
				1
				,
				𝑝
			

			
				(
				𝑈
				)
			

		
	
 for some 
	
		
			
				1
				≤
				𝑝
				<
				∞
			

		
	
 and that (54) holds a.e. in 
	
		
			

				𝑈
			

		
	
. Then the statement in Proposition 9 holds for weak solutions of the relevant equations as well. In particular, by a result in [7], any weak horizontal contact 
	
		
			

				𝑝
			

		
	
-harmonic map 
	
		
			
				𝜙
				∶
				ℍ
			

			

				𝑛
			

			
				→
				𝑈
			

			

				
			

		
	
 is locally Hölder continuous provided that 
	
		
			
				𝑝
				≥
				2
				𝑛
				+
				2
			

		
	
. 
 The proof of Proposition 9 is to write (46) in the form (53). We need the following. 
Lemma 11.  Let 
	
		
			

				𝑀
			

		
	
 be a strictly pseudoconvex CR manifold. A smooth map 
	
		
			
				𝜙
				∶
				𝑀
				→
				𝑆
			

			
				2
				𝑚
				−
				1
			

		
	
 is contact 
	
		
			

				𝑝
			

		
	
-harmonic if and only if
							
	
 		
 			
				(
				5
				5
				)
			
 		
	

	
		
			

				−
			

			
				2
				𝑛
			

			

				
			

			
				𝑎
				=
				1
			

			

				𝑋
			

			
				∗
				𝑎
			

			
				
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			
				
				
				𝜑
			

			

				2
			

			

				
			

			
				𝑖
				𝑗
			

			
				
				𝑋
				∘
				𝜙
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑗
			

			
				
				
				=
				𝑄
				(
				𝜙
				)
			

			
				𝑝
				/
				2
			

			

				𝜙
			

			

				𝑖
			

			

				,
			

		
	

						for any 
	
		
			
				1
				≤
				𝑖
				≤
				2
				𝑚
				−
				1
			

		
	
 and any local orthonormal frame 
	
		
			
				{
				𝑋
			

			

				𝑎
			

			
				∶
				1
				≤
				𝑎
				≤
				2
				𝑛
				}
			

		
	
 of 
	
		
			

				𝐻
			

		
	
. 
 By (14) if 
	
		
			
				𝜙
				∶
				𝑀
				→
				𝑆
			

			
				2
				𝑚
				−
				1
			

		
	
 is a horizontal map, then 
	
		
			
				𝑄
				(
				𝜙
				)
				=
				|
				𝑋
				𝜙
				|
			

			

				2
			

		
	
 and one may readily check that (55) is equivalent to (53) for any 
	
		
			
				1
				≤
				𝑖
				≤
				2
				𝑚
				−
				1
			

		
	
. Of course the component 
	
		
			

				𝜙
			

			
				2
				𝑚
			

		
	
 will satisfy (53) as well (as a consequence of the constraint 
	
		
			

				∑
			

			
				2
				𝑛
				𝛼
				=
				1
			

			

				𝜙
			

			
				2
				𝛼
			

			
				=
				1
			

		
	
). To prove Lemma 11, let us multiply (46) by a test function 
	
		
			
				𝜓
				∈
				𝐶
			

			
				∞
				0
			

			
				(
				𝑈
				)
			

		
	
 and integrate over 
	
		
			

				𝑈
			

		
	
. The left-hand side of the resulting equation is 
						
	
 		
 			
				(
				5
				6
				)
			
 		
	

	
		
			

				
			

			

				𝑎
			

			

				
			

			

				𝑈
			

			
				
				𝜑
			

			

				2
			

			

				
			

			
				𝑖
				𝑗
			

			

				𝑋
			

			
				∗
				𝑎
			

			
				
				𝜌
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑗
			

			
				=
				
				
				
				𝜓
				𝑑
				𝑣
			

			

				𝑎
			

			
				
				𝜌
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑗
			

			
				
				𝑋
			

			

				𝑎
			

			
				
				
				𝜑
			

			

				2
			

			

				
			

			
				𝑖
				𝑗
			

			
				𝜓
				
				=
				
				𝑑
				𝑣
			

			

				𝑎
			

			
				
				𝜌
				
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑗
			

			
				𝜑
				
				
			

			

				2
			

			

				
			

			
				𝑖
				𝑗
			

			

				𝑋
			

			

				𝑎
			

			
				(
				𝜓
				)
				+
				𝜓
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑗
			

			
				
				𝑋
			

			

				𝑎
			

			
				
				
				𝜑
			

			

				2
			

			

				
			

			
				𝑖
				𝑗
			

			
				=
				
				∘
				𝜙
				
				
				𝑑
				𝑣
			

			

				𝑎
			

			
				
				⎧
				⎪
				⎨
				⎪
				⎩
				𝑋
			

			
				∗
				𝑎
			

			
				
				𝜌
				
				
				𝜑
			

			

				2
			

			

				
			

			
				𝑖
				𝑗
			

			
				
				𝑋
				∘
				𝜙
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑗
			

			
				
				
				𝜓
				+
				𝜌
				𝜓
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑗
			

			
				
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑘
			

			
				
				𝜕
				
				𝜑
			

			

				2
			

			

				
			

			
				𝑖
				𝑗
			

			
				
			
			
				𝜕
				𝑥
			

			
				
				𝑘
			

			
				⎫
				⎪
				⎬
				⎪
				⎭
				𝑑
				𝑣
				,
			

		
	

					where 
	
		
			
				𝜌
				=
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

		
	
. Then (by (37))
						
	
 		
 			
				(
				5
				7
				)
			
 		
	

	
		
			

				
			

			

				𝑎
			

			

				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑗
			

			
				
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑘
			

			
				
				𝜕
				
				𝜑
			

			

				2
			

			

				
			

			
				𝑖
				𝑗
			

			
				
			
			
				𝜕
				𝑥
			

			
				
				𝑘
			

			
				=
				
			

			

				𝑎
			

			

				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑗
			

			
				
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑘
			

			
				
				
				𝜉
			

			

				𝑖
			

			

				𝜂
			

			

				ℓ
			

			

				Γ
			

			

				′
			

			
				ℓ
				𝑘
				𝑗
			

			
				−
				𝜂
			

			

				𝑗
			

			

				𝜉
			

			

				ℓ
			

			

				Γ
			

			
				
				𝑖
				𝑘
				ℓ
			

			
				
				=
				(
			

			
				b
				y
			

			
				(
				5
				2
				)
			

			
				a
				n
				d
			

			
				(
				5
				0
				)
				)
				=
				𝜉
			

			

				𝑖
			

			

				𝜂
			

			

				ℓ
			

			
				
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				2
			

			

				𝜙
			

			

				ℓ
			

			
				
				−
				2
			

			

				𝑎
			

			

				𝜂
			

			

				𝑗
			

			

				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑗
			

			
				
				𝜑
			

			
				ℓ
				𝑘
			

			

				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑘
			

			
				
				
				−
				
			

			

				𝑎
			

			

				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑗
			

			
				
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑘
			

			
				
				𝜂
			

			

				𝑗
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
				|
				|
				|
				|
				|
				|
				𝑖
				|
				|
				|
				|
				|
				|
				𝜉
				𝑘
				ℓ
			

			

				ℓ
			

			
				−
				𝜑
			

			
				𝑖
				𝑘
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				=
				𝜉
			

			

				𝑖
			

			

				𝜂
			

			

				ℓ
			

			

				𝜙
			

			

				ℓ
			

			
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				2
			

			
				+
				
			

			

				𝑎
			

			
				
				𝜂
			

			

				𝑗
			

			

				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑗
			

			
				
				𝜑
			

			
				𝑖
				𝑘
			

			

				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑘
			

			
				
				−
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑗
			

			
				
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑘
			

			
				
				𝜂
			

			

				𝑗
			

			

				𝜂
			

			

				𝑘
			

			

				𝜙
			

			

				𝑖
			

			
				
				,
			

		
	

					hence (46) implies 
						
	
 		
 			
				(
				5
				8
				)
			
 		
	

	
		
			

				
			

			

				𝑎
			

			

				𝑋
			

			
				∗
				𝑎
			

			
				
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			
				
				
				𝜑
			

			

				2
			

			

				
			

			
				𝑖
				𝑗
			

			
				
				𝑋
				∘
				𝜙
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑗
			

			
				
				
				=
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			
				
				−
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				2
			

			
				+
				
			

			

				𝑎
			

			
				
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑗
			

			
				𝜂
				
				
			

			

				𝑗
			

			
				∘
				𝜙
				
				
			

			

				2
			

			
				
				𝜙
			

			

				𝑖
			

		
	

					which yields (55) because on the sphere 
						
	
 		
 			
				(
				5
				9
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				𝑄
				(
				𝜙
				)
				=
				𝑋
				𝜙
			

			

				2
			

			
				−
				‖
				‖
				Π
			

			

				𝐻
			

			

				𝜙
			

			

				∗
			

			
				𝜂
				‖
				‖
			

			

				2
			

			

				.
			

		
	

					Lemma 11 is proved.
The notion of a weak contact harmonic map as introduced above is confined to maps 
	
		
			
				𝜙
				∶
				𝑀
				→
				𝑁
			

		
	
 such that the target contact Riemannian manifold 
	
		
			

				𝑁
			

		
	
 is covered by a single coordinate neighborhood. Another natural approach (customary in the theory of harmonic maps among Riemannian manifolds, cf., e.g., [4, page 38]) is to use Nash's embedding theorem (cf. [25]) in order to embed isometrically the target manifold 
	
		
			

				𝑁
			

		
	
 into some Euclidean space 
	
		
			

				ℝ
			

			

				𝐾
			

		
	
 and produce an alternative first variation formula (cf. Theorem 2.22 in [26, page 139]) depending however on the embedding 
	
		
			
				𝑁
				↪
				ℝ
			

			

				𝐾
			

		
	
. 
 A generalization of Nash's embedding theorem to the context of contact Riemannian geometry has been obtained by D'Ambra [27]. Let 
	
		
			

				ℍ
			

			

				𝐿
			

			
				≈
				ℂ
			

			

				𝐿
			

			
				×
				ℝ
			

		
	
 be the Heisenberg group equipped with the standard Sasakian structure 
	
		
			
				(
				𝜑
			

			

				0
			

			
				,
				𝜉
			

			

				0
			

			
				,
				𝜂
			

			

				0
			

			
				,
				𝑔
			

			

				0
			

			

				)
			

		
	
. Let 
	
		
			
				(
				𝑁
				,
				(
				𝜑
				,
				𝜉
				,
				𝜂
				,
				𝑔
				)
				)
			

		
	
 be a contact Riemannian manifold. By a result in [27], if 
	
		
			

				𝑁
			

		
	
 is compact and 
	
		
			
				𝐿
				≥
				d
				i
				m
				(
				𝑁
				)
				+
				1
			

		
	
, there is a 
	
		
			

				𝐶
			

			

				1
			

		
	
-embedding 
	
		
			
				𝜄
				∶
				𝑁
				→
				ℍ
			

			

				𝐿
			

		
	
 which is both horizontal, that is, 
	
		
			

				𝜄
			

			

				∗
			

			

				𝐻
			

			

				
			

			
				⊂
				𝜄
			

			
				−
				1
			

			
				K
				e
				r
				(
				𝜂
			

			

				0
			

			

				)
			

		
	
, and isometric in the sense that 
	
		
			

				𝜄
			

		
	
 preserves the Levi forms 
						
	
 		
 			
				(
				6
				0
				)
			
 		
	

	
		
			

				𝑔
			

			

				𝑝
			

			
				(
				𝑣
				,
				𝑤
				)
				=
				𝑔
			

			
				0
				,
				𝜄
				(
				𝑝
				)
			

			
				𝑑
				
				
			

			

				𝑝
			

			
				𝜄
				
				
				𝑑
				𝑣
				,
			

			

				𝑝
			

			
				𝜄
				
				𝑤
				
				,
				𝑣
				,
				𝑤
				∈
				𝐻
			

			
				
				𝑝
			

			
				,
				𝑝
				∈
				𝑁
				.
			

		
	

					Any contact Riemannian manifold 
	
		
			

				𝑁
			

		
	
 is in particular a sub-Riemannian manifold (in the sense of [28]); hence 
	
		
			

				𝑁
			

		
	
 carries the Carnot-Carathéodory metric 
	
		
			

				𝑑
			

			

				𝑁
			

			
				∶
				𝑁
				×
				𝑁
				→
				[
				0
				,
				+
				∞
				)
			

		
	
 associated to the sub-Riemannian structure 
	
		
			
				(
				𝐻
			

			

				
			

			
				,
				𝑔
				)
			

		
	
. In particular 
	
		
			

				𝜄
			

		
	
 is an isometry among the metric spaces 
	
		
			
				(
				𝑁
				,
				𝑑
			

			

				𝑁
			

			

				)
			

		
	
 and 
	
		
			
				(
				ℍ
			

			

				𝐿
			

			
				,
				𝑑
			

			

				𝑋
			

			

				)
			

		
	
 (cf. Section 7 for the definition of the distance function 
	
		
			

				𝑑
			

			

				𝑋
			

			
				∶
				ℍ
			

			

				𝐿
			

			
				×
				ℍ
			

			

				𝐿
			

			
				×
				[
				0
				,
				+
				∞
				)
			

		
	
). As 
	
		
			

				ℍ
			

			

				𝐿
			

		
	
 also possesses a linear space structure, the methods in [29] (methods of direct infinitesimal geometry) become available on a contact Riemannian manifold (e.g., one may merely use the balls with respect to 
	
		
			

				𝑑
			

			

				𝑁
			

		
	
 and the linear structure of the ambient space 
	
		
			

				ℍ
			

			

				𝐿
			

		
	
 to reformulate on 
	
		
			

				𝑁
			

		
	
 Definition 2.1 in [29, page 280]) and we conjecture that the arguments in [29] may be recovered to study the equation 
	
		
			

				Δ
			

			

				𝑏
			

			
				𝑢
				=
				0
			

		
	
 on a strictly pseudoconvex CR manifold (the theory in [29] only deals with second order degenerate elliptic equations on domains in 
	
		
			

				ℝ
			

			

				𝑛
			

		
	
). Unfortunately the existence of 
	
		
			

				𝐶
			

			

				1
			

		
	
-embeddings of given contact structures is not sufficient for differential geometric purposes, as long as Gauss and Weingarten formulae (which require two derivatives of 
	
		
			

				𝜄
			

		
	
) are involved. The problem of improving D'Ambra's proof (to get a horizontal embedding of class at least 
	
		
			

				𝐶
			

			

				2
			

		
	
) is open.
4. Contact Harmonic Maps into Spheres
 Let 
	
		
			
				Ω
				⊂
				ℝ
			

			

				𝑁
			

		
	
 be a bounded open set and 
	
		
			
				𝑋
				=
				{
				𝑋
			

			

				1
			

			
				,
				…
				,
				𝑋
			

			

				𝑚
			

			

				}
			

		
	
 a Hörmander system of vector fields 
	
		
			

				𝑋
			

			

				𝑎
			

			
				=
				𝑏
			

			
				𝐴
				𝑎
			

			
				(
				𝑥
				)
				𝜕
				/
				𝜕
				𝑥
			

			

				𝐴
			

			
				∈
				𝔛
				(
				ℝ
			

			

				𝑁
			

			

				)
			

		
	
 such that 
	
		
			

				𝑏
			

			
				𝐴
				𝑎
			

			
				∈
				𝐶
			

			

				∞
			

			
				(
				ℝ
			

			

				𝑁
			

			
				)
				∩
			

			
				L
				i
				p
			

			
				(
				ℝ
			

			

				𝑁
			

			

				)
			

		
	
. We recall (cf., e.g., [9, page 261]) the following.
Definition 12. A number 
	
		
			

				𝐷
			

		
	
 is a homogeneous dimension relative to 
	
		
			

				Ω
			

		
	
 with respect to 
	
		
			

				𝑋
			

		
	
 if there is a constant 
	
		
			
				𝐶
				>
				0
			

		
	
 such that 
							
	
 		
 			
				(
				6
				1
				)
			
 		
	

	
		
			
				|
				|
				𝐵
			

			

				𝑋
			

			
				|
				|
				(
				𝑥
				,
				𝑟
				)
			

			
				
			
			
				|
				|
				𝐵
			

			

				𝑋
			

			
				
				𝑥
			

			

				0
			

			
				,
				𝑟
			

			

				0
			

			
				
				|
				|
				
				𝑟
				≥
				𝐶
			

			
				
			
			

				𝑟
			

			

				0
			

			

				
			

			

				𝐷
			

		
	

						for any Carnot-Carathéodory ball 
	
		
			

				𝐵
			

			

				0
			

			
				=
				𝐵
			

			

				𝑋
			

			
				(
				𝑥
			

			

				0
			

			
				,
				𝑟
			

			

				0
			

			

				)
			

		
	
 of center 
	
		
			

				𝑥
			

			

				0
			

			
				∈
				Ω
			

		
	
 and radius 
	
		
			
				0
				<
				𝑟
			

			

				0
			

			
				≤
				d
				i
				a
				m
				(
				Ω
				)
			

		
	
 and any Carnot-Carathéodory ball 
	
		
			
				𝐵
				=
				𝐵
			

			

				𝑋
			

			
				(
				𝑥
				,
				𝑟
				)
			

		
	
 of center 
	
		
			
				𝑥
				∈
				𝐵
			

			

				0
			

		
	
 and radius 
	
		
			
				0
				<
				𝑟
				≤
				𝑟
			

			

				0
			

		
	
. 
 The diameter of 
	
		
			

				Ω
			

		
	
 is meant with respect to the Carnot-Carathéodory metric associated to 
	
		
			

				𝑋
			

		
	
. Hajłasz and Strzelecki [7] studied local properties of weak solutions to the system (53). Their main finding is that every weak subelliptic 
	
		
			

				𝐷
			

		
	
-harmonic map 
	
		
			
				𝜙
				∈
				𝑊
			

			
				𝑋
				1
				,
				𝐷
			

			
				(
				Ω
				,
				𝑆
			

			

				𝜈
			

			

				)
			

		
	
 (i.e., every weak solution to (53) with 
	
		
			
				𝑝
				=
				𝐷
			

		
	
) is locally Hölder continuous. Maps 
	
		
			
				𝜙
				∶
				Ω
				→
				𝑆
			

			

				𝜈
			

		
	
 with values in a unit sphere 
	
		
			

				𝑆
			

			

				𝜈
			

			
				⊂
				ℝ
			

			
				𝜈
				+
				1
			

		
	
 have a special status due to the fact that the subelliptic harmonic map system (here (53)) may be written in a simple form using an approach commonly referred to as the Frédéric Hélein trick (cf. [7, page 353], see also Hélein [30]). The purpose of this section is to start a study of weak solutions to the system (55) following the ideas in [7] though confined to maps 
	
		
			
				𝜙
				∶
				ℍ
			

			

				𝑛
			

			
				→
				𝑆
			

			
				2
				𝑚
				−
				1
			

		
	
 which are “close to horizontal” in a sense to be made precise in the sequel. 
 Let 
	
		
			

				ℍ
			

			

				𝑛
			

		
	
 be the Heisenberg group equipped with the standard contact form 
	
		
			
				∑
				𝜃
				=
				𝑑
				𝑡
				+
				𝑖
			

			
				𝑛
				𝛾
				=
				1
			

			
				(
				𝑧
			

			

				𝛾
			

			

				𝑑
			

			
				
			
			

				𝑧
			

			

				𝛾
			

			

				−
			

			
				
			
			

				𝑧
			

			

				𝛾
			

			
				𝑑
				𝑧
			

			

				𝛾
			

			

				)
			

		
	
. Let 
	
		
			
				𝑈
				⊆
				ℍ
			

			

				𝑛
			

		
	
 be a bounded domain. Let 
	
		
			
				{
				𝑋
			

			

				𝑎
			

			
				∶
				1
				≤
				𝑎
				≤
				2
				𝑛
				}
				=
				{
				𝑋
			

			

				𝛾
			

			
				,
				𝑌
			

			

				𝛾
			

			
				∶
				1
				≤
				𝛾
				≤
				𝑛
				}
			

		
	
 be the 
	
		
			

				𝐺
			

			

				𝜃
			

		
	
-orthonormal frame given by 
	
		
			

				𝑋
			

			

				𝛾
			

			
				=
				𝜕
				/
				𝜕
				𝑥
			

			

				𝛾
			

			
				+
				2
				𝑦
			

			

				𝛾
			

			

				𝑇
			

		
	
 and 
	
		
			

				𝑌
			

			

				𝛾
			

			
				=
				𝜕
				/
				𝜕
				𝑦
			

			

				𝛾
			

			
				−
				2
				𝑥
			

			

				𝛾
			

			

				𝑇
			

		
	
, where 
	
		
			
				𝑇
				=
				𝜕
				/
				𝜕
				𝑡
			

		
	
 as in Example 3. Clearly the coefficients of the 
	
		
			

				𝑋
			

			

				𝑎
			

		
	
's lie in 
	
		
			

				𝐶
			

			

				∞
			

			
				(
				ℝ
			

			
				2
				𝑛
				+
				1
			

			
				)
				∩
			

			
				L
				i
				p
			

			
				(
				ℝ
			

			
				2
				𝑛
				+
				1
			

			

				)
			

		
	
. We recall that an absolutely continuous curve 
	
		
			
				𝛾
				∶
				[
				0
				,
				𝜏
				]
				→
				ℍ
			

			

				𝑛
			

		
	
 is admissible if 
						
	
 		
 			
				(
				6
				2
				)
			
 		
	

	
		
			
				𝑑
				𝛾
			

			
				
			
			
				𝑑
				𝑡
				(
				𝑡
				)
				=
			

			
				2
				𝑛
			

			

				
			

			
				𝑎
				=
				1
			

			

				𝑢
			

			

				𝑎
			

			
				(
				𝑡
				)
				𝑋
			

			

				𝑎
			

			
				(
				𝛾
				(
				𝑡
				)
				)
			

		
	

					for some functions 
	
		
			

				𝑢
			

			

				𝑎
			

			
				(
				𝑡
				)
			

		
	
 such that 
	
		
			

				∑
			

			
				2
				𝑛
				𝑎
				=
				1
			

			

				𝑢
			

			

				𝑎
			

			
				(
				𝑡
				)
			

			

				2
			

			
				≤
				1
			

		
	
. 
Definition 13. The Carnot-Carathéodory distance 
	
		
			

				𝑑
			

			

				𝑋
			

			
				(
				𝑥
				,
				𝑦
				)
			

		
	
 among two points 
	
		
			
				𝑥
				,
				𝑦
				∈
				ℍ
			

			

				𝑛
			

		
	
 is the infimum of all 
	
		
			
				𝜏
				>
				0
			

		
	
 for which there exists an admissible curve 
	
		
			
				𝛾
				∶
				[
				0
				,
				𝜏
				]
				→
				ℍ
			

			

				𝑛
			

		
	
 such that 
	
		
			
				𝛾
				(
				0
				)
				=
				𝑥
			

		
	
 and 
	
		
			
				𝛾
				(
				𝜏
				)
				=
				𝑦
			

		
	
. Balls with respect to 
	
		
			

				𝑑
			

			

				𝑋
			

			
				∶
				ℍ
			

			

				𝑛
			

			
				×
				ℍ
			

			

				𝑛
			

			
				→
				[
				0
				,
				+
				∞
				)
			

		
	
 are denoted by 
	
		
			

				𝐵
			

			

				𝑋
			

			
				(
				𝑥
				,
				𝑟
				)
				=
				{
				𝑦
				∈
				ℍ
			

			

				𝑛
			

			
				∶
				𝑑
			

			

				𝑋
			

			
				(
				𝑥
				,
				𝑦
				)
				<
				𝑟
				}
			

		
	
 and referred to as Carnot-Carathéodory balls.
 We shall characterize horizontal maps in terms of the first order differential operator 
						
	
 		
 			
				(
				6
				3
				)
			
 		
	

	
		
			

				𝐿
			

			

				𝑎
			

			
				𝑢
				=
				𝑢
			

			
				𝑚
				+
				𝛼
			

			

				𝑋
			

			

				𝑎
			

			
				
				𝑢
			

			

				𝛼
			

			
				
				−
				𝑢
			

			

				𝛼
			

			

				𝑋
			

			

				𝑎
			

			
				
				𝑢
			

			
				𝑚
				+
				𝛼
			

			

				
			

		
	

					defined for 
	
		
			
				𝑢
				=
				(
				𝑢
			

			

				1
			

			
				,
				…
				,
				𝑢
			

			
				2
				𝑚
			

			
				)
				∈
				𝑊
			

			
				𝑋
				1
				,
				𝑝
			

			
				(
				𝑈
				,
				ℝ
			

			
				2
				𝑚
			

			

				)
			

		
	
. 
Proposition 14.  Let 
	
		
			
				𝜙
				∶
				𝑈
				→
				𝑈
			

			

				
			

			
				=
				𝑆
			

			
				2
				𝑚
				−
				1
			

			
				∩
				{
				𝑥
			

			
				2
				𝑚
			

			
				>
				0
				}
				⊂
				ℝ
			

			
				2
				𝑚
			

		
	
 be a map such that 
	
		
			

				𝜙
			

			

				𝐴
			

			
				∈
				𝑊
			

			
				𝑋
				1
				,
				𝑝
			

			
				(
				𝑈
				)
			

		
	
 for any 
	
		
			
				1
				≤
				𝐴
				≤
				2
				𝑚
			

		
	
. Then 
	
		
			
				𝜙
				∶
				𝑈
				→
				𝑈
			

			

				
			

		
	
 is a (weak) horizontal map if and only if 
	
		
			

				𝐿
			

			

				𝑎
			

			
				𝜙
				=
				0
			

		
	
 for any 
	
		
			
				1
				≤
				𝑎
				≤
				2
				𝑛
			

		
	
. 
 Let 
	
		
			
				(
				𝑧
			

			

				1
			

			
				,
				…
				,
				𝑧
			

			

				𝑚
			

			

				)
			

		
	
 be the natural complex coordinates on 
	
		
			

				ℂ
			

			

				𝑚
			

		
	
 and set 
	
		
			

				𝑧
			

			

				𝛼
			

			
				=
				𝑥
			

			

				𝛼
			

			
				+
				𝑖
				𝑦
			

			

				𝛼
			

		
	
 and 
	
		
			
				(
				𝑥
			

			

				1
			

			
				,
				…
				,
				𝑥
			

			
				2
				𝑚
			

			
				)
				=
				(
				𝑥
			

			

				1
			

			
				,
				…
				,
				𝑥
			

			

				𝑚
			

			
				,
				𝑦
			

			

				1
			

			
				,
				…
				,
				𝑦
			

			

				𝑚
			

			

				)
			

		
	
. The following conventions are adopted as to the range of indices:
						
	
 		
 			
				(
				6
				4
				)
			
 		
	

	
		
			
				1
				≤
				𝐴
				,
				𝐵
				,
				⋯
				≤
				2
				𝑚
				,
				1
				≤
				𝑖
				,
				𝑗
				,
				⋯
				≤
				2
				𝑚
				−
				1
				,
				1
				≤
				𝛼
				,
				𝛽
				,
				⋯
				≤
				𝑚
				,
				1
				≤
				𝑟
				,
				𝑠
				,
				⋯
				≤
				𝑚
				−
				1
				.
			

		
	

					Let 
	
		
			
				𝜈
				=
				𝑥
			

			

				𝛼
			

			
				𝜕
				/
				𝜕
				𝑥
			

			

				𝛼
			

			
				+
				𝑦
			

			

				𝛼
			

			
				𝜕
				/
				𝜕
				𝑦
			

			

				𝛼
			

			
				∈
				𝔛
			

			

				∞
			

			
				(
				ℝ
			

			
				2
				𝑚
			

			

				)
			

		
	
 so that the pointwise restriction of 
	
		
			

				𝜈
			

		
	
 to 
	
		
			

				𝑆
			

			
				2
				𝑚
				−
				1
			

		
	
 is a unit normal field on 
	
		
			

				𝑆
			

			
				2
				𝑚
				−
				1
			

		
	
. Let 
	
		
			

				𝐽
			

			

				0
			

		
	
 be the complex structure on 
	
		
			

				ℂ
			

			

				𝑚
			

		
	
. Then 
	
		
			
				𝜉
				∈
				𝔛
			

			

				∞
			

			
				(
				𝑆
			

			
				2
				𝑚
				−
				1
			

			

				)
			

		
	
 given by 
	
		
			
				(
				𝑑
			

			

				𝑥
			

			
				𝜄
				)
				𝜉
			

			

				𝑥
			

			
				=
				𝐽
			

			
				0
				,
				𝑥
			

			

				𝜈
			

			

				𝑥
			

		
	
 for any 
	
		
			
				𝑥
				∈
				𝑆
			

			
				2
				𝑚
				−
				1
			

		
	
 is the Reeb vector field on 
	
		
			

				𝑆
			

			
				2
				𝑚
				−
				1
			

		
	
. Here 
	
		
			
				𝜄
				∶
				𝑆
			

			
				2
				𝑚
				−
				1
			

			
				→
				ℝ
			

			
				2
				𝑚
			

		
	
 is the inclusion. With respect to the local chart 
	
		
			

				𝜒
			

			

				
			

			
				=
				(
				𝑥
			

			

				1
			

			
				,
				…
				,
				𝑥
			

			
				2
				𝑚
				−
				1
			

			

				)
			

		
	
 in Example 8 the Reeb vector 
	
		
			

				𝜉
			

		
	
 is given by
						
	
 		
 			
				(
				6
				5
				)
			
 		
	

	
		
			

				𝜉
			

			

				𝛼
			

			
				=
				−
				𝑦
			

			

				𝛼
			

			
				,
				𝜉
			

			
				𝑚
				+
				𝑟
			

			
				=
				𝑥
			

			

				𝑟
			

			

				.
			

		
	

					Then 
	
		
			

				𝜂
			

			

				𝑖
			

			
				=
				𝑔
			

			
				𝑖
				𝑗
			

			

				𝜉
			

			

				𝑗
			

		
	
 together with (48) in Example 8 leads to
						
	
 		
 			
				(
				6
				6
				)
			
 		
	

	
		
			

				𝜂
			

			

				𝛼
			

			
				=
				−
				𝑦
			

			

				𝛼
			

			
				−
				𝑥
			

			

				𝑚
			

			
				
			
			

				𝑦
			

			

				𝑚
			

			

				𝑥
			

			

				𝛼
			

			
				,
				𝜂
			

			
				𝑚
				+
				𝑟
			

			
				=
				𝑥
			

			

				𝑟
			

			
				−
				𝑥
			

			

				𝑚
			

			
				
			
			

				𝑦
			

			

				𝑚
			

			

				𝑦
			

			

				𝑟
			

			

				.
			

		
	

					Finally (66) implies that 
	
		
			

				𝑋
			

			

				𝑎
			

			
				(
				𝜙
			

			

				𝑖
			

			
				)
				(
				𝜂
			

			

				𝑖
			

			
				∘
				𝜙
				)
				=
				−
				𝐿
			

			

				𝑎
			

			

				𝜙
			

		
	
. Proposition 14 is proved. In particular 
	
		
			
				𝑄
				(
				𝜙
				)
			

		
	
 may be written as 
						
	
 		
 			
				(
				6
				7
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				𝑄
				(
				𝜙
				)
				=
				𝑋
				𝜙
			

			

				2
			

			

				−
			

			
				2
				𝑛
			

			

				
			

			
				𝑎
				=
				1
			

			
				|
				|
				𝐿
			

			

				𝑎
			

			
				𝜙
				|
				|
			

			

				2
			

			

				.
			

		
	

					Our next task is to put (55) into a more tractable form. 
Proposition 15.  Let 
	
		
			
				𝜙
				=
				(
				𝜙
			

			

				1
			

			
				,
				…
				,
				𝜙
			

			
				2
				𝑚
			

			
				)
				∶
				𝑈
				→
				𝑈
			

			

				
			

		
	
 such that 
	
		
			

				𝜙
			

			

				𝐴
			

			
				∈
				𝑊
			

			
				𝑋
				1
				,
				𝑝
			

			
				(
				𝑈
				)
			

		
	
. Let us consider the functions 
							
	
 		
 			
				(
				6
				8
				)
			
 		
	

	
		
			

				𝑉
			

			
				𝛼
				,
				𝑎
			

			
				=
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			
				
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝛼
			

			
				
				−
				𝜙
			

			
				𝑚
				+
				𝛼
			

			

				𝐿
			

			

				𝑎
			

			
				𝜙
				
				,
				𝑉
			

			
				𝑛
				+
				𝛼
				,
				𝑎
			

			
				=
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			
				
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			
				𝑚
				+
				𝛼
			

			
				
				+
				𝜙
			

			

				𝛼
			

			

				𝐿
			

			

				𝑎
			

			
				𝜙
				
				,
			

		
	

						with 
	
		
			
				1
				≤
				𝛼
				≤
				𝑚
			

		
	
. Let 
	
		
			

				𝑉
			

			

				𝐴
			

			
				=
				(
				𝑉
			

			
				𝐴
				,
				1
			

			
				,
				…
				,
				𝑉
			

			
				𝐴
				,
				2
				𝑛
			

			

				)
			

		
	
 for any 
	
		
			
				1
				≤
				𝐴
				≤
				2
				𝑚
			

		
	
. Then 
	
		
			
				𝜙
				∶
				𝑈
				→
				𝑈
			

			

				
			

		
	
 is a contact 
	
		
			

				𝑝
			

		
	
-harmonic map if and only if 
							
	
 		
 			
				(
				6
				9
				)
			
 		
	

	
		
			

				𝑋
			

			

				∗
			

			
				⋅
				𝑉
			

			

				𝐴
			

			
				=
				𝑄
				(
				𝜙
				)
			

			
				𝑝
				/
				2
			

			

				𝜙
			

			

				𝐴
			

			
				,
				1
				≤
				𝐴
				≤
				2
				𝑚
				.
			

		
	

 Here the dot product means 
	
		
			

				𝑋
			

			

				∗
			

			
				⋅
				𝑉
			

			

				𝐴
			

			
				=
				∑
			

			
				2
				𝑛
				𝑎
				=
				1
			

			

				𝑋
			

			
				∗
				𝑎
			

			
				(
				𝑉
			

			
				𝐴
				,
				𝑎
			

			

				)
			

		
	
. Using 
	
		
			

				𝜑
			

			

				2
			

			
				=
				−
				𝐼
				+
				𝜂
				⊗
				𝜉
			

		
	
 and (65) and (66), one obtains
						
	
 		
 			
				(
				7
				0
				)
			
 		
	

	
		
			
				
				
				𝜑
			

			

				2
			

			

				
			

			
				𝑖
				𝑗
			

			

				
			

			
				1
				≤
				𝑖
				,
				𝑗
				≤
				2
				𝑚
				−
				1
			

			
				=
				⎡
				⎢
				⎢
				⎢
				⎣
				−
				𝛿
			

			
				𝛼
				𝛽
			

			
				+
				𝑦
			

			

				𝛼
			

			
				
				𝑦
			

			

				𝛽
			

			
				+
				𝑥
			

			

				𝑚
			

			
				
			
			

				𝑦
			

			

				𝑚
			

			

				𝑥
			

			

				𝛽
			

			
				
				−
				𝑦
			

			

				𝛼
			

			
				
				𝑥
			

			

				𝑟
			

			
				−
				𝑥
			

			

				𝑚
			

			
				
			
			

				𝑦
			

			

				𝑚
			

			

				𝑦
			

			

				𝑟
			

			
				
				−
				𝑥
			

			

				𝑠
			

			
				
				𝑦
			

			

				𝛽
			

			
				+
				𝑥
			

			

				𝑚
			

			
				
			
			

				𝑦
			

			

				𝑚
			

			

				𝑥
			

			

				𝛽
			

			
				
				−
				𝛿
			

			
				𝑠
				𝑟
			

			
				+
				𝑥
			

			

				𝑠
			

			
				
				𝑥
			

			

				𝑟
			

			
				−
				𝑥
			

			

				𝑚
			

			
				
			
			

				𝑦
			

			

				𝑚
			

			

				𝑦
			

			

				𝑟
			

			
				
				⎤
				⎥
				⎥
				⎥
				⎦
				.
			

		
	

					Then substitution into (55) leads to 
						
	
 		
 			
				(
				7
				1
				)
			
 			
				(
				7
				2
				)
			
 		
	

	
		
			
				2
				𝑛
			

			

				
			

			
				𝑎
				=
				1
			

			

				𝑋
			

			
				∗
				𝑎
			

			
				
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			
				
				𝑋
			

			

				𝑎
			

			
				(
				𝜙
			

			

				𝛼
			

			
				)
				−
				𝜙
			

			
				𝑚
				+
				𝛼
			

			

				𝐿
			

			

				𝑎
			

			
				𝜙
				
				
				=
				𝑄
				(
				𝜙
				)
			

			
				𝑝
				/
				2
			

			

				𝜙
			

			

				𝛼
			

			

				,
			

			
				2
				𝑛
			

			

				
			

			
				𝑎
				=
				1
			

			

				𝑋
			

			
				∗
				𝑎
			

			
				
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			
				
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			
				𝑚
				+
				𝑠
			

			
				
				+
				𝜙
			

			

				𝑠
			

			

				𝐿
			

			

				𝑎
			

			
				𝜙
				
				
				=
				𝑄
				(
				𝜙
				)
			

			
				𝑝
				/
				2
			

			

				𝜙
			

			
				𝑚
				+
				𝑠
			

			

				.
			

		
	

					It remains to be shown that (71) and (72) imply
						
	
 		
 			
				(
				7
				3
				)
			
 		
	

	
		
			
				2
				𝑛
			

			

				
			

			
				𝑎
				=
				1
			

			

				𝑋
			

			
				∗
				𝑎
			

			
				
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			
				
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			
				2
				𝑚
			

			
				
				+
				𝜙
			

			

				𝑚
			

			

				𝐿
			

			

				𝑎
			

			
				𝜙
				
				
				=
				𝑄
				(
				𝜙
				)
			

			
				𝑝
				/
				2
			

			

				𝜙
			

			
				2
				𝑚
			

			

				.
			

		
	

					Let us multiply (71) by 
	
		
			

				𝜙
			

			

				𝛽
			

			

				𝜓
			

		
	
, where 
	
		
			
				𝜓
				∈
				𝐶
			

			
				∞
				0
			

			
				(
				𝑈
				)
			

		
	
 is an arbitrary test function, and integrate over 
	
		
			

				𝑈
			

		
	
 so that to obtain (after integration by parts) 
						
	
 		
 			
				(
				7
				4
				)
			
 		
	

	
		
			

				
			

			

				𝑎
			

			

				𝑋
			

			
				∗
				𝑎
			

			
				
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			
				
				𝑋
			

			

				𝑎
			

			
				(
				𝜙
			

			

				𝛼
			

			
				)
				−
				𝜙
			

			
				𝑚
				+
				𝛼
			

			

				𝐿
			

			

				𝑎
			

			
				𝜙
				
				𝜙
			

			

				𝛽
			

			
				
				=
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			
				×
				
				𝑄
				(
				𝜙
				)
				𝜙
			

			

				𝛼
			

			

				𝜙
			

			

				𝛽
			

			
				−
				
			

			

				𝑎
			

			

				𝑋
			

			

				𝑎
			

			
				(
				𝜙
			

			

				𝛼
			

			
				)
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝛽
			

			
				
				+
				
			

			

				𝑎
			

			

				𝜙
			

			
				𝑚
				+
				𝛼
			

			

				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝛽
			

			
				
				𝐿
			

			

				𝑎
			

			
				𝜙
				
				.
			

		
	

					Similarly let us multiply (72) by 
	
		
			

				𝜙
			

			
				𝑚
				+
				𝑟
			

			

				𝜓
			

		
	
 so that to obtain 
						
	
 		
 			
				(
				7
				5
				)
			
 		
	

	
		
			

				
			

			

				𝑎
			

			

				𝑋
			

			
				∗
				𝑎
			

			
				
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			
				
				𝑋
			

			

				𝑎
			

			

				𝜙
			

			
				𝑚
				+
				𝑠
			

			
				+
				𝜙
			

			

				𝑠
			

			

				𝐿
			

			

				𝑎
			

			
				𝜙
				
				𝜙
			

			
				𝑚
				+
				𝑟
			

			
				
				=
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			
				×
				
				𝑄
				(
				𝜙
				)
				𝜙
			

			
				𝑚
				+
				𝑠
			

			

				𝜙
			

			
				𝑚
				+
				𝑟
			

			
				−
				
			

			

				𝑎
			

			

				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			
				𝑚
				+
				𝑠
			

			
				
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			
				𝑚
				+
				𝑟
			

			
				
				−
				
			

			

				𝑎
			

			

				𝜙
			

			

				𝑠
			

			

				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			
				𝑚
				+
				𝑟
			

			
				
				𝐿
			

			

				𝑎
			

			
				𝜙
				
				.
			

		
	

					Let us contract the indices 
	
		
			

				𝛼
			

		
	
 and 
	
		
			

				𝛽
			

		
	
 in (74) (resp., 
	
		
			

				𝑟
			

		
	
 and 
	
		
			

				𝑠
			

		
	
 in (75)), add the resulting equations, and use the identities 
						
	
 		
 			
				(
				7
				6
				)
			
 		
	

	
		
			

				𝑋
			

			

				𝑎
			

			
				(
				𝜙
			

			

				𝛼
			

			
				)
				𝜙
			

			

				𝛼
			

			
				+
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			
				𝑚
				+
				𝑟
			

			
				
				𝜙
			

			
				𝑚
				+
				𝑟
			

			
				=
				−
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			
				2
				𝑚
			

			
				
				𝜙
			

			
				2
				𝑚
			

			
				,
				−
				𝜙
			

			
				𝑚
				+
				𝛼
			

			

				𝜙
			

			

				𝛼
			

			
				+
				𝜙
			

			

				𝑟
			

			

				𝜙
			

			
				𝑚
				+
				𝑟
			

			
				=
				−
				𝜙
			

			

				𝑚
			

			

				𝜙
			

			
				2
				𝑚
			

			
				,
				𝜙
			

			

				𝛼
			

			

				𝜙
			

			

				𝛼
			

			
				+
				𝜙
			

			
				𝑚
				+
				𝑟
			

			

				𝜙
			

			
				𝑚
				+
				𝑟
			

			
				=
				1
				−
				𝜙
			

			
				2
				2
				𝑚
			

			
				,
				𝜙
			

			
				𝑚
				+
				𝛼
			

			

				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝛼
			

			
				
				−
				𝜙
			

			

				𝑟
			

			

				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			
				𝑚
				+
				𝑟
			

			
				
				=
				𝐿
			

			

				𝑎
			

			
				𝜙
				+
				𝜙
			

			

				𝑚
			

			

				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			
				2
				𝑚
			

			
				
				.
			

		
	

					We get
						
	
 		
 			
				(
				7
				7
				)
			
 		
	

	
		
			
				−
				
			

			

				𝑎
			

			

				𝑋
			

			
				∗
				𝑎
			

			
				
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			
				
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			
				2
				𝑚
			

			
				
				+
				𝜙
			

			

				𝑚
			

			

				𝐿
			

			

				𝑎
			

			
				𝜙
				
				𝜙
			

			
				2
				𝑚
			

			
				
				=
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			
				
				
				𝑄
				(
				𝜙
				)
				1
				−
				𝜙
			

			
				2
				2
				𝑚
			

			
				
				−
				
			

			

				𝑎
			

			

				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑖
			

			
				
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			

				𝑖
			

			
				
				+
				
			

			

				𝑎
			

			
				
				𝐿
			

			

				𝑎
			

			
				𝜙
				+
				𝜙
			

			

				𝑚
			

			

				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			
				2
				𝑚
			

			
				𝐿
				
				
			

			

				𝑎
			

			
				𝜙
				
				.
			

		
	

					Let us use 
	
		
			
				∑
				𝑄
				(
				𝜙
				)
				−
			

			

				𝑎
			

			

				𝑋
			

			

				𝑎
			

			
				(
				𝜙
			

			

				𝑖
			

			
				)
				𝑋
			

			

				𝑎
			

			
				(
				𝜙
			

			

				𝑖
			

			
				∑
				)
				+
			

			

				𝑎
			

			
				(
				𝐿
			

			

				𝑎
			

			
				𝜙
				)
			

			

				2
			

			
				=
				𝑋
			

			

				𝑎
			

			
				(
				𝜙
			

			
				2
				𝑚
			

			

				)
			

			

				2
			

		
	
 (a consequence of (67)). Finally 
						
	
 		
 			
				(
				7
				8
				)
			
 		
	

	
		
			

				
			

			

				𝑎
			

			

				𝑋
			

			
				∗
				𝑎
			

			
				
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			
				
				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			
				2
				𝑚
			

			
				
				+
				𝜙
			

			

				𝑚
			

			

				𝐿
			

			

				𝑎
			

			
				𝜙
				
				𝜙
			

			
				2
				𝑚
			

			
				
				=
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			
				×
				
				𝑄
				(
				𝜙
				)
				𝜙
			

			
				2
				2
				𝑚
			

			
				−
				
			

			

				𝑎
			

			

				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			
				2
				𝑚
			

			

				
			

			

				2
			

			
				−
				
			

			

				𝑎
			

			

				𝜙
			

			

				𝑚
			

			

				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			
				2
				𝑚
			

			
				
				𝐿
			

			

				𝑎
			

			
				𝜙
				
				.
			

		
	

					Now the identity (73) follows from (78) and 
	
		
			

				𝑋
			

			
				∗
				𝑎
			

			
				=
				−
				𝑋
			

			

				𝑎
			

			
				−
				𝑓
			

			

				𝑎
			

		
	
. Proposition 15 is proved.
 The crucial manner of exploiting the constraint 
	
		
			

				∑
			

			
				2
				𝑚
				𝐴
				=
				1
			

			

				𝜙
			

			
				2
				𝐴
			

			
				=
				1
			

		
	
 is contained in the following. 
Proposition 16.  Let 
	
		
			
				𝑈
				⊂
				ℍ
			

			

				𝑛
			

		
	
 be a bounded domain and 
	
		
			
				𝜙
				∶
				𝑈
				→
				𝑆
			

			
				2
				𝑚
				−
				1
			

			
				⊂
				ℝ
			

			
				2
				𝑚
			

		
	
, 
	
		
			
				𝜙
				=
				(
				𝜙
			

			

				1
			

			
				,
				…
				,
				𝜙
			

			
				2
				𝑚
			

			

				)
			

		
	
, a map such that 
	
		
			

				𝜙
			

			

				𝐴
			

			
				∈
				𝑊
			

			
				𝑋
				1
				,
				𝑝
			

			
				(
				𝑈
				)
			

		
	
. Then 
							
	
 		
 			
				(
				7
				9
				)
			
 		
	

	
		
			

				𝑉
			

			

				𝐴
			

			

				=
			

			
				2
				𝑚
			

			

				
			

			
				𝐵
				=
				1
			

			

				𝜙
			

			

				𝐵
			

			

				𝐸
			

			
				𝐴
				,
				𝐵
			

			

				,
			

		
	

						where one has set 
	
		
			

				𝐸
			

			
				𝐴
				,
				𝐵
			

			
				=
				𝜙
			

			

				𝐵
			

			

				𝑉
			

			

				𝐴
			

			
				−
				𝜙
			

			

				𝐴
			

			

				𝑉
			

			

				𝐵
			

		
	
. Moreover if 
	
		
			

				𝜙
			

		
	
 is a contact 
	
		
			

				𝑝
			

		
	
-harmonic map, then 
							
	
 		
 			
				(
				8
				0
				)
			
 		
	

	
		
			

				𝑋
			

			

				∗
			

			
				⋅
				𝐸
			

			
				𝐴
				,
				𝐵
			

			
				=
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			
				
				𝜎
			

			

				𝐵
			

			

				𝜙
			

			
				𝐵
				+
				𝑚
			

			
				𝑋
				
				𝜙
			

			

				𝐴
			

			
				
				−
				𝜎
			

			

				𝐴
			

			

				𝜙
			

			
				𝐴
				+
				𝑚
			

			
				𝑋
				
				𝜙
			

			

				𝐵
			

			
				
				
				𝐿
				𝜙
				,
			

		
	

						where 
	
		
			

				𝜎
			

			

				𝐴
			

			
				=
				1
			

		
	
 if 
	
		
			
				1
				≤
				𝐴
				≤
				𝑚
			

		
	
, 
	
		
			

				𝜎
			

			

				𝐴
			

			
				=
				−
				1
			

		
	
 if 
	
		
			
				𝑚
				+
				1
				≤
				𝐴
				≤
				2
				𝑚
			

		
	
, and the range of the indices in (80) is meant 
	
		
			
				m
				o
				d
				𝑚
			

		
	
. 
 The identity (79) is a consequence of the constraint alone. The identity (80) for 
	
		
			
				𝐴
				=
				𝛼
			

		
	
 and 
	
		
			
				𝐵
				=
				𝛽
			

		
	
 follows from (74) (interchange 
	
		
			

				𝛼
			

		
	
 and 
	
		
			

				𝛽
			

		
	
 in (74) and subtract the resulting identity from (74)). In general, for any 
	
		
			
				𝜓
				∈
				𝐶
			

			
				∞
				0
			

			
				(
				𝑈
				)
			

		
	

	
 		
 			
				(
				8
				1
				)
			
 		
	

	
		
			

				
			

			

				𝑈
			

			

				𝑋
			

			

				∗
			

			
				⋅
				
				𝜙
			

			

				𝐴
			

			

				𝑉
			

			

				𝐵
			

			
				
				=
				
				𝜓
				𝑑
				𝑣
			

			

				𝑈
			

			

				𝑉
			

			

				𝐵
			

			
				⋅
				
				𝑋
				
				𝜓
				𝜙
			

			

				𝐴
			

			
				
				
				𝜙
				−
				𝜓
				𝑋
			

			

				𝐴
			

			
				=
				
				
				
				𝑑
				𝑣
			

			

				𝑈
			

			
				
				𝑋
			

			

				∗
			

			
				⋅
				𝑉
			

			

				𝐵
			

			
				
				𝜙
			

			

				𝐴
			

			
				
				𝜓
				𝑑
				𝑣
				−
			

			

				𝑈
			

			
				
				𝑉
			

			

				𝐵
			

			
				
				𝜙
				⋅
				𝑋
			

			

				𝐴
			

			
				
				
				𝜓
				𝑑
				𝑣
				,
			

		
	

					hence (by (69)) 
						
	
 		
 			
				(
				8
				2
				)
			
 		
	

	
		
			

				
			

			

				𝑈
			

			

				𝑋
			

			

				∗
			

			
				⋅
				
				𝜙
			

			

				𝐴
			

			

				𝑉
			

			

				𝐵
			

			
				
				=
				
				𝜓
				𝑑
				𝑣
			

			

				𝑈
			

			
				
				𝑄
				(
				𝜙
				)
			

			
				𝑝
				/
				2
			

			

				𝜙
			

			

				𝐵
			

			

				𝜙
			

			

				𝐴
			

			
				−
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			
				𝑋
				
				𝜙
			

			

				𝐵
			

			
				
				
				𝜙
				⋅
				𝑋
			

			

				𝐴
			

			
				𝜓
				−
				
				
				
			

			

				𝑈
			

			
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			

				𝜎
			

			

				𝐵
			

			

				𝜙
			

			
				𝐵
				+
				𝑚
			

			
				
				(
				
				𝜙
				𝐿
				𝜙
				)
				⋅
				𝑋
			

			

				𝐴
			

			
				
				
				𝜓
				𝑑
				𝑣
				.
			

		
	

					Now let us interchange 
	
		
			

				𝐴
			

		
	
 and 
	
		
			

				𝐵
			

		
	
 in (82) to produce another identity of the sort and subtract it from (82). This yields (80). Proposition 16 is proved.
 Although regularity of contact 
	
		
			

				𝑝
			

		
	
-harmonic maps cannot be expected in general (cf. Example 3), a few fundamental questions may be asked. For instance, what is the the outcome of the ordinary hole filling argument (cf., e.g., [31, pages 38–40]) and of Moser's iteration technique in regularity theory? our finding in this direction is Theorem 20. We shall need the following. 
Lemma 17.  Let 
	
		
			
				𝑈
				⊂
				ℍ
			

			

				𝑛
			

		
	
 be a bounded domain. Let 
	
		
			

				𝑅
			

			

				0
			

			
				>
				0
			

		
	
 and 
	
		
			

				𝑈
			

			

				1
			

			
				⊂
				⊂
				𝑈
			

		
	
 such that 
	
		
			

				𝐵
			

			

				𝑋
			

			
				(
				𝑥
				,
				4
				0
				0
				𝑅
			

			

				0
			

			
				)
				⊂
				𝑈
			

		
	
 for any 
	
		
			
				𝑥
				∈
				𝑈
			

			

				1
			

		
	
. Let 
	
		
			
				𝔹
				=
				𝐵
			

			

				𝑋
			

			
				(
				𝑥
			

			

				0
			

			
				,
				𝑟
				)
			

		
	
 with 
	
		
			

				𝑥
			

			

				0
			

			
				∈
				𝑈
			

			

				1
			

		
	
 be a Carnot-Carathéodory ball such that 
	
		
			
				0
				<
				𝑟
				≤
				𝑅
			

			

				0
			

		
	
 and let 
	
		
			
				𝜓
				∈
				𝑊
			

			
				𝑋
				1
				,
				2
				𝑛
				+
				2
			

			
				(
				𝔹
				)
			

		
	
 be a function of compact support. Then for any contact 
	
		
			
				(
				2
				𝑛
				+
				2
				)
			

		
	
-harmonic map 
	
		
			
				𝜙
				∶
				ℍ
			

			

				𝑛
			

			
				→
				𝑆
			

			
				2
				𝑚
				−
				1
			

		
	
 satisfying (96) for some 
	
		
			
				0
				<
				𝑐
				<
				1
			

		
	
 and some 
	
		
			
				0
				<
				𝛿
				<
				1
			

		
	
 
	
 		
 			
				(
				8
				3
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
			

			

				𝔹
			

			
				
				𝑋
			

			

				∗
			

			
				⋅
				
				𝜙
			

			

				𝐵
			

			

				𝐸
			

			
				𝐴
				,
				𝐵
			

			
				|
				|
				|
				|
				
				
				𝜓
				𝑑
				𝑣
				≤
				𝐶
				‖
				𝑋
				𝜓
				‖
			

			

				𝐿
			

			

				𝐷
			

			
				(
				𝔹
				)
			

			
				
				‖
				𝑋
				𝜙
				‖
			

			
				𝐷
				𝐿
			

			

				𝐷
			

			
				(
				1
				0
				0
				𝔹
				)
			

			
				+
				‖
				𝑋
				𝜙
				‖
			

			
				𝐿
				(
				1
				−
				𝜖
				)
				𝐷
			

			

				𝐷
			

			
				(
				1
				0
				0
				𝔹
				)
			

			

				
			

		
	

						for some constant 
	
		
			
				𝐶
				=
				𝐶
				(
				𝑈
			

			

				1
			

			
				,
				𝑛
				,
				𝑅
			

			

				0
			

			
				)
				>
				0
			

		
	
, where 
	
		
			
				𝜖
				=
				(
				1
				−
				𝛿
				)
				/
				𝐷
			

		
	
 and 
	
		
			
				𝐷
				=
				2
				𝑛
				+
				2
			

		
	
. 
 This is similar to Lemma 3.2 (the duality inequality) in [7, page 354] and will be proved later on in this section. 
 Let 
	
		
			

				𝑈
			

			

				1
			

			
				⊂
				⊂
				𝑈
			

		
	
 and 
	
		
			

				𝑅
			

			

				0
			

			
				>
				0
			

		
	
 as in Lemma 17. Also let 
	
		
			
				𝑥
				∈
				𝑈
			

			

				1
			

		
	
 and 
	
		
			
				0
				<
				𝑟
				<
				𝑅
			

			

				0
			

		
	
 and set 
	
		
			
				𝔹
				=
				𝐵
			

			

				𝑋
			

			
				(
				𝑥
				,
				𝑟
				)
			

		
	
 and 
	
		
			
				2
				𝔹
				=
				𝐵
			

			

				𝑋
			

			
				(
				𝑥
				,
				2
				𝑟
				)
			

		
	
. Let 
	
		
			
				𝜓
				∈
				𝐶
			

			
				∞
				0
			

			
				(
				𝑈
				)
			

		
	
 be a test function such that 
	
		
			
				0
				≤
				𝜓
				≤
				1
			

		
	
, 
	
		
			
				𝜓
				=
				1
			

		
	
 on 
	
		
			

				𝔹
			

		
	
, 
	
		
			
				𝜓
				=
				0
			

		
	
 on 
	
		
			
				𝑈
				⧵
				2
				𝔹
			

		
	
, and 
	
		
			
				|
				𝑋
				𝜓
				|
				≤
				𝐶
				/
				𝑟
			

		
	
 for some constant 
	
		
			
				𝐶
				>
				0
			

		
	
. Next let us set
						
	
 		
 			
				(
				8
				4
				)
			
 		
	

	
		
			

				𝜓
			

			

				𝐴
			

			
				=
				
				𝜙
			

			

				𝐴
			

			
				−
				
				𝜙
			

			

				𝐴
			

			

				
			

			
				2
				𝔹
			

			
				
				𝜓
				.
			

		
	

					Throughout if 
	
		
			
				(
				𝑋
				,
				𝜇
				)
			

		
	
 is a measurable space and 
	
		
			
				𝐴
				⊂
				𝑋
			

		
	
 a measurable set with 
	
		
			
				𝜇
				(
				𝐴
				)
				>
				0
			

		
	
, we adopt the notation 
	
		
			

				𝑢
			

			

				𝐴
			

			
				∫
				=
				(
				1
				/
				𝜇
				(
				𝐴
				)
				)
			

			

				𝐴
			

			
				𝑢
				𝑑
				𝜇
			

		
	
. Let us take the dot product of (79) with 
	
		
			

				𝑋
			

			

				∗
			

		
	
, multiply the resulting equation by 
	
		
			

				𝜓
			

			

				𝐴
			

		
	
, integrate over 
	
		
			
				2
				𝔹
			

		
	
, and sum over 
	
		
			

				𝐴
			

		
	

	
 		
 			
				(
				8
				5
				)
			
 		
	

	
		
			
				2
				𝑚
			

			

				
			

			
				𝐴
				=
				1
			

			

				
			

			
				2
				𝔹
			

			
				
				𝑋
			

			

				∗
			

			
				⋅
				𝑉
			

			

				𝐴
			

			
				
				𝜓
			

			

				𝐴
			

			
				=
				𝑑
				𝑣
			

			
				2
				𝑚
			

			

				
			

			
				𝐴
				,
				𝐵
				=
				1
			

			

				
			

			
				2
				𝔹
			

			
				
				𝑋
			

			

				∗
			

			
				⋅
				
				𝜙
			

			

				𝐵
			

			

				𝐸
			

			
				𝐴
				,
				𝐵
			

			
				𝜓
				
				
			

			

				𝐴
			

			
				𝑑
				𝑣
				.
			

		
	

					The first line of (85) may be computed as follows: 
						
	
 		
 			
				(
				8
				6
				)
			
 		
	

	
		
			

				
			

			
				2
				𝔹
			

			
				
				𝑋
			

			

				∗
			

			
				⋅
				𝑉
			

			

				𝐴
			

			
				
				𝜓
			

			

				𝐴
			

			
				=
				
				𝑑
				𝑣
			

			
				2
				𝔹
			

			

				𝑉
			

			

				𝐴
			

			
				
				𝜓
				⋅
				𝑋
			

			

				𝐴
			

			
				
				=
				
				𝑑
				𝑣
			

			
				2
				𝔹
			

			

				𝑉
			

			

				𝐴
			

			
				⋅
				
				
				𝜙
				𝑋
				(
				𝜓
				)
			

			

				𝐴
			

			
				−
				
				𝜙
			

			

				𝐴
			

			

				
			

			
				2
				𝔹
			

			
				
				
				𝜙
				+
				𝜓
				𝑋
			

			

				𝐴
			

			
				
				
				𝑑
				𝑣
			

		
	

					and summed over 
	
		
			

				𝐴
			

		
	

	
 		
 			
				(
				8
				7
				)
			
 		
	

	
		
			

				
			

			

				𝐴
			

			

				𝑉
			

			

				𝐴
			

			
				
				𝜙
				⋅
				𝑋
			

			

				𝐴
			

			
				
				=
				
			

			

				𝑎
			

			
				
				𝑉
			

			
				𝛼
				,
				𝑎
			

			

				𝑋
			

			

				𝑎
			

			
				(
				𝜓
			

			

				𝛼
			

			
				)
				+
				𝑉
			

			
				𝑚
				+
				𝛼
				,
				𝑎
			

			

				𝑋
			

			

				𝑎
			

			
				
				𝜙
			

			
				𝑚
				+
				𝛼
			

			
				
				
				=
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			
				
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				2
			

			
				−
				
			

			

				𝑎
			

			
				
				𝐿
			

			

				𝑎
			

			
				𝜙
				
			

			

				2
			

			
				
				=
				𝑄
				(
				𝜙
				)
			

			
				𝑝
				/
				2
			

		
	

					by the very definition of 
	
		
			

				𝑉
			

			

				𝐴
			

		
	
 (cf. Lemma 22) and by (67). Thus (85) becomes 
						
	
 		
 			
				(
				8
				8
				)
			
 		
	

	
		
			

				
			

			
				2
				𝔹
			

			
				𝜓
				𝑄
				(
				𝜙
				)
			

			
				𝑝
				/
				2
			

			
				
				𝑑
				𝑣
				+
			

			

				𝐴
			

			

				
			

			
				2
				𝔹
			

			
				
				𝜙
			

			

				𝐴
			

			
				−
				
				𝜙
			

			

				𝐴
			

			

				
			

			
				2
				𝔹
			

			
				
				𝑉
			

			

				𝐴
			

			
				=
				
				⋅
				𝑋
				(
				𝜓
				)
				𝑑
				𝑣
			

			
				𝐴
				,
				𝐵
			

			

				
			

			
				2
				𝔹
			

			
				
				𝑋
			

			

				∗
			

			
				⋅
				
				𝜙
			

			

				𝐵
			

			

				𝐸
			

			
				𝐴
				,
				𝐵
			

			
				𝜓
				
				
			

			

				𝐴
			

			
				𝑑
				𝑣
				.
			

		
	

					For simplicity let 
	
		
			

				𝐼
			

			
				𝐴
				,
				𝐵
			

			
				=
				∫
			

			
				2
				𝔹
			

			
				[
				𝑋
			

			

				∗
			

			
				⋅
				(
				𝜙
			

			

				𝐵
			

			

				𝐸
			

			
				𝐴
				,
				𝐵
			

			
				)
				]
				𝜓
			

			

				𝐴
			

			
				𝑑
				𝑣
			

		
	
 and 
	
		
			

				𝐶
			

			

				0
			

			
				=
				∑
			

			
				𝐴
				,
				𝐵
			

			
				|
				𝐼
			

			
				𝐴
				,
				𝐵
			

			

				|
			

		
	
. Using (88), we may perform the estimates 
						
	
 		
 			
				(
				8
				9
				)
			
 		
	

	
		
			

				
			

			

				𝔹
			

			
				𝑄
				(
				𝜙
				)
			

			
				𝑝
				/
				2
			

			
				
				𝑑
				𝑣
				≤
			

			
				2
				𝔹
			

			
				𝜓
				𝑄
				(
				𝜙
				)
			

			
				𝑝
				/
				2
			

			
				𝑑
				𝑣
				≤
				𝐶
			

			

				0
			

			
				+
				
			

			

				𝐴
			

			

				
			

			
				2
				𝔹
			

			
				|
				|
				𝜙
			

			

				𝐴
			

			
				−
				
				𝜙
			

			

				𝐴
			

			

				
			

			
				2
				𝔹
			

			
				|
				|
				|
				|
				𝑉
			

			

				𝐴
			

			
				|
				|
				|
				|
				|
				|
				𝑋
				𝜓
				𝑑
				𝑣
				.
			

		
	

Lemma 18.  Let one set 
	
		
			
				|
				𝐿
				𝜙
				|
			

			

				2
			

			
				=
				∑
			

			
				2
				𝑛
				𝑎
				=
				1
			

			
				|
				𝐿
			

			

				𝑎
			

			
				𝜙
				|
			

			

				2
			

		
	
. Then 
	
		
			
				√
				|
				𝐿
				𝑋
				|
				≤
			

			
				
			
			
				2
				|
				𝑋
				𝜙
				|
			

		
	
 a.e. in 
	
		
			

				𝑈
			

		
	
 and consequently 
							
	
 		
 			
				(
				9
				0
				)
			
 		
	

	
		
			
				|
				|
				𝑉
			

			

				𝐴
			

			
				|
				|
				≤
				√
			

			
				
			
			
				6
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			
				|
				|
				|
				|
				𝑋
				𝜙
			

		
	

						a.e. in 
	
		
			

				𝑈
			

		
	
, for any 
	
		
			
				1
				≤
				𝐴
				≤
				2
				𝑚
			

		
	
. 
 The inequalities in Lemma 18 follow easily from 
	
		
			
				|
				𝜙
			

			

				𝐴
			

			
				|
				≤
				1
			

		
	
 and 
	
		
			
				|
				𝑋
				𝜙
			

			

				𝐴
			

			
				|
				≤
				|
				𝑋
				𝜙
				|
			

		
	
. Using (90), we may write (89) as 
						
	
 		
 			
				(
				9
				1
				)
			
 		
	

	
		
			

				
			

			

				𝔹
			

			
				𝑄
				(
				𝜙
				)
			

			
				𝑝
				/
				2
			

			
				𝑑
				𝑣
				≤
				𝐶
			

			

				0
			

			
				+
				√
			

			
				
			
			
				6
				
			

			

				𝐴
			

			

				
			

			
				2
				𝔹
			

			
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				𝑝
			

			
				|
				|
				𝜙
			

			

				𝐴
			

			
				−
				
				𝜙
			

			

				𝐴
			

			

				
			

			
				2
				𝔹
			

			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				𝑋
				𝜙
				𝑋
				𝜓
				𝑑
				𝑣
				.
			

		
	

					In the following estimates 
	
		
			

				𝐶
			

		
	
 denotes some positive constant, not necessarily the same in all formulae. By Hölder's inequality 
						
	
 		
 			
				(
				9
				2
				)
			
 		
	

	
		
			

				
			

			
				2
				𝔹
			

			
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			
				|
				|
				𝜙
			

			

				𝐴
			

			
				−
				
				𝜙
			

			

				𝐴
			

			

				
			

			
				2
				𝔹
			

			
				|
				|
				|
				|
				|
				|
				|
				|
				|
				|
				≤
				
				
				𝑋
				𝜙
				𝑋
				𝜓
				𝑑
				𝑣
			

			
				2
				𝔹
			

			
				|
				|
				𝜙
			

			

				𝐴
			

			
				−
				
				𝜙
			

			

				𝐴
			

			

				
			

			
				2
				𝔹
			

			
				|
				|
			

			

				𝑝
			

			
				
				𝑑
				𝑣
			

			
				1
				/
				𝑝
			

			
				×
				
				
			

			
				2
				𝔹
				⧵
				𝔹
			

			
				
				𝑄
				(
				𝜙
				)
			

			
				(
				𝑝
				−
				2
				)
				/
				2
			

			
				|
				|
				|
				|
				|
				|
				|
				|
				
				𝑋
				𝜙
				𝑋
				𝜓
			

			
				𝑝
				/
				(
				𝑝
				−
				1
				)
			

			
				
				𝑑
				𝑣
			

			
				(
				𝑝
				−
				1
				)
				/
				𝑝
			

			
				
				
				≤
				𝐶
			

			
				2
				𝔹
			

			
				|
				|
				𝑋
				𝜙
			

			

				𝐴
			

			
				|
				|
			

			

				𝑝
			

			
				
				𝑑
				𝑣
			

			
				1
				/
				𝑝
			

			
				×
				
				
			

			
				2
				𝔹
				⧵
				𝔹
			

			
				𝑄
				(
				𝜙
				)
			

			
				𝑝
				(
				𝑝
				−
				2
				)
				/
				2
				(
				𝑝
				−
				1
				)
			

			
				|
				|
				|
				|
				𝑋
				𝜙
			

			
				𝑝
				/
				(
				𝑝
				−
				1
				)
			

			

				
			

			
				(
				𝑝
				−
				1
				)
				/
				𝑝
			

			

				,
			

		
	

					by the Poincaré inequality
						
	
 		
 			
				(
				9
				3
				)
			
 		
	

	
		
			
				
				
			

			
				2
				𝔹
			

			
				|
				|
				𝜙
			

			

				𝐴
			

			
				−
				
				𝜙
			

			

				𝐴
			

			

				
			

			
				2
				𝔹
			

			
				|
				|
			

			

				𝑝
			

			
				
				𝑑
				𝑣
			

			
				1
				/
				𝑝
			

			
				
				
				≤
				𝐶
				𝑟
			

			
				2
				𝔹
			

			
				|
				|
				𝑋
				𝜙
			

			

				𝐴
			

			
				|
				|
			

			

				𝑝
			

			
				
				𝑑
				𝑣
			

			
				1
				/
				𝑝
			

		
	
and by 
	
		
			
				|
				𝑋
				𝜓
				|
				≤
				𝐶
				/
				𝑟
			

		
	
. Let us observe that 
	
		
			
				𝑄
				(
				𝜙
				)
				≤
				|
				𝑋
				𝜙
				|
			

			

				2
			

		
	
 yields
						
	
 		
 			
				(
				9
				4
				)
			
 		
	

	
		
			
				
				
			

			
				2
				𝔹
				⧵
				𝔹
			

			
				𝑄
				(
				𝜙
				)
			

			
				𝑝
				(
				𝑝
				−
				2
				)
				/
				2
				(
				𝑝
				−
				1
				)
			

			
				|
				|
				|
				|
				𝑋
				𝜙
			

			
				𝑝
				/
				(
				𝑝
				−
				1
				)
			

			

				
			

			
				(
				𝑝
				−
				1
				)
				/
				𝑝
			

			
				≤
				
				
			

			
				2
				𝔹
				⧵
				𝔹
			

			
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				𝑝
			

			
				
				𝑑
				𝑣
			

			
				(
				𝑝
				−
				1
				)
				/
				𝑝
			

			

				.
			

		
	

					Hence (by (91))
						
	
 		
 			
				(
				9
				5
				)
			
 		
	

	
		
			

				
			

			

				𝔹
			

			
				𝑄
				(
				𝜙
				)
			

			
				𝑝
				/
				2
			

			
				𝑑
				𝑣
				≤
				𝐶
			

			

				0
			

			
				
				
				+
				𝐶
			

			
				2
				𝔹
			

			
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				𝑝
			

			
				
				𝑑
				𝑣
			

			
				1
				/
				𝑝
			

			
				×
				
				
			

			
				2
				𝔹
				⧵
				𝔹
			

			
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				𝑝
			

			
				
				𝑑
				𝑣
			

			
				(
				𝑝
				−
				1
				)
				/
				𝑝
			

			

				.
			

		
	

					Let us set 
	
		
			

				𝐼
			

			

				𝑝
			

			
				∫
				(
				𝑟
				)
				=
			

			

				𝐵
			

			

				𝑋
			

			
				(
				𝑥
				,
				𝑟
				)
			

			
				|
				𝑋
				𝜙
				|
			

			

				𝑝
			

			
				𝑑
				𝑣
			

		
	
. Also let us restrict our considerations to maps 
	
		
			
				𝜙
				∶
				ℍ
			

			

				𝑛
			

			
				→
				𝑆
			

			
				2
				𝑚
				−
				1
			

		
	
 for which one may control 
	
		
			
				𝑄
				(
				𝜙
				)
			

		
	
 from below. We adopt the following. 
Definition 19.  A map 
	
		
			
				𝜙
				∶
				ℍ
			

			

				𝑛
			

			
				→
				𝑆
			

			
				2
				𝑚
				−
				1
			

		
	
 is said to be close to a horizontal map if there exist constants 
	
		
			
				0
				<
				𝑐
				<
				1
			

		
	
 and 
	
		
			
				0
				<
				𝛿
				<
				1
			

		
	
 such that
							
	
 		
 			
				(
				9
				6
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				|
				|
				|
				𝐿
				𝜙
				≤
				𝑐
				𝑋
				𝜙
			

			

				𝛿
			

			

				a
			

			

				.
			

			

				e
			

			

				.
			

			
				i
				n
			

			
				
				𝑥
				∈
				ℍ
			

			

				𝑛
			

			
				∶
				|
				|
				|
				|
				
				,
				|
				|
				|
				|
				|
				|
				|
				|
				𝑋
				𝜙
				(
				𝑥
				)
				≥
				1
				𝐿
				𝜙
				≤
				𝑐
				𝑋
				𝜙
			

			

				a
			

			

				.
			

			

				e
			

			

				.
			

			
				i
				n
			

			
				
				𝑥
				∈
				ℍ
			

			

				𝑛
			

			
				∶
				|
				|
				|
				|
				
				.
				𝑋
				𝜙
				(
				𝑥
				)
				<
				1
			

		
	

If 
	
		
			
				𝜙
				∶
				ℍ
			

			

				𝑛
			

			
				→
				𝑆
			

			
				2
				𝑚
				−
				1
			

		
	
 is close to horizontal, then (by (96)) 
						
	
 		
 			
				(
				9
				7
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				𝑄
				(
				𝜙
				)
				≥
				𝑎
				𝑋
				𝜙
			

			

				2
			

			
				,
				𝑎
				=
				1
				−
				𝑐
			

			

				2
			

			
				>
				0
				.
			

		
	

					Our main result in this section is the following.
Theorem 20.  Let 
	
		
			
				𝑈
				⊂
				ℍ
			

			

				𝑛
			

		
	
 be a bounded domain in the Heisenberg group and 
	
		
			
				
			
			

				𝑍
			

			

				𝛼
			

			
				=
				𝜕
				/
				𝜕
			

			
				
			
			

				𝑧
			

			

				𝛼
			

			
				−
				𝑖
				𝑧
			

			

				𝛼
			

			
				𝜕
				/
				𝜕
				𝑡
			

		
	
, 
	
		
			
				1
				≤
				𝛼
				≤
				𝑛
			

		
	
, the Lewy operators. Let 
	
		
			
				𝑋
				=
				{
				𝑍
			

			

				𝛼
			

			

				+
			

			
				
			
			

				𝑍
			

			

				𝛼
			

			
				,
				𝑖
				(
				𝑍
			

			

				𝛼
			

			

				−
			

			
				
			
			

				𝑍
			

			

				𝛼
			

			
				)
				∶
				1
				≤
				𝛼
				≤
				𝑛
				}
			

		
	
 and 
	
		
			

				𝑈
			

			

				1
			

			
				⊂
				⊂
				𝑈
			

		
	
. Let 
	
		
			
				𝜙
				∈
				𝑊
			

			
				𝑋
				1
				,
				2
				𝑛
				+
				2
			

			
				(
				𝑈
				,
				𝑆
			

			
				2
				𝑚
				−
				1
			

			

				)
			

		
	
 be a map obeying to (96) for some 
	
		
			
				0
				<
				𝑐
				<
				1
			

		
	
 and 
	
		
			
				0
				<
				𝛿
				<
				1
			

		
	
. If 
	
		
			
				𝜙
				∶
				𝑈
				→
				𝑆
			

			
				2
				𝑚
				−
				1
			

		
	
 is a weak contact 
	
		
			
				(
				2
				𝑛
				+
				2
				)
			

		
	
-harmonic map, then there exist constants 
	
		
			

				𝑟
			

			

				0
			

			
				>
				0
			

		
	
, 
	
		
			
				𝐶
				>
				0
			

		
	
 and 
	
		
			
				0
				<
				𝛾
				<
				1
			

		
	
 such that 
							
	
 		
 			
				(
				9
				8
				)
			
 		
	

	
		
			

				
			

			

				𝐵
			

			

				𝑋
			

			
				(
				𝑥
				,
				𝑟
				)
			

			
				|
				|
				|
				|
				𝑋
				𝜙
			

			
				2
				𝑛
				+
				2
			

			
				𝑑
				𝑣
				≤
				𝐶
				𝑟
			

			

				𝛾
			

		
	

						for any 
	
		
			
				𝑥
				∈
				𝑈
			

			

				1
			

		
	
 and any 
	
		
			
				0
				<
				𝑟
				≤
				𝑟
			

			

				0
			

		
	
. 

				As a consequence of Theorem 20 (by applying a version of the Dirichlet growth theorem due to Macìas and Segovia [15]).
Corollary 21.  Let 
	
		
			
				𝑈
				⊂
				ℍ
			

			

				𝑛
			

		
	
 be a bounded domain. Any weak contact 
	
		
			
				(
				2
				𝑛
				+
				2
				)
			

		
	
-harmonic map 
	
		
			
				𝜙
				∶
				𝑈
				→
				𝑆
			

			
				2
				𝑚
				−
				1
			

		
	
 satisfying (96) is locally Hölder continuous. 
 To prove Theorem 20, we use a hole filling technique essentially due to Widman [32], (cf. also Bensoussan et al. [31, page 38–40]). By (95) with 
	
		
			
				𝑝
				=
				𝐷
				=
				2
				𝑛
				+
				2
			

		
	
 and Lemma 17 with 
	
		
			
				𝜓
				=
				𝜓
			

			

				𝐴
			

		
	
, we have 
						
	
 		
 			
				(
				9
				9
				)
			
 		
	

	
		
			

				
			

			

				𝔹
			

			
				𝑄
				(
				𝜙
				)
			

			
				𝐷
				/
				2
			

			
				
				𝐼
				𝑑
				𝑣
				≤
				𝐶
			

			

				𝐷
			

			
				(
				2
				𝑟
				)
			

			
				1
				/
				𝐷
			

			
				
				𝐼
			

			

				𝐷
			

			
				(
				2
				𝑟
				)
				−
				𝐼
			

			

				𝐷
			

			
				
				(
				𝑟
				)
			

			
				(
				𝐷
				−
				1
				)
				/
				𝐷
			

			
				+
				
				𝐼
			

			

				𝐷
			

			
				(
				2
				0
				0
				𝑟
				)
				+
				𝐼
			

			
				𝐷
				/
				(
				𝐷
				+
				1
				)
			

			
				(
				2
				0
				0
				𝑟
				)
			

			
				1
				/
				(
				𝐷
				+
				1
				)
			

			
				
				×
			

			
				2
				𝑚
			

			

				
			

			
				𝐴
				=
				1
			

			
				‖
				‖
				𝑋
				𝜓
			

			

				𝐴
			

			
				‖
				‖
			

			

				𝐿
			

			

				𝐷
			

			
				(
				2
				𝔹
				)
			

			
				
				.
			

		
	

					On the other hand, by the very definition of 
	
		
			

				𝜓
			

			

				𝐴
			

		
	
, we may use the Poincaré inequality to estimate 
						
	
 		
 			
				(
				1
				0
				0
				)
			
 		
	

	
		
			
				2
				𝑚
			

			

				
			

			
				𝐴
				=
				1
			

			
				‖
				‖
				𝑋
				𝜓
			

			

				𝐴
			

			
				‖
				‖
			

			

				𝐿
			

			

				𝐷
			

			
				(
				2
				𝔹
				)
			

			
				≤
				
			

			

				𝑎
			

			
				
				‖
				‖
				(
				𝑋
				𝜓
				)
				[
				𝜙
			

			

				𝐴
			

			
				−
				
				𝜙
			

			

				𝐴
			

			

				
			

			
				2
				𝔹
			

			
				]
				‖
				‖
			

			

				𝐿
			

			

				𝐷
			

			
				(
				2
				𝔹
				)
			

			
				+
				‖
				‖
				𝜓
				𝑋
				𝜙
			

			

				𝐴
			

			
				‖
				‖
			

			

				𝐿
			

			

				𝐷
			

			
				(
				2
				𝔹
				)
			

			
				
				=
				
			

			

				𝐴
			

			
				
				
			

			
				2
				𝔹
			

			
				|
				|
				|
				|
				𝑋
				𝜓
			

			

				𝐷
			

			
				|
				|
				𝜙
			

			

				𝐴
			

			
				−
				
				𝜙
			

			

				𝐴
			

			

				
			

			
				2
				𝔹
			

			
				|
				|
			

			

				𝐷
			

			
				
				𝑑
				𝑣
			

			
				1
				/
				𝐷
			

			
				+
				
			

			

				𝐴
			

			
				
				
			

			
				2
				𝔹
			

			
				|
				|
				𝜓
				|
				|
			

			

				𝐷
			

			
				|
				|
				𝑋
				𝜙
			

			

				𝐴
			

			
				|
				|
			

			

				𝐷
			

			
				
				𝑑
				𝑣
			

			
				1
				/
				𝐷
			

			
				≤
				𝐶
			

			
				
			
			
				𝑟
				
			

			

				𝐴
			

			
				
				
			

			
				2
				𝔹
			

			
				|
				|
				𝜙
			

			

				𝐴
			

			
				−
				
				𝜙
			

			

				𝐴
			

			

				
			

			
				2
				𝔹
			

			
				|
				|
			

			

				𝐷
			

			
				
				𝑑
				𝑣
			

			
				1
				/
				𝐷
			

			
				+
				
			

			

				𝐴
			

			
				
				
			

			
				2
				𝔹
			

			
				|
				|
				𝑋
				𝜙
			

			

				𝐴
			

			
				|
				|
			

			

				𝐷
			

			
				
				𝑑
				𝑣
			

			
				1
				/
				𝐷
			

			

				,
			

		
	

					that is,
						
	
 		
 			
				(
				1
				0
				1
				)
			
 		
	

	
		
			
				2
				𝑚
			

			

				
			

			
				𝐴
				=
				1
			

			
				‖
				‖
				𝑋
				𝜓
			

			

				𝐴
			

			
				‖
				‖
			

			

				𝐿
			

			

				𝐷
			

			
				(
				2
				𝔹
				)
			

			
				≤
				𝐶
				𝐼
			

			

				𝐷
			

			
				(
				2
				𝑟
				)
			

			
				1
				/
				𝐷
			

			

				.
			

		
	

					Using (97) and (101), the inequality (120) yields 
						
	
 		
 			
				(
				1
				0
				2
				)
			
 		
	

	
		
			
				𝑎
				𝐼
			

			

				𝐷
			

			
				
				𝐼
				(
				𝑟
				)
				≤
				𝐶
			

			

				𝐷
			

			
				(
				2
				𝑟
				)
			

			
				1
				/
				𝐷
			

			
				
				𝐼
			

			

				𝐷
			

			
				(
				2
				𝑟
				)
				−
				𝐼
			

			

				𝐷
			

			
				
				(
				𝑟
				)
			

			
				(
				𝐷
				−
				1
				)
				/
				𝐷
			

			
				+
				
				𝐼
			

			

				𝐷
			

			
				(
				2
				0
				0
				𝑟
				)
				+
				𝐼
			

			

				𝐷
			

			
				(
				2
				0
				0
				𝑟
				)
			

			
				1
				−
				𝜖
			

			
				
				𝐼
			

			

				𝐷
			

			
				(
				2
				𝑟
				)
			

			
				1
				/
				𝐷
			

			
				
				.
			

		
	

					By the Vitali absolute continuity of the integral 
	
		
			

				𝐼
			

			

				𝐷
			

			
				(
				2
				0
				0
				𝑟
				)
			

		
	
, there is 
	
		
			

				𝑟
			

			
				
				0
			

			
				>
				0
			

		
	
 such that 
	
		
			

				𝐼
			

			

				𝐷
			

			
				(
				2
				0
				0
				𝑟
				)
				<
				1
			

		
	
 for any 
	
		
			
				0
				<
				𝑟
				≤
				𝑟
			

			
				
				0
			

		
	
. As a consequence of (102) we may establish the following.
Lemma 22.  There exist 
	
		
			
				0
				<
				𝑟
			

			

				0
			

			
				≤
				𝑟
			

			
				
				0
			

		
	
 and 
	
		
			
				1
				/
				2
				≤
				𝜆
				<
				1
			

		
	
 such that 
							
	
 		
 			
				(
				1
				0
				3
				)
			
 		
	

	
		
			

				𝐼
			

			

				𝐷
			

			
				(
				𝑟
				)
				≤
				𝜆
				𝐼
			

			

				𝐷
			

			
				(
				2
				0
				0
				𝑟
				)
			

			
				1
				−
				𝜖
			

		
	

						for any 
	
		
			
				0
				<
				𝑟
				≤
				𝑟
			

			

				0
			

		
	
. 
Proof. The proof is by contradiction. Let us assume that for any 
	
		
			
				0
				<
				𝑟
			

			

				0
			

			
				≤
				𝑟
			

			
				
				0
			

		
	
 and any 
	
		
			
				1
				/
				2
				≤
				𝜆
				<
				1
			

		
	
, there is 
	
		
			
				0
				<
				𝑟
				≤
				𝑟
			

			

				0
			

		
	
 such that 
	
		
			
				𝐼
				(
				𝑟
				)
				>
				𝜆
				𝐼
				(
				2
				0
				0
				𝑟
				)
			

			
				1
				−
				𝜖
			

		
	
, where 
	
		
			

				𝐼
			

		
	
 is short for 
	
		
			

				𝐼
			

			

				𝐷
			

		
	
. Note that 
	
		
			
				𝐼
				(
				2
				0
				0
				𝑟
				)
				≤
				𝐼
				(
				2
				0
				0
				𝑟
				)
			

			
				1
				−
				𝜖
			

		
	
. Then (by (102)) 
							
	
 		
 			
				(
				1
				0
				4
				)
			
 		
	

	
		
			
				𝜆
				𝐼
				(
				2
				0
				0
				𝑟
				)
			

			
				1
				−
				𝜖
			

			
				
				<
				𝐼
				(
				𝑟
				)
				≤
				𝐶
				𝐼
				(
				2
				0
				0
				𝑟
				)
				(
				1
				−
				𝜆
				)
			

			
				(
				𝐷
				−
				1
				)
				/
				𝐷
			

			
				+
				
				𝐼
				(
				2
				0
				0
				𝑟
				)
				+
				𝐼
				(
				2
				0
				0
				𝑟
				)
			

			
				1
				−
				𝜖
			

			
				
				𝐼
				(
				2
				𝑟
				)
			

			
				1
				/
				𝐷
			

			
				
				≤
				𝐶
				𝐼
				(
				2
				0
				0
				𝑟
				)
			

			
				1
				−
				𝜖
			

			
				
				(
				1
				−
				𝜆
				)
			

			
				(
				𝐷
				−
				1
				)
				/
				𝐷
			

			
				+
				𝐼
				(
				2
				𝑟
				)
			

			
				1
				/
				𝐷
			

			
				
				.
			

		
	

						Therefore 
							
	
 		
 			
				(
				1
				0
				5
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				
				≤
				𝜆
				<
				𝐶
				(
				1
				−
				𝜆
				)
			

			
				(
				𝐷
				−
				1
				)
				/
				𝐷
			

			
				+
				𝐼
				(
				2
				𝑟
				)
			

			
				1
				/
				𝐷
			

			
				
				.
			

		
	

						The inequality (105) leads to 
							
	
 		
 			
				(
				1
				0
				6
				)
			
 		
	

	
		
			
				
				1
			

			
				
			
			
				
				2
				𝐶
			

			

				𝐷
			

			
				≤
				
			

			
				2
				𝔹
			

			
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				𝐷
			

			
				𝑑
				𝑣
				.
			

		
	

						Indeed, by the contradiction assumption, we may pick a sequence 
	
		
			

				𝜆
			

			

				𝑗
			

			
				∈
				[
				1
				/
				2
				,
				1
				)
			

		
	
 such that 
	
		
			

				𝜆
			

			

				𝑗
			

			
				→
				1
			

		
	
 as 
	
		
			
				𝑗
				→
				∞
			

		
	
 and consider the corresponding radii 
	
		
			
				0
				<
				𝑟
			

			

				𝑗
			

			
				≤
				𝑟
			

			

				0
			

		
	
. By passing to a subsequence, if necessary, one may assume that 
	
		
			
				l
				i
				m
			

			
				𝑗
				→
				∞
			

			

				𝑟
			

			

				𝑗
			

			
				=
				𝑟
			

			

				∞
			

		
	
 for some 
	
		
			

				𝑟
			

			

				∞
			

			
				∈
				[
				0
				,
				𝑟
			

			

				0
			

			

				]
			

		
	
. Let 
	
		
			
				𝑗
				→
				∞
			

		
	
 in
							
	
 		
 			
				(
				1
				0
				7
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				≤
				𝜆
			

			

				𝑗
			

			
				
				
				<
				𝐶
				1
				−
				𝜆
			

			

				𝑗
			

			

				
			

			
				(
				𝐷
				−
				1
				)
				/
				𝐷
			

			
				
				+
				𝐼
				2
				𝑟
			

			

				𝑗
			

			

				
			

			
				1
				/
				𝐷
			

			

				
			

		
	

						and use the absolute continuity of the integral. Then either 
	
		
			

				𝑟
			

			

				∞
			

			
				>
				0
			

		
	
 (yielding (106)) or 
	
		
			

				𝑟
			

			

				∞
			

			
				=
				0
			

		
	
 and then 
	
		
			
				1
				/
				2
				≤
				0
			

		
	
, a contradiction. Finally (106) may be exploited as follows. Let 
	
		
			

				𝑟
			

			

				0
			

			
				=
				1
				/
				𝑘
			

		
	
. By the contradiction assumption there is 
	
		
			
				0
				<
				𝑟
				≤
				1
				/
				𝑘
			

		
	
 such that (by (106))
							
	
 		
 			
				(
				1
				0
				8
				)
			
 		
	

	
		
			
				
				1
			

			
				
			
			
				
				2
				𝐶
			

			

				𝐷
			

			
				
				≤
				𝐼
				(
				2
				𝑟
				)
				≤
			

			

				𝐵
			

			

				𝑋
			

			
				(
				𝑥
				,
				2
				/
				𝑘
				)
			

			
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				𝐷
			

			
				𝑑
				𝑣
			

		
	

						and the last integral tends to 
	
		
			

				0
			

		
	
 as 
	
		
			
				𝑘
				→
				∞
			

		
	
, a contradiction. Lemma 22 is proved. Now we may prove the Caccioppoli type estimate (98). Let 
	
		
			
				𝜏
				=
				1
				/
				2
				0
				0
			

		
	
 so that (103) may be written as
	
 		
 			
				(
				1
				0
				9
				)
			
 		
	

	
		
			

				𝐼
			

			

				𝐷
			

			
				(
				𝜏
				𝑟
				)
				≤
				𝜆
				𝐼
			

			

				𝐷
			

			
				(
				𝑟
				)
			

			
				1
				−
				𝜖
			

			

				.
			

		
	

						Then (by (109) and induction over 
	
		
			

				𝑚
			

		
	
)
							
	
 		
 			
				(
				1
				1
				0
				)
			
 		
	

	
		
			

				𝐼
			

			

				𝐷
			

			
				(
				𝜏
			

			

				𝑚
			

			
				𝑟
				)
				≤
				𝜆
			

			
				[
				1
				−
				(
				1
				−
				𝜖
				)
			

			

				𝑚
			

			
				]
				/
				𝜖
			

			

				𝐼
			

			

				𝐷
			

			
				(
				𝑟
				)
			

			
				(
				1
				−
				𝜖
				)
			

			

				𝑚
			

		
	

						for any 
	
		
			
				𝑚
				∈
				ℤ
			

		
	
, 
	
		
			
				𝑚
				≥
				1
			

		
	
. Let us consider the family of intervals 
	
		
			
				{
				(
				𝜏
			

			

				𝑚
			

			
				,
				𝜏
			

			
				𝑚
				−
				1
			

			
				]
				∶
				𝑚
				∈
				ℤ
				,
				𝑚
				≥
				1
				}
			

		
	
. It is a cover of 
	
		
			
				(
				0
				,
				1
				]
			

		
	
, hence for each 
	
		
			
				0
				<
				𝑟
				≤
				𝑟
			

			

				0
			

		
	
 there is 
	
		
			
				𝑚
				∈
				ℤ
			

		
	
, 
	
		
			
				𝑚
				≥
				1
			

		
	
, such that 
	
		
			

				𝜏
			

			

				𝑚
			

			
				<
				𝑟
				/
				𝑟
			

			

				0
			

			
				≤
				𝜏
			

			
				𝑚
				−
				1
			

		
	
. Now the inequality 
	
		
			
				𝑟
				≤
				𝜏
			

			
				𝑚
				−
				1
			

			

				𝑟
			

			

				0
			

		
	
 implies (by (110))
							
	
 		
 			
				(
				1
				1
				1
				)
			
 		
	

	
		
			

				𝐼
			

			

				𝐷
			

			
				(
				𝑟
				)
				≤
				𝐼
			

			

				𝐷
			

			
				
				𝜏
			

			
				𝑚
				−
				1
			

			

				𝑟
			

			

				0
			

			
				
				≤
				𝜆
			

			
				[
				1
				−
				(
				1
				−
				𝜖
				)
			

			
				𝑚
				−
				1
			

			
				]
				/
				𝜖
			

			

				𝐼
			

			

				𝐷
			

			
				
				𝑟
			

			

				0
			

			

				
			

			
				(
				1
				−
				𝜖
				)
			

			
				𝑚
				−
				1
			

			

				.
			

		
	

						On the other hand let us set 
	
		
			
				𝛾
				=
				(
				l
				o
				g
				𝜆
				)
				/
				(
				l
				o
				g
				𝜏
				)
			

		
	
 (so that 
	
		
			
				0
				<
				𝛾
				<
				1
			

		
	
) and observe that the inequality 
	
		
			
				𝑟
				/
				𝑟
			

			

				0
			

			
				≥
				𝜏
			

			

				𝑚
			

		
	
 implies 
							
	
 		
 			
				(
				1
				1
				2
				)
			
 		
	

	
		
			
				
				𝑟
			

			
				
			
			

				𝑟
			

			

				0
			

			

				
			

			

				𝛾
			

			
				>
				𝜏
			

			
				𝑚
				𝛾
			

			
				=
				𝜏
			

			
				(
				l
				o
				g
				𝜆
			

			

				𝑚
			

			
				)
				/
				(
				l
				o
				g
				𝜏
				)
			

			
				=
				𝜆
			

			

				𝑚
			

			

				,
			

		
	

						that is, 
	
		
			

				𝜆
			

			

				𝑚
			

			
				<
				(
				𝑟
				/
				𝑟
			

			

				0
			

			

				)
			

			

				𝛾
			

		
	
. One may choose 
	
		
			

				𝑟
			

			

				0
			

			
				>
				0
			

		
	
 from the very beginning such that 
	
		
			

				𝐼
			

			

				𝐷
			

			
				(
				𝑟
			

			

				0
			

			
				)
				<
				𝜆
			

		
	
 for any 
	
		
			
				𝑥
				∈
				𝑈
			

			

				1
			

		
	
. Note that 
	
		
			
				0
				<
				𝜖
				≤
				1
				/
				2
			

		
	
 (by the very definition of 
	
		
			

				𝜖
			

		
	
). Then 
	
		
			
				[
				1
				−
				(
				1
				−
				𝜖
				)
			

			

				𝑚
			

			
				∑
				]
				/
				𝜖
				=
			

			
				𝑚
				−
				1
				𝑗
				=
				0
			

			
				(
				1
				−
				𝜖
				)
			

			

				𝑗
			

			
				≥
				1
				+
				(
				𝑚
				−
				1
				)
				(
				1
				/
				2
				)
				=
				(
				𝑚
				+
				1
				)
				/
				2
			

		
	
, hence 
	
		
			

				𝜆
			

			
				[
				1
				−
				(
				1
				−
				𝜖
				)
			

			

				𝑚
			

			
				]
				/
				𝜖
			

			
				≤
				𝐶
				𝑟
			

			
				𝛾
				/
				2
			

		
	
, where 
	
		
			
				𝐶
				=
				𝑟
			

			
				0
				−
				𝛾
				/
				2
			

			

				√
			

			
				
			
			

				𝜆
			

		
	
. Theorem 20 is proved.
 It remains that we prove Lemma 17. It suffices to prove the inequality (83) for any 
	
		
			
				𝜓
				∈
				𝐶
			

			
				∞
				0
			

			
				(
				𝔹
				)
			

		
	
. Let us consider 
						
	
 		
 			
				(
				1
				1
				3
				)
			
 		
	

	
		
			
				
				1
				𝑤
				(
				𝑥
				)
				=
			

			
				
			
			
				4
				𝑎
			

			

				0
			

			
				
				|
				𝑥
				|
			

			
				−
				2
				𝑛
			

			
				,
				𝑥
				∈
				ℍ
			

			

				𝑛
			

			

				,
			

		
	

					where 
	
		
			

				𝑎
			

			

				0
			

			
				=
				(
				2
			

			
				2
				−
				2
				𝑛
			

			

				𝜋
			

			
				𝑛
				+
				1
			

			
				/
				Γ
				(
				𝑛
				/
				2
				)
				)
			

			

				2
			

		
	
 and 
	
		
			
				|
				𝑥
				|
				=
				(
				|
				𝑧
				|
			

			

				4
			

			
				+
				𝑡
			

			

				2
			

			

				)
			

			
				1
				/
				4
			

		
	
 is the Heisenberg norm of 
	
		
			
				𝑥
				=
				(
				𝑧
				,
				𝑡
				)
			

		
	
. By a classical result of Folland, [33], 
	
		
			
				𝐺
				(
				𝑥
				,
				𝑦
				)
				=
				𝑤
				(
				𝑥
				𝑦
			

			
				−
				1
			

			

				)
			

		
	
 is a fundamental solution for the Hörmander operator 
	
		
			

				∑
			

			
				2
				𝑛
				𝑎
				=
				1
			

			

				𝑋
			

			
				2
				𝑎
			

		
	
. In particular for any bounded domain 
	
		
			
				𝑈
				⊂
				ℍ
			

			

				𝑛
			

		
	
 one has the representation formula
						
	
 		
 			
				(
				1
				1
				4
				)
			
 		
	

	
		
			
				
				𝑢
				(
				𝑥
				)
				=
			

			

				𝑈
			

			

				𝑋
			

			

				𝑦
			

			
				𝐺
				(
				𝑦
				,
				𝑥
				)
				⋅
				𝑋
				𝑢
				(
				𝑦
				)
				𝑑
				𝑣
				(
				𝑦
				)
			

		
	

					for any 
	
		
			
				𝑢
				∈
				𝐶
			

			
				∞
				0
			

			
				(
				𝑈
				)
			

		
	
 and any 
	
		
			
				𝑥
				∈
				𝑈
			

		
	
. By a result of Citti et al., [34], we may consider a smooth cut-off function 
	
		
			
				0
				≤
				𝜓
			

			

				0
			

			
				≤
				1
			

		
	
 such that 
	
		
			

				𝜓
			

			

				0
			

			
				=
				1
			

		
	
 on 
	
		
			
				2
				𝔹
			

		
	
, 
	
		
			

				𝜓
			

			

				0
			

			
				=
				0
			

		
	
 on 
	
		
			
				𝑈
				⧵
				4
				𝔹
			

		
	
, and 
	
		
			
				|
				𝑋
				𝜓
			

			

				0
			

			
				|
				≤
				𝐶
				/
				d
				i
				a
				m
				(
				𝔹
				)
			

		
	
 (the diameter is meant with respect to the Carnot-Carathéodory metric on 
	
		
			

				ℍ
			

			

				𝑛
			

		
	
). Using (114) for 
	
		
			
				𝑢
				=
				𝜓
			

		
	
, one may write 
						
	
 		
 			
				(
				1
				1
				5
				)
			
 		
	

	
		
			

				
			

			

				𝔹
			

			
				
				𝑋
			

			

				∗
			

			
				⋅
				
				𝜙
			

			

				𝐵
			

			

				𝐸
			

			
				𝐴
				,
				𝐵
			

			
				=
				
				
				
				𝜓
				𝑑
				𝑣
			

			

				𝔹
			

			

				𝑋
			

			

				∗
			

			
				⋅
				
				𝜙
			

			

				𝐵
			

			

				𝐸
			

			
				𝐴
				,
				𝐵
			

			
				
				(
				𝑥
				)
				𝜓
				(
				𝑥
				)
				𝜓
			

			

				0
			

			
				=
				
				(
				𝑥
				)
				𝑑
				𝑣
				(
				𝑥
				)
			

			

				𝔹
			

			
				
				𝑋
				𝑑
				𝑣
				(
				𝑥
				)
			

			

				∗
			

			
				⋅
				
				𝜙
			

			

				𝐵
			

			

				𝐸
			

			
				𝐴
				,
				𝐵
			

			
				
				
				(
				𝑥
				)
				𝜓
			

			

				0
			

			
				×
				
				(
				𝑥
				)
			

			

				𝔹
			

			

				𝑋
			

			

				𝑦
			

			
				=
				
				𝐺
				(
				𝑦
				,
				𝑥
				)
				⋅
				𝑋
				𝜓
				(
				𝑦
				)
				𝑑
				𝑣
				(
				𝑦
				)
			

			

				𝔹
			

			

				𝒜
			

			
				𝐴
				,
				𝐵
			

			
				⋅
				(
				𝑋
				𝜓
				)
				𝑑
				𝑣
				,
			

		
	

					where we have set
						
	
 		
 			
				(
				1
				1
				6
				)
			
 		
	

	
		
			

				𝒜
			

			
				𝐴
				,
				𝐵
			

			
				
				(
				𝑦
				)
				=
			

			

				𝔹
			

			
				
				𝑋
			

			

				∗
			

			
				⋅
				
				𝜙
			

			

				𝐵
			

			

				𝐸
			

			
				𝐴
				,
				𝐵
			

			
				
				
				(
				𝑥
				)
				𝜓
			

			

				0
			

			
				(
				𝑥
				)
				𝑋
			

			

				𝑦
			

			
				𝐺
				(
				𝑦
				,
				𝑥
				)
				𝑑
				𝑣
				(
				𝑥
				)
				.
			

		
	

					We wish to prove an estimate on 
	
		
			
				|
				𝒜
				(
				𝑦
				)
				|
			

		
	
, where 
	
		
			
				𝒜
				=
				𝒜
			

			
				𝐴
				,
				𝐵
			

		
	
 for simplicity. As it is well known, 
	
		
			
				|
				𝐵
			

			

				𝑋
			

			
				(
				𝑥
				,
				𝑟
				)
				|
				=
				𝐶
				𝑟
			

			
				2
				𝑛
				+
				2
			

		
	
 for some constant 
	
		
			
				𝐶
				>
				0
			

		
	
 and any 
	
		
			
				𝑥
				∈
				ℍ
			

			

				𝑛
			

		
	
 and 
	
		
			
				𝑟
				>
				0
			

		
	
. Here 
	
		
			
				|
				𝐴
				|
			

		
	
 denotes the Lebesgue measure of the set 
	
		
			

				𝐴
			

		
	
. In particular the Lebesgue measure on 
	
		
			
				(
				ℍ
			

			

				𝑛
			

			
				,
				𝑑
			

			

				𝑋
			

			

				)
			

		
	
 has the doubling property. Thus we may apply a result by Macìas and Segovia, [15], to pick a Whitney decomposition of 
	
		
			

				𝑈
			

			

				𝑦
			

			
				=
				𝑈
				⧵
				{
				𝑦
				}
			

		
	
. Precisely let 
	
		
			
				𝑦
				∈
				𝔹
			

		
	
, and given 
	
		
			
				𝑥
				∈
				𝑈
			

			

				𝑦
			

		
	
, let us set 
	
		
			

				𝑟
			

			

				𝑥
			

			
				=
				𝑑
			

			

				𝑋
			

			
				(
				𝑥
				,
				ℍ
			

			

				𝑛
			

			
				⧵
				𝑈
			

			

				𝑦
			

			
				)
				/
				1
				0
				0
				0
			

		
	
. Next let us choose among 
	
		
			
				{
				𝐵
			

			

				𝑋
			

			
				(
				𝑥
				,
				𝑟
			

			

				𝑥
			

			
				)
				}
			

			
				𝑥
				∈
				𝑈
			

			

				𝑦
			

		
	
 a maximal family of mutually disjoint balls 
	
		
			
				{
				𝐵
			

			

				𝑋
			

			
				(
				𝑥
			

			

				𝛼
			

			
				,
				𝑟
			

			

				𝛼
			

			
				)
				}
			

			
				𝛼
				∈
				𝐼
			

		
	
. Then 
	
		
			

				𝑈
			

			

				𝑦
			

			
				=
				⋃
			

			
				𝛼
				∈
				𝐼
			

			

				𝐵
			

			

				𝑋
			

			
				(
				𝑥
			

			

				𝛼
			

			
				,
				3
				𝑟
			

			

				𝛼
			

			

				)
			

		
	
 (the Whitney decomposition of 
	
		
			

				𝑈
			

			

				𝑦
			

		
	
) and there is 
	
		
			
				𝑁
				≥
				1
			

		
	
 such that each 
	
		
			
				𝑥
				∈
				𝑈
			

		
	
 belongs to at most 
	
		
			

				𝑁
			

		
	
 balls 
	
		
			

				𝐵
			

			

				𝑋
			

			
				(
				𝑥
			

			

				𝛼
			

			
				,
				6
				𝑟
			

			

				𝛼
			

			

				)
			

		
	
. Moreover, again by a result in [15], we may associate a partition of unity to the Whitney decomposition of 
	
		
			

				𝑈
			

			

				𝑦
			

		
	
; that is, we may consider a family of smooth functions 
	
		
			
				{
				𝜃
			

			

				𝛼
			

			

				}
			

			
				𝛼
				∈
				𝐼
			

		
	
 such that 
	
		
			
				0
				≤
				𝜃
			

			

				𝛼
			

			
				≤
				1
			

		
	
, 
	
		
			

				∑
			

			
				𝛼
				∈
				𝐼
			

			

				𝜃
			

			

				𝛼
			

			
				=
				1
			

		
	
 on 
	
		
			

				𝑈
			

			

				𝑦
			

		
	
, 
	
		
			
				S
				u
				p
				p
			

			
				(
				𝜃
			

			

				𝛼
			

			
				)
				⊂
				𝔹
			

			

				𝛼
			

			
				=
				𝐵
			

			

				𝑋
			

			
				(
				𝑥
			

			

				𝛼
			

			
				,
				6
				𝑟
			

			

				𝛼
			

			

				)
			

		
	
, and 
	
		
			
				|
				𝑋
				𝜃
			

			

				𝛼
			

			
				|
				≤
				𝐶
				/
				𝑟
			

			

				𝛼
			

		
	
. The bounds on the gradients actually follow from the work by Citti et al., [34], quoted above. Then
						
	
 		
 			
				(
				1
				1
				7
				)
			
 		
	

	
		
			

				𝒜
			

			

				𝑎
			

			
				=
				
				(
				𝑦
				)
			

			
				𝛼
				∈
				𝐼
			

			

				
			

			

				𝔹
			

			

				𝛼
			

			
				
				𝑋
			

			

				∗
			

			
				⋅
				
				𝜙
			

			

				𝐵
			

			

				𝐸
			

			
				𝐴
				,
				𝐵
			

			
				
				
				(
				𝑥
				)
				𝜓
			

			

				0
			

			
				(
				𝑥
				)
				×
				𝜃
			

			

				𝛼
			

			
				(
				𝑥
				)
				𝑋
			

			
				𝑎
				,
				𝑦
			

			
				=
				
				𝐺
				(
				𝑦
				,
				𝑥
				)
				𝑑
				𝑣
				(
				𝑥
				)
			

			
				𝛼
				∈
				𝐼
			

			

				
			

			

				𝔹
			

			

				𝛼
			

			
				
				𝑋
			

			

				∗
			

			
				⋅
				
				𝜙
			

			

				𝐵
			

			
				−
				
				𝜙
			

			

				𝐵
			

			

				
			

			

				𝔹
			

			

				𝛼
			

			
				
				𝐸
			

			
				𝐴
				,
				𝐵
			

			
				
				(
				𝑥
				)
				𝜓
			

			

				0
			

			
				(
				𝑥
				)
				×
				𝜃
			

			

				𝛼
			

			
				(
				𝑥
				)
				𝑋
			

			
				𝑎
				,
				𝑦
			

			
				𝐺
				+
				
				(
				𝑦
				,
				𝑥
				)
				𝑑
				𝑣
				(
				𝑥
				)
			

			
				𝛼
				∈
				𝐼
			

			
				
				𝜙
			

			

				𝐵
			

			

				
			

			

				𝔹
			

			

				𝛼
			

			

				
			

			

				𝔹
			

			

				𝛼
			

			
				
				𝑋
			

			

				∗
			

			
				⋅
				𝐸
			

			
				𝐴
				,
				𝐵
			

			
				
				(
				𝑥
				)
				𝜓
			

			

				0
			

			
				(
				𝑥
				)
				×
				𝜃
			

			

				𝛼
			

			
				(
				𝑥
				)
				𝑋
			

			
				𝑎
				,
				𝑦
			

			
				𝐺
				(
				𝑦
				,
				𝑥
				)
				𝑑
				𝑣
				(
				𝑥
				)
				=
				𝒜
			

			
				
				𝑎
			

			
				(
				𝑦
				)
				+
				𝒜
			

			
				𝑎
				
				
			

			
				(
				𝑦
				)
				.
			

		
	

					The presence of term 
	
		
			

				𝒜
			

			
				𝑎
				
				
			

			
				(
				𝑦
				)
			

		
	
 represents of course the main difference with respect to the proof of the so called duality inequality in [7] (there 
	
		
			

				𝑋
			

			

				∗
			

			
				⋅
				𝐸
			

			
				𝐴
				,
				𝐵
			

			
				=
				0
			

		
	
). Integrating by parts,
	
 		
 			
				(
				1
				1
				8
				)
			
 		
	

	
		
			

				𝒜
			

			
				
				𝑎
			

			
				=
				
				(
				𝑦
				)
			

			
				𝛼
				∈
				𝐼
			

			

				
			

			

				𝔹
			

			

				𝛼
			

			
				
				𝜙
			

			

				𝐵
			

			
				
				𝜙
				(
				𝑥
				)
				−
			

			

				𝐵
			

			

				
			

			

				𝔹
			

			

				𝛼
			

			
				
				×
				𝐸
			

			
				𝐴
				,
				𝐵
			

			
				(
				𝑥
				)
				⋅
				𝑋
			

			

				𝑥
			

			
				
				𝜓
			

			

				0
			

			
				(
				𝑥
				)
				𝜃
			

			

				𝛼
			

			
				(
				𝑥
				)
				𝑋
			

			
				𝑎
				,
				𝑦
			

			
				
				𝐺
				(
				𝑦
				,
				𝑥
				)
				𝑑
				𝑣
				(
				𝑥
				)
				.
			

		
	
Due to the explicit form of the fundamental solution 
	
		
			
				𝐺
				(
				𝑥
				,
				𝑦
				)
			

		
	
, one may easily check that 
						
	
 		
 			
				(
				1
				1
				9
				)
			
 			
				(
				1
				2
				0
				)
			
 		
	

	
		
			
				|
				|
				𝑋
			

			

				𝑎
			

			
				|
				|
				𝐺
				(
				𝑥
				,
				𝑦
				)
				≤
				𝐶
				𝑑
			

			

				𝑋
			

			
				(
				𝑥
				,
				𝑦
				)
			

			
				−
				2
				𝑛
				−
				1
			

			
				,
				|
				|
				𝑋
			

			

				𝑎
			

			

				𝑋
			

			

				𝑏
			

			
				|
				|
				𝐺
				(
				𝑥
				,
				𝑦
				)
				≤
				𝐶
				𝑑
			

			

				𝑋
			

			
				(
				𝑥
				,
				𝑦
				)
			

			
				−
				2
				𝑛
				−
				2
			

			

				,
			

		
	

					for any 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝑈
			

		
	
. Here it is irrelevant whether differentiation is performed in 
	
		
			

				𝑥
			

		
	
 or 
	
		
			

				𝑦
			

		
	
. Estimates of the sort in the case of an arbitrary Hörmander system of vector fields have been obtained by Sánchez-Calle [35]. Estimates on 
	
		
			
				𝐺
				(
				𝑥
				,
				𝑦
				)
			

		
	
 itself are available, yet only estimates on the derivatives are needed for the following calculations. Using (119)-(120) and
						
	
 		
 			
				(
				1
				2
				1
				)
			
 		
	

	
		
			
				|
				|
				𝑋
				𝜓
			

			

				0
			

			
				|
				|
				(
				𝑥
				)
				≤
				𝐶
				𝑑
			

			

				𝑋
			

			
				(
				𝑥
				,
				𝑦
				)
			

			
				−
				1
			

			
				,
				|
				|
				𝜃
			

			

				𝛼
			

			
				|
				|
				(
				𝑥
				)
				≤
				𝐶
				𝑑
			

			

				𝑋
			

			
				(
				𝑥
				,
				𝑦
				)
			

			
				−
				1
			

			
				,
				𝛼
				∈
				𝐼
				,
			

		
	

					one has
						
	
 		
 			
				(
				1
				2
				2
				)
			
 		
	

	
		
			
				|
				|
				𝑋
			

			
				𝑏
				,
				𝑥
			

			
				
				𝜓
			

			

				0
			

			
				(
				𝑥
				)
				𝜃
			

			

				𝛼
			

			
				(
				𝑥
				)
				𝑋
			

			
				𝑎
				,
				𝑦
			

			
				
				|
				|
				𝐺
				(
				𝑦
				,
				𝑥
				)
				≤
				𝐶
				𝑑
			

			

				𝑋
			

			
				(
				𝑥
				,
				𝑦
				)
			

			
				−
				2
				𝑛
				−
				2
			

			

				,
			

		
	

					hence 
						
	
 		
 			
				(
				1
				2
				3
				)
			
 		
	

	
		
			
				|
				|
				𝒜
			

			
				
				𝛼
			

			
				|
				|
				
				(
				𝑦
				)
				≤
				𝐶
			

			
				𝛼
				∈
				𝐼
			

			

				
			

			

				Γ
			

			

				𝛼
			

			
				|
				|
				|
				𝜙
			

			

				𝐵
			

			
				(
				
				𝜙
				𝑥
				)
				−
			

			

				𝐵
			

			

				
			

			

				𝔹
			

			

				𝛼
			

			
				|
				|
				|
				|
				|
				𝐸
			

			
				𝐴
				,
				𝐵
			

			
				(
				|
				|
				𝑥
				)
			

			
				
			
			

				𝑑
			

			

				𝑋
			

			
				(
				𝑥
				,
				𝑦
				)
			

			
				2
				𝑛
				+
				2
			

			
				𝑑
				𝑣
				(
				𝑥
				)
				,
			

		
	

					where 
	
		
			

				Γ
			

			

				𝛼
			

			

				=
			

			
				S
				u
				p
				p
			

			
				(
				𝜃
			

			

				𝛼
			

			

				)
			

		
	
. Let 
	
		
			
				𝑥
				∈
				𝔹
			

			

				𝛼
			

			
				=
				𝐵
			

			

				𝑋
			

			
				(
				𝑥
			

			

				𝛼
			

			
				,
				6
				𝑟
			

			

				𝛼
			

			

				)
			

		
	
. As 
	
		
			
				𝑦
				∈
				ℍ
			

			

				𝑛
			

			
				⧵
				𝑈
			

			

				𝑦
			

		
	
, the very definition of 
	
		
			

				𝑟
			

			

				𝛼
			

		
	
 yields 
	
		
			

				𝑑
			

			

				𝑋
			

			
				(
				𝑦
				,
				𝑥
			

			

				𝛼
			

			
				)
				≥
				1
				0
				0
				0
				𝑟
			

			

				𝛼
			

		
	
; hence
						
	
 		
 			
				(
				1
				2
				4
				)
			
 		
	

	
		
			
				1
				0
				0
				0
				𝑟
			

			

				𝛼
			

			
				≤
				𝑑
			

			

				𝑋
			

			
				
				𝑦
				,
				𝑥
			

			

				𝛼
			

			
				
				≤
				𝑑
			

			

				𝑋
			

			
				(
				𝑦
				,
				𝑥
				)
				+
				𝑑
			

			

				𝑋
			

			
				
				𝑥
				,
				𝑥
			

			

				𝛼
			

			
				
				≤
				𝑑
			

			

				𝑋
			

			
				(
				𝑥
				,
				𝑦
				)
				+
				6
				𝑟
			

			

				𝛼
			

		
	

					and in particular 
	
		
			
				6
				𝑟
			

			

				𝛼
			

			
				≤
				𝑑
			

			

				𝑋
			

			
				(
				𝑥
				,
				𝑦
				)
			

		
	
. Thus 
	
		
			
				|
				𝔹
			

			

				𝛼
			

			
				|
				=
				𝐶
				𝑟
			

			
				𝛼
				2
				𝑛
				+
				2
			

			
				≤
				𝐶
			

			

				
			

			

				𝑑
			

			

				𝑋
			

			
				(
				𝑥
				,
				𝑦
				)
			

			
				2
				𝑛
				+
				2
			

		
	
, where 
	
		
			

				𝐶
			

			

				
			

			
				=
				𝐶
				6
			

			
				−
				2
				𝑛
				−
				2
			

		
	
; hence there is a constant 
	
		
			
				𝐶
				>
				0
			

		
	
 such that 
						
	
 		
 			
				(
				1
				2
				5
				)
			
 		
	

	
		
			

				𝑑
			

			

				𝑋
			

			
				(
				𝑥
				,
				𝑦
				)
			

			
				2
				𝑛
				+
				2
			

			
				|
				|
				𝔹
				≥
				𝐶
			

			

				𝛼
			

			
				|
				|
				,
				𝑥
				∈
				𝔹
			

			

				𝛼
			

			

				.
			

		
	

					Let us set 
	
		
			
				𝐽
				=
				{
				𝛼
				∈
				𝐼
				∶
				Γ
			

			

				𝛼
			

			
				∩
				4
				𝔹
				≠
				∅
				}
			

		
	
. Let us apply (123) and (125) and Hölder's inequality to perform the estimates 
						
	
 		
 			
				(
				1
				2
				6
				)
			
 		
	

	
		
			
				|
				|
				𝒜
			

			
				
				𝑎
			

			
				|
				|
				
				(
				𝑦
				)
				≤
				𝐶
			

			
				𝛼
				∈
				𝐽
			

			

				1
			

			
				
			
			
				|
				|
				𝔹
			

			

				𝛼
			

			
				|
				|
				
			

			

				𝔹
			

			

				𝛼
			

			
				|
				|
				|
				𝜙
			

			

				𝐵
			

			
				
				𝜙
				(
				𝑥
				)
				−
			

			

				𝐵
			

			

				
			

			

				𝔹
			

			

				𝛼
			

			
				|
				|
				|
				|
				|
				𝐸
			

			
				𝐴
				,
				𝐵
			

			
				|
				|
				
				(
				𝑥
				)
				𝑑
				𝑣
				(
				𝑥
				)
				≤
				𝐶
			

			
				𝛼
				∈
				𝐽
			

			
				
				1
			

			
				
			
			
				|
				|
				𝔹
			

			

				𝛼
			

			
				|
				|
				
			

			

				𝔹
			

			

				𝛼
			

			
				|
				|
				|
				𝜙
			

			

				𝐵
			

			
				−
				
				𝜙
			

			

				𝐵
			

			

				
			

			

				𝔹
			

			

				𝛼
			

			
				|
				|
				|
			

			

				𝐷
			

			

				2
			

			
				
				𝑑
				𝑣
			

			
				1
				/
				𝐷
			

			

				2
			

			
				×
				
				1
			

			
				
			
			
				|
				|
				𝔹
			

			

				𝛼
			

			
				|
				|
				
			

			

				𝔹
			

			

				𝛼
			

			
				|
				|
				𝐸
			

			
				𝐴
				,
				𝐵
			

			
				|
				|
			

			

				𝐷
			

			

				2
			

			
				/
				(
				𝐷
			

			

				2
			

			
				−
				1
				)
			

			
				
				𝑑
				𝑣
			

			
				(
				𝐷
			

			

				2
			

			
				−
				1
				)
				/
				𝐷
			

			

				2
			

			

				,
			

		
	

					where we have set 
	
		
			
				𝐷
				=
				2
				𝑛
				+
				2
			

		
	
 for simplicity. By (90) in Lemma 18 and 
	
		
			
				𝑄
				≤
				|
				𝑋
				𝜙
				|
			

			

				2
			

		
	
, one has 
	
		
			
				|
				𝐸
			

			
				𝐴
				,
				𝐵
			

			
				√
				|
				≤
				2
			

			
				
			
			
				6
				|
				𝑋
				𝜙
				|
			

			
				𝐷
				−
				1
			

		
	
; hence
						
	
 		
 			
				(
				1
				2
				7
				)
			
 		
	

	
		
			
				
				1
			

			
				
			
			
				|
				|
				𝔹
			

			

				𝛼
			

			
				|
				|
				
			

			

				𝔹
			

			

				𝛼
			

			
				|
				|
				𝐸
			

			
				𝐴
				,
				𝐵
			

			
				|
				|
			

			

				𝐷
			

			

				2
			

			
				/
				(
				𝐷
			

			

				2
			

			
				−
				1
				)
			

			
				
				𝑑
				𝑣
			

			
				(
				𝐷
			

			

				2
			

			
				−
				1
				)
				/
				𝐷
			

			

				2
			

			
				
				1
				≤
				𝐶
			

			
				
			
			
				|
				|
				𝔹
			

			

				𝛼
			

			
				|
				|
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				𝐷
			

			

				2
			

			
				/
				(
				𝐷
				+
				1
				)
			

			
				
				𝑑
				𝑣
			

			
				(
				𝐷
			

			

				2
			

			
				−
				1
				)
				/
				𝐷
			

			

				2
			

			

				.
			

		
	

					At this point we need to apply a version of the Sobolev inequality due to Franchi et al. [36]. Precisely, for any 
	
		
			
				1
				≤
				𝑝
				<
				2
				𝑛
				+
				2
			

		
	
 there is a constant 
	
		
			
				𝐶
				>
				0
			

		
	
 such that for any ball 
	
		
			

				𝐵
			

			

				𝑋
			

			
				(
				𝑥
				,
				𝑟
				)
			

		
	
 with 
	
		
			
				𝑥
				∈
				𝑈
			

		
	
 and 
	
		
			
				0
				<
				𝑟
				≤
				d
				i
				a
				m
				(
				𝑈
				)
			

		
	

	
 		
 			
				(
				1
				2
				8
				)
			
 		
	

	
		
			
				
				1
			

			
				
			
			
				|
				|
				𝐵
			

			

				𝑋
			

			
				(
				|
				|
				
				𝑥
				,
				𝑟
				)
			

			

				𝐵
			

			

				𝑋
			

			
				(
				𝑥
				,
				𝑟
				)
			

			
				|
				|
				𝑢
				−
				𝑢
			

			

				𝐵
			

			

				𝑋
			

			
				(
				𝑥
				,
				𝑟
				)
			

			
				|
				|
			

			

				𝑝
			

			

				∗
			

			
				
				𝑑
				𝑣
			

			
				1
				/
				𝑝
			

			

				∗
			

			
				
				1
				≤
				𝐶
				𝑟
			

			
				
			
			
				|
				|
				𝐵
			

			

				𝑋
			

			
				|
				|
				
				(
				𝑥
				,
				𝑟
				)
			

			

				𝐵
			

			

				𝑋
			

			
				(
				𝑥
				,
				𝑟
				)
			

			
				|
				|
				|
				|
				𝑋
				𝑢
			

			

				𝑝
			

			
				
				𝑑
				𝑣
			

			
				1
				/
				𝑝
			

			
				,
				𝑝
			

			

				∗
			

			
				=
				2
				(
				𝑛
				+
				1
				)
				𝑝
			

			
				
			
			
				.
				2
				𝑛
				+
				2
				−
				𝑝
			

		
	

					By the assumption in Theorem 20 one has 
	
		
			

				𝑋
			

			

				𝑎
			

			

				𝜙
			

			

				𝐵
			

			
				∈
				𝐿
			

			
				2
				𝑛
				+
				2
			

			
				(
				𝑈
				)
			

		
	
; hence 
	
		
			

				𝑋
			

			

				𝑎
			

			

				𝜙
			

			

				𝐵
			

			
				∈
				𝐿
			

			

				𝜈
			

			
				(
				𝑈
				)
			

		
	
 for any 
	
		
			
				0
				<
				𝜈
				≤
				2
				𝑛
				+
				2
			

		
	
. Therefore (by the Sobolev inequality above)
						
	
 		
 			
				(
				1
				2
				9
				)
			
 		
	

	
		
			
				
				1
			

			
				
			
			
				|
				|
				𝔹
			

			

				𝛼
			

			
				|
				|
				|
				|
				|
				𝜙
			

			

				𝐵
			

			
				−
				
				𝜙
			

			

				𝐵
			

			

				
			

			

				𝔹
			

			

				𝛼
			

			
				|
				|
				|
			

			

				𝐷
			

			

				2
			

			
				
				𝑑
				𝑣
			

			
				1
				/
				𝐷
			

			

				2
			

			
				≤
				𝐶
				𝑟
			

			

				𝛼
			

			
				
				1
			

			
				
			
			
				|
				|
				𝔹
			

			

				𝛼
			

			
				|
				|
				
			

			

				𝔹
			

			

				𝛼
			

			
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				𝑑
			

			

				2
			

			
				/
				(
				𝐷
				+
				1
				)
			

			
				
				𝑑
				𝑣
			

			
				(
				𝐷
				+
				1
				)
				/
				𝐷
			

			

				2
			

			

				.
			

		
	

					Collecting the information in (127) and (129), 
						
	
 		
 			
				(
				1
				3
				0
				)
			
 		
	

	
		
			
				|
				|
				𝒜
			

			
				
				𝑎
			

			
				|
				|
				
				(
				𝑦
				)
				≤
				𝐶
			

			
				𝛼
				∈
				𝐽
			

			

				𝑟
			

			

				𝛼
			

			
				
				1
			

			
				
			
			
				|
				|
				𝔹
			

			

				𝛼
			

			
				|
				|
				
			

			

				𝔹
			

			

				𝛼
			

			
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				𝐷
			

			

				2
			

			
				/
				(
				𝐷
				+
				1
				)
			

			
				
				𝑑
				𝑣
			

			
				(
				𝐷
				+
				1
				)
				/
				𝐷
			

			

				.
			

		
	

					In the sequel we write briefly 
	
		
			
				𝑎
				≈
				𝑏
			

		
	
 whenever 
	
		
			
				𝑎
				/
				𝐶
				≤
				𝑏
				≤
				𝐶
				𝑎
			

		
	
 for some constant 
	
		
			
				𝐶
				≥
				1
			

		
	
. Let 
	
		
			
				𝛼
				∈
				𝐽
			

		
	
. If there is 
	
		
			
				𝑘
				∈
				ℤ
			

		
	
 such that 
	
		
			

				𝑥
			

			

				𝛼
			

			
				∈
				𝐵
			

			

				𝑋
			

			
				(
				𝑦
				,
				2
			

			
				𝑘
				−
				1
			

			
				)
				⧵
				𝐵
			

			

				𝑋
			

			
				(
				𝑦
				,
				2
			

			
				𝑘
				−
				2
			

			

				)
			

		
	
, then 
	
		
			

				𝑟
			

			

				𝛼
			

			
				≈
				2
			

			

				𝑘
			

		
	
 and 
	
		
			

				𝔹
			

			

				𝛼
			

			
				⊂
				𝐵
			

			

				𝑋
			

			
				(
				𝑦
				,
				2
			

			

				𝑘
			

			

				)
			

		
	
 (our arguments follow closely those in [7, page 356]). Moreover 
						
	
 		
 			
				(
				1
				3
				1
				)
			
 		
	

	
		
			
				|
				|
				𝔹
			

			

				𝛼
			

			
				|
				|
			

			
				
			
			
				|
				|
				𝐵
			

			

				𝑋
			

			
				
				𝑦
				,
				2
			

			

				𝑘
			

			
				
				|
				|
				=
				
				6
				𝑟
			

			

				𝛼
			

			
				
			
			

				2
			

			

				𝑘
			

			

				
			

			
				2
				𝑛
				+
				2
			

			

				,
			

		
	

					hence 
	
		
			
				|
				𝔹
			

			

				𝛼
			

			
				|
				≈
				|
				𝐵
			

			

				𝑋
			

			
				(
				𝑦
				,
				2
			

			

				𝑘
			

			
				)
				|
			

		
	
. Consequently
						
	
 		
 			
				(
				1
				3
				2
				)
			
 		
	

	
		
			

				𝑟
			

			

				𝛼
			

			
				
				1
			

			
				
			
			
				|
				|
				𝔹
			

			

				𝛼
			

			
				|
				|
				
			

			

				𝔹
			

			

				𝛼
			

			
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				𝐷
			

			

				2
			

			
				/
				(
				𝐷
				+
				1
				)
			

			
				
				𝑑
				𝑣
			

			
				(
				𝐷
				+
				1
				)
				/
				𝐷
			

			
				≤
				𝐶
				2
			

			

				𝑘
			

			
				
				1
			

			
				
			
			
				|
				|
				𝐵
			

			

				𝑋
			

			
				
				𝑦
				,
				2
			

			

				𝑘
			

			
				
				|
				|
				
			

			

				𝐵
			

			

				𝑋
			

			
				(
				𝑦
				,
				2
			

			

				𝑘
			

			

				)
			

			
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				𝐷
			

			

				2
			

			
				/
				(
				𝐷
				+
				1
				)
			

			
				
				𝑑
				𝑣
			

			
				(
				𝐷
				+
				1
				)
				/
				𝐷
			

			

				.
			

		
	

					Also 
	
		
			
				{
				𝛼
				∈
				𝐽
				∶
				𝑥
			

			

				𝛼
			

			
				∈
				𝐵
			

			

				𝑋
			

			
				(
				𝑦
				,
				2
			

			
				𝑘
				−
				1
			

			
				)
				⧵
				𝐵
			

			

				𝑋
			

			
				(
				𝑥
			

			

				𝛼
			

			
				,
				2
			

			
				𝑘
				−
				2
			

			
				)
				}
				=
				∅
			

		
	
 whenever 
	
		
			

				2
			

			
				𝑘
				−
				2
			

			
				≥
				d
				i
				a
				m
				(
				8
				𝔹
				)
			

		
	
 and the estimate (130) may be written as
	
 		
 			
				(
				1
				3
				3
				)
			
 		
	

	
		
			
				|
				|
				𝒜
			

			
				
				𝑎
			

			
				|
				|
				
				(
				𝑦
				)
				≤
				𝐶
				×
			

			

				2
			

			

				𝑘
			

			
				≤
				4
				d
				i
				a
				m
				(
				8
				𝔹
				)
			

			

				2
			

			

				𝑘
			

			
				
				1
			

			
				
			
			
				|
				|
				𝐵
			

			

				𝑋
			

			
				
				𝑦
				,
				2
			

			

				𝑘
			

			
				
				|
				|
				
			

			

				𝐵
			

			

				𝑋
			

			
				(
				𝑦
				,
				2
			

			

				𝑘
			

			

				)
			

			
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				𝐷
			

			

				2
			

			
				/
				(
				𝐷
				+
				1
				)
			

			
				
				𝑑
				𝑣
			

			
				(
				𝐷
				+
				1
				)
				/
				𝐷
			

			

				.
			

		
	
Next we shall express the estimate on 
	
		
			
				|
				𝒜
			

			
				
				𝑎
			

			
				(
				𝑦
				)
				|
			

		
	
 in terms of Riesz potentials and then use the general estimates on 
	
		
			

				𝐿
			

			

				𝑝
			

		
	
 norms of Riesz potentials as obtained by Hàjlasz and Koskela [37]. To recall the needed result, let 
	
		
			
				(
				𝑋
				,
				𝜌
				)
			

		
	
 be a metric space endowed with a Borel measure 
	
		
			

				𝜇
			

		
	
 such that 
	
		
			
				𝜇
				(
				𝐵
				)
				>
				0
			

		
	
 for any ball 
	
		
			
				𝐵
				⊂
				𝑋
			

		
	
. Let 
	
		
			
				𝐴
				⊂
				𝑋
			

		
	
 be a bounded open set and let us consider the numbers 
	
		
			
				𝑞
				>
				0
			

		
	
, 
	
		
			
				𝜎
				≥
				1
			

		
	
, and 
	
		
			
				ℎ
				>
				0
			

		
	
. 
Definition 23. An (abstract) Riesz potential operator 
	
		
			

				𝐽
			

			
				𝜎
				,
				𝐴
				ℎ
				,
				𝑞
			

		
	
 is given by 
							
	
 		
 			
				(
				1
				3
				4
				)
			
 		
	

	
		
			
				
				𝐽
			

			
				𝜎
				,
				𝐴
				ℎ
				,
				𝑞
			

			
				𝑔
				
				=
				
				(
				𝑥
				)
			

			

				2
			

			

				𝑘
			

			
				≤
				2
				𝜎
				d
				i
				a
				m
				(
				𝐴
				)
			

			

				2
			

			
				𝑘
				ℎ
			

			
				
				1
			

			
				
			
			
				|
				|
				𝐵
				
				𝑥
				,
				2
			

			

				𝑘
			

			
				
				|
				|
				
			

			
				𝐵
				(
				𝑥
				,
				2
			

			

				𝑘
			

			

				)
			

			
				|
				|
				|
				|
				𝑔
				(
				𝑧
				)
			

			

				𝑞
			

			
				
				𝑑
				𝜇
				(
				𝑧
				)
			

			
				1
				/
				𝑞
			

			

				.
			

		
	

The estimate (133) implies
						
	
 		
 			
				(
				1
				3
				5
				)
			
 		
	

	
		
			
				|
				|
				𝒜
			

			
				
				𝑎
			

			
				|
				|
				
				𝐽
				(
				𝑦
				)
				≤
				𝐶
			

			
				2
				,
				8
				𝔹
				1
				,
				𝑞
			

			
				|
				|
				|
				|
				
				𝐷
				𝑋
				𝜙
				(
				𝑦
				)
				,
				𝑞
				=
			

			
				
			
			
				.
				𝐷
				+
				1
			

		
	

					The needed result in [37] holds for an arbitrary metric space 
	
		
			
				(
				𝑋
				,
				𝜌
				)
			

		
	
 endowed with a Borel measure 
	
		
			

				𝜇
			

		
	
 such that 
	
		
			
				𝜇
				(
				𝐵
				)
				>
				0
			

		
	
 for any ball 
	
		
			
				𝐵
				⊂
				𝑋
			

		
	
. Let 
	
		
			
				𝐴
				⊂
				𝑋
			

		
	
 be a bounded open set such that 
	
		
			

				𝜇
			

		
	
 is doubling on 
						
	
 		
 			
				(
				1
				3
				6
				)
			
 		
	

	
		
			
				𝑉
				=
				{
				𝑥
				∈
				𝑋
				∶
				d
				i
				s
				t
				(
				𝑥
				,
				𝐴
				)
				<
				2
				𝜎
				d
				i
				a
				m
				(
				𝐴
				)
				}
				.
			

		
	

					Let us assume that there are constants 
	
		
			
				𝑏
				>
				0
			

		
	
 and 
	
		
			
				𝐷
				>
				0
			

		
	
 such that 
						
	
 		
 			
				(
				1
				3
				7
				)
			
 		
	

	
		
			
				
				𝑅
				𝜇
				(
				𝐵
				(
				𝑥
				,
				𝑅
				)
				)
				≥
				𝑏
			

			
				
			
			
				
				d
				i
				a
				m
				(
				𝐴
				)
			

			

				𝐷
			

			
				𝜇
				(
				𝐴
				)
			

		
	

					for any 
	
		
			
				𝑥
				∈
				𝐴
			

		
	
 and any 
	
		
			
				0
				<
				𝑅
				≤
				2
				𝜎
				d
				i
				a
				m
				(
				𝐴
				)
			

		
	
. Moreover let 
	
		
			
				ℎ
				>
				0
			

		
	
 and 
	
		
			
				0
				<
				𝑞
				≤
				𝑠
				<
				𝐷
				/
				ℎ
			

		
	
. Then (cf. [37])
						
	
 		
 			
				(
				1
				3
				8
				)
			
 		
	

	
		
			
				‖
				‖
				𝐽
			

			
				𝜎
				,
				𝐴
				ℎ
				,
				𝑞
			

			
				𝑔
				‖
				‖
			

			

				𝐿
			

			
				𝑠
				∗
			

			
				(
				𝐴
				,
				𝜇
				)
			

			
				
				≤
				𝐶
				d
				i
				a
				m
				(
				𝐴
				)
			

			
				
			
			
				𝜇
				(
				𝐴
				)
			

			
				1
				/
				𝐷
			

			

				
			

			

				ℎ
			

			
				‖
				𝑔
				‖
			

			

				𝐿
			

			

				𝑠
			

			
				(
				𝑉
				,
				𝜇
				)
			

			

				,
			

		
	

					where 
	
		
			

				𝑠
			

			

				∗
			

			
				=
				𝑠
				𝐷
				/
				(
				𝐷
				−
				ℎ
				𝑠
				)
			

		
	
 and the constant 
	
		
			
				𝐶
				>
				0
			

		
	
 depends only on 
	
		
			

				ℎ
			

		
	
, 
	
		
			

				𝜎
			

		
	
, 
	
		
			

				𝑞
			

		
	
, 
	
		
			

				𝑠
			

		
	
, 
	
		
			

				𝑏
			

		
	
, 
	
		
			

				𝐷
			

		
	
, and the doubling constant. Then (by Hölder's inequality with 
	
		
			
				1
				/
				(
				2
				𝑛
				+
				2
				)
				+
				1
				/
				𝐷
			

			

				
			

			
				=
				1
			

		
	
, resp., with 
	
		
			
				1
				/
				𝜇
				+
				1
				/
				𝜇
			

			

				
			

			
				=
				1
			

		
	
) 
						
	
 		
 			
				(
				1
				3
				9
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
			

			

				𝔹
			

			
				
				𝑋
			

			

				∗
			

			
				⋅
				
				𝜙
			

			

				𝐵
			

			

				𝐸
			

			
				𝐴
				,
				𝐵
			

			
				|
				|
				|
				|
				≤
				
				
				𝜓
				𝑑
				𝑣
			

			
				2
				𝑛
			

			

				
			

			
				𝑎
				=
				1
			

			
				‖
				𝑋
				𝜓
				‖
			

			

				𝐿
			

			
				2
				𝑛
				+
				2
			

			
				(
				𝔹
				)
			

			
				×
				
				
			

			

				𝔹
			

			
				|
				|
				𝒜
			

			
				
				𝑎
			

			
				|
				|
				(
				𝑦
				)
			

			
				2
				(
				𝑛
				+
				1
				)
				/
				(
				2
				𝑛
				+
				1
				)
			

			
				
				𝑑
				𝑣
				(
				𝑦
				)
			

			
				(
				2
				𝑛
				+
				1
				)
				/
				[
				2
				(
				𝑛
				+
				1
				)
				]
			

			
				+
				
			

			

				𝑎
			

			
				‖
				𝑋
				𝜓
				‖
			

			

				𝐿
			

			

				𝜇
			

			
				(
				𝔹
				)
			

			
				
				
			

			

				𝔹
			

			
				|
				|
				𝒜
			

			
				𝑎
				
				
			

			
				|
				|
				(
				𝑦
				)
			

			

				𝜇
			

			

				′
			

			
				
				𝑑
				𝑣
				(
				𝑦
				)
			

			
				1
				/
				𝜇
			

			

				′
			

		
	

					with 
	
		
			
				1
				<
				𝜇
				<
				𝐷
			

		
	
 to be determined later on. At this point we need an estimate on 
	
		
			
				|
				𝒜
			

			
				𝑎
				
				
			

			
				(
				𝑦
				)
				|
			

		
	
. By (80) in Proposition 16 if 
	
		
			
				𝜙
				∶
				ℍ
			

			

				𝑛
			

			
				→
				𝑆
			

			
				2
				𝑚
				−
				1
			

		
	
 is a contact 
	
		
			
				(
				2
				𝑛
				+
				2
				)
			

		
	
-harmonic map obeying to our assumptions (96), then
						
	
 		
 			
				(
				1
				4
				0
				)
			
 		
	

	
		
			
				|
				|
				𝑋
			

			

				∗
			

			
				⋅
				𝐸
			

			
				𝐴
				,
				𝐵
			

			
				|
				|
				≤
				2
				𝑄
				(
				𝜙
				)
			

			
				(
				𝐷
				−
				2
				)
				/
				2
			

			
				|
				|
				|
				|
				|
				|
				|
				|
				≤
				|
				|
				|
				|
				𝑋
				𝜙
				𝐿
				𝜙
				2
				𝑐
				𝑋
				𝜙
			

			
				𝐷
				−
				1
				+
				𝛿
			

			

				,
			

		
	

					hence (by (119))
						
	
 		
 			
				(
				1
				4
				1
				)
			
 		
	

	
		
			
				|
				|
				𝒜
			

			
				𝑎
				
				
			

			
				|
				|
				≤
				
				(
				𝑦
				)
			

			
				𝛼
				∈
				𝐼
			

			

				
			

			

				𝔹
			

			

				𝛼
			

			
				|
				|
				
				𝑋
			

			

				∗
			

			
				⋅
				𝐸
			

			
				𝐴
				,
				𝐵
			

			
				
				|
				|
				|
				|
				𝜓
				(
				𝑥
				)
			

			

				0
			

			
				|
				|
				×
				|
				|
				𝜃
				(
				𝑥
				)
			

			

				𝛼
			

			
				|
				|
				|
				|
				𝑋
				(
				𝑥
				)
			

			
				𝑎
				,
				𝑦
			

			
				|
				|
				
				𝐺
				(
				𝑦
				,
				𝑥
				)
				𝑑
				𝑣
				(
				𝑥
				)
				≤
				𝐶
			

			
				𝛼
				∈
				𝐼
			

			

				
			

			

				Γ
			

			

				𝛼
			

			
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				𝜈
			

			
				
			
			

				𝑑
			

			

				𝑋
			

			
				(
				𝑥
				,
				𝑦
				)
			

			
				2
				𝑛
				+
				1
			

			
				𝑑
				𝑣
				(
				𝑥
				)
				,
			

		
	

					where 
	
		
			
				𝜈
				=
				𝐷
				−
				1
				+
				𝛿
			

		
	
 and 
	
		
			
				0
				<
				𝜈
				<
				𝐷
			

		
	
. By 
	
		
			

				𝑑
			

			

				𝑋
			

			
				(
				𝑥
				,
				𝑦
				)
			

			
				2
				𝑛
				+
				1
			

			
				≥
				𝐶
				|
				𝔹
			

			

				𝛼
			

			
				|
				/
				𝑟
			

			

				𝛼
			

		
	
 for any 
	
		
			
				𝑥
				∈
				𝔹
			

			

				𝛼
			

		
	
 one obtains
						
	
 		
 			
				(
				1
				4
				2
				)
			
 		
	

	
		
			
				|
				|
				𝒜
			

			
				𝑎
				
				
			

			
				|
				|
				
				(
				𝑦
				)
				≤
				𝐶
			

			
				𝛼
				∈
				𝐽
			

			

				𝑟
			

			

				𝛼
			

			

				1
			

			
				
			
			
				|
				|
				𝔹
			

			

				𝛼
			

			
				|
				|
				
			

			

				𝔹
			

			

				𝛼
			

			
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				𝜈
			

			
				
				𝑑
				𝑣
				≤
				𝐶
			

			
				𝛼
				∈
				𝐽
			

			

				𝑟
			

			

				𝛼
			

			
				
			
			
				|
				|
				𝔹
			

			

				𝛼
			

			
				|
				|
				
				
			

			

				𝔹
			

			

				𝛼
			

			
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				𝐷
			

			

				
			

			
				𝜈
				/
				𝐷
			

			
				|
				|
				𝔹
			

			

				𝛼
			

			
				|
				|
			

			
				(
				𝐷
				−
				𝜈
				)
				/
				𝐷
			

			

				,
			

		
	

					that is,
						
	
 		
 			
				(
				1
				4
				3
				)
			
 		
	

	
		
			
				|
				|
				𝒜
			

			
				𝑎
				
				
			

			
				|
				|
				
				(
				𝑦
				)
				≤
				𝐶
			

			

				2
			

			

				𝑘
			

			
				≤
				4
				d
				i
				a
				m
				(
				8
				𝔹
				)
			

			

				2
			

			

				𝑘
			

			
				
				1
			

			
				
			
			
				|
				|
				𝐵
			

			

				𝑋
			

			
				
				𝑦
				,
				2
			

			

				𝑘
			

			
				
				|
				|
				
			

			

				𝐵
			

			

				𝑋
			

			
				(
				𝑦
				,
				2
			

			

				𝑘
			

			

				)
			

			
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				𝐷
			

			
				
				𝑑
				𝑣
			

			
				𝜈
				/
				𝐷
			

			

				,
			

		
	

					hence 
						
	
 		
 			
				(
				1
				4
				4
				)
			
 		
	

	
		
			
				|
				|
				𝒜
			

			
				𝑎
				
				
			

			
				|
				|
				
				𝐽
				(
				𝑦
				)
				≤
				𝐶
			

			
				2
				,
				8
				𝔹
				1
				,
				𝐷
				/
				𝜈
			

			
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				𝜈
			

			
				
				(
				𝑦
				)
				.
			

		
	

					Therefore (by (135) and (144))
						
	
 		
 			
				(
				1
				4
				5
				)
			
 		
	

	
		
			
				
				
			

			

				𝔹
			

			
				|
				|
				𝒜
			

			
				
				𝑎
			

			
				|
				|
			

			
				𝐷
				/
				(
				𝐷
				−
				1
				)
			

			
				
				𝑑
				𝑣
			

			
				(
				𝐷
				−
				1
				)
				/
				𝐷
			

			
				‖
				‖
				𝐽
				≤
				𝐶
			

			
				2
				,
				8
				𝔹
				1
				,
				𝐷
				/
				(
				𝐷
				+
				1
				)
			

			
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				𝐷
			

			
				‖
				‖
			

			

				𝐿
			

			
				𝐷
				/
				(
				𝐷
				−
				1
				)
			

			
				(
				8
				𝔹
				)
			

			
				≤
				𝐶
				d
				i
				a
				m
				(
				8
				𝔹
				)
			

			
				
			
			
				|
				|
				|
				|
				8
				𝔹
			

			
				1
				/
				𝐷
			

			
				‖
				‖
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				𝐷
			

			
				‖
				‖
			

			

				𝐿
			

			

				1
			

			
				(
				𝑉
				)
			

			

				,
			

		
	

					that is,
						
	
 		
 			
				(
				1
				4
				6
				)
			
 		
	

	
		
			
				
				
			

			

				𝔹
			

			
				|
				|
				𝒜
			

			
				
				𝑎
			

			
				|
				|
			

			
				𝐷
				/
				(
				𝐷
				−
				1
				)
			

			
				
				𝑑
				𝑣
			

			
				(
				𝐷
				−
				1
				)
				/
				𝐷
			

			
				≤
				𝐶
				‖
				𝑋
				𝜙
				‖
			

			
				𝐷
				𝐿
			

			

				𝐷
			

			
				(
				1
				0
				0
				𝔹
				)
			

			

				,
			

		
	

					where 
	
		
			
				𝑉
				=
				{
				𝑥
				∈
				ℍ
			

			

				𝑛
			

			
				∶
				d
				i
				s
				t
				(
				𝑥
				,
				8
				𝔹
				)
				≤
				4
				d
				i
				a
				m
				(
				8
				𝔹
				)
				}
			

		
	
, respectively, 
						
	
 		
 			
				(
				1
				4
				7
				)
			
 		
	

	
		
			
				
				
			

			

				𝔹
			

			
				|
				|
				𝒜
			

			
				𝑎
				
				
			

			
				|
				|
			

			
				𝜇
				/
				(
				𝜇
				−
				1
				)
			

			
				
				𝑑
				𝑣
			

			
				(
				𝜇
				−
				1
				)
				/
				𝜇
			

			
				‖
				‖
				𝐽
				≤
				𝐶
			

			
				2
				,
				8
				𝔹
				1
				,
				𝐷
				/
				𝜈
			

			
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				𝜈
			

			
				‖
				‖
			

			

				𝐿
			

			
				𝜇
				/
				(
				𝜇
				−
				1
				)
			

			
				(
				8
				𝔹
				)
			

			
				≤
				𝐶
				d
				i
				a
				m
				(
				8
				𝔹
				)
			

			
				
			
			
				|
				|
				|
				|
				8
				𝔹
			

			
				1
				/
				𝐷
			

			
				‖
				‖
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				𝜈
			

			
				‖
				‖
			

			

				𝐿
			

			

				𝑠
			

			
				(
				𝑉
				)
			

			
				‖
				‖
				|
				|
				|
				|
				≤
				𝐶
				𝑋
				𝜙
			

			

				𝜈
			

			
				‖
				‖
			

			

				𝐿
			

			

				𝑠
			

			
				(
				1
				0
				0
				𝔹
				)
			

			

				,
			

		
	

					where
						
	
 		
 			
				(
				1
				4
				8
				)
			
 		
	

	
		
			
				𝐷
				0
				<
			

			
				
			
			
				𝜈
				𝜇
				≤
				𝑠
				<
				𝐷
				,
			

			
				
			
			
				𝜇
				−
				1
				=
				𝑠
			

			

				∗
			

			
				=
				𝑠
				𝐷
			

			
				
			
			
				.
				𝐷
				−
				𝑠
			

		
	

					Therefore it must be that
						
	
 		
 			
				(
				1
				4
				9
				)
			
 		
	

	
		
			
				𝐷
				1
				<
				𝜇
				≤
			

			
				
			
			
				2
				−
				𝛿
				,
				𝑠
				=
				𝜇
				𝐷
			

			
				
			
			
				.
				(
				𝐷
				+
				1
				)
				𝜇
				−
				𝐷
			

		
	

					On the other hand 
						
	
 		
 			
				(
				1
				5
				0
				)
			
 		
	

	
		
			
				‖
				‖
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				𝜈
			

			
				‖
				‖
			

			

				𝐿
			

			

				𝑠
			

			
				(
				1
				0
				0
				𝔹
				)
			

			
				=
				
				
			

			
				1
				0
				0
				𝔹
			

			
				
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				𝐷
			

			

				
			

			
				𝜈
				𝜇
				/
				[
				(
				𝐷
				+
				1
				)
				𝜇
				−
				𝐷
				]
			

			
				
				𝑑
				𝑣
			

			
				[
				(
				𝐷
				+
				1
				)
				𝜇
				−
				𝐷
				]
				/
				(
				𝜇
				𝐷
				)
			

		
	

					and we may choose 
	
		
			

				𝜇
			

		
	
 such that 
	
		
			
				𝜈
				𝜇
				/
				[
				(
				𝐷
				+
				1
				)
				𝜇
				−
				𝐷
				]
				=
				1
			

		
	
; that is, 
	
		
			
				𝜇
				=
				𝐷
				/
				(
				2
				−
				𝛿
				)
			

		
	
. Consequently
						
	
 		
 			
				(
				1
				5
				1
				)
			
 		
	

	
		
			
				(
				𝐷
				+
				1
				)
				𝜇
				−
				𝐷
			

			
				
			
			
				𝜇
				𝐷
				=
				1
				−
				𝜖
				,
				𝜖
				=
				1
				−
				𝛿
			

			
				
			
			
				𝐷
				,
				‖
				‖
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				𝜈
			

			
				‖
				‖
			

			

				𝐿
			

			

				𝑠
			

			
				(
				1
				0
				0
				𝔹
				)
			

			
				=
				
				
			

			
				1
				0
				0
				𝔹
			

			
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				𝐷
			

			
				
				𝑑
				𝑣
			

			
				1
				−
				𝜖
			

			
				,
				
				
			

			

				𝔹
			

			
				|
				|
				𝒜
			

			
				𝑎
				
				
			

			
				|
				|
			

			
				𝜇
				/
				(
				𝜇
				−
				1
				)
			

			
				
				𝑑
				𝑣
			

			
				(
				𝜇
				−
				1
				)
				/
				𝜇
			

			
				
				
				≤
				𝐶
			

			
				1
				0
				0
				𝔹
			

			
				|
				|
				|
				|
				𝑋
				𝜙
			

			

				𝐷
			

			
				
				𝑑
				𝑣
			

			
				1
				−
				𝜖
			

			

				.
			

		
	

					Also 
						
	
 		
 			
				(
				1
				5
				2
				)
			
 		
	

	
		
			
				‖
				𝑋
				𝜓
				‖
			

			
				𝜇
				𝐿
			

			

				𝜇
			

			
				(
				𝔹
				)
			

			
				=
				
			

			

				𝔹
			

			
				|
				|
				|
				|
				𝑋
				𝜓
			

			

				𝜇
			

			
				≤
				
				
				𝑑
				𝑣
			

			

				𝔹
			

			
				|
				|
				|
				|
				𝑋
				𝜓
			

			
				𝜇
				(
				2
				−
				𝛿
				)
			

			
				
				𝑑
				𝑣
			

			
				1
				/
				(
				2
				−
				𝛿
				)
			

			
				|
				|
				𝔹
				|
				|
			

			
				(
				1
				−
				𝛿
				)
				/
				(
				2
				−
				𝛿
				)
			

			
				
				
				≤
				𝐶
			

			

				𝔹
			

			
				|
				|
				|
				|
				𝑋
				𝜓
			

			

				𝐷
			

			
				
				𝑑
				𝑣
			

			
				1
				/
				(
				2
				−
				𝛿
				)
			

			

				,
			

		
	

					that is, 
	
		
			
				‖
				𝑋
				𝜓
				‖
			

			

				𝐿
			

			

				𝜇
			

			
				(
				𝔹
				)
			

			
				≤
				𝐶
				‖
				𝑋
				𝜓
				‖
			

			

				𝐿
			

			

				𝐷
			

			
				(
				𝔹
				)
			

		
	
. Summing up (by (139) and (146) and (151)), 
						
	
 		
 			
				(
				1
				5
				3
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				
			

			

				𝔹
			

			
				
				𝑋
			

			

				∗
			

			
				⋅
				
				𝜙
			

			

				𝐵
			

			

				𝐸
			

			
				𝐴
				,
				𝐵
			

			
				|
				|
				|
				|
				
				
				𝜓
				𝑑
				𝑣
				≤
				‖
				𝑋
				𝜓
				‖
			

			

				𝐿
			

			

				𝐷
			

			
				(
				𝔹
				)
			

			
				
				‖
				𝑋
				𝜙
				‖
			

			
				𝐷
				𝐿
			

			

				𝐷
			

			
				(
				1
				0
				0
				𝔹
				)
			

			
				+
				‖
				𝑋
				𝜙
				‖
			

			
				𝐿
				(
				1
				−
				𝜖
				)
				𝐷
			

			

				𝐷
			

			
				(
				1
				0
				0
				𝔹
				)
			

			

				
			

		
	

					which is (83). Lemma 17 is proved.
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