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Abstract. 
Suppose that 
	
		
			
				0
				<
				𝛼
				<
				𝛽
				<
				+
				∞
			

		
	
. Let 
	
		
			
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
 denote the set of functions 
	
		
			
				𝑝
				(
				𝑧
				)
			

		
	
 that are analytic in 
	
		
			
				𝐷
				=
				{
				𝑧
				∶
				|
				𝑧
				|
				<
				1
				}
			

		
	
 and satisfy 
	
		
			
				R
				e
				𝑝
				(
				𝑧
				)
				>
				0
			

		
	
 
	
		
			
				(
				|
				𝑧
				|
				<
				1
				)
			

		
	
 and 
	
		
			
				𝛼
				≤
				𝑝
				(
				0
				)
				≤
				𝛽
			

		
	
. In this paper, we investigate the extreme points and support points of 
	
		
			
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
.


1. Introduction
By 
	
		
			

				𝒜
			

		
	
, we denote the space of functions analytic in the unit disk 
	
		
			
				𝐷
				=
				{
				𝑧
				∶
				|
				𝑧
				|
				<
				1
				}
			

		
	
. Endowed with the topology of uniform convergence on compact subsets of the unit disk, 
	
		
			

				𝒜
			

		
	
 is a locally convex topological vector space. 
Let 
	
		
			

				𝑋
			

		
	
 be a topological vector space and 
	
		
			

				𝑈
			

		
	
 a subset of 
	
		
			

				𝑋
			

		
	
. If 
	
		
			
				𝑉
				⊂
				𝑈
			

		
	
, then 
	
		
			

				𝑉
			

		
	
 is called an extremal subset of 
	
		
			

				𝑈
			

		
	
 provided that whenever 
	
		
			
				𝑢
				=
				𝑡
				𝑥
				+
				(
				1
				−
				𝑡
				)
				𝑦
			

		
	
, where 
	
		
			
				𝑢
				∈
				𝑉
			

		
	
, 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝑈
			

		
	
 and 
	
		
			
				0
				<
				𝑡
				<
				1
			

		
	
, then 
	
		
			

				𝑥
			

		
	
 and 
	
		
			

				𝑦
			

		
	
 both belong to 
	
		
			

				𝑉
			

		
	
. An extremal subset of 
	
		
			

				𝑈
			

		
	
 consisting of just one point is called an extreme point of 
	
		
			

				𝑈
			

		
	
. Thus, an element 
	
		
			
				𝑥
				∈
				𝑈
			

		
	
 is an extreme point of 
	
		
			

				𝑈
			

		
	
 if and only if 
	
		
			

				𝑥
			

		
	
 is not a proper convex combination of any two distinct points in 
	
		
			

				𝑈
			

		
	
. The set of all extreme points of 
	
		
			

				𝑈
			

		
	
 is denoted by 
	
		
			
				𝐸
				𝑈
			

		
	
. It is apparent that if 
	
		
			

				𝑉
			

		
	
 is an extremal subset of 
	
		
			

				𝑈
			

		
	
, then 
	
		
			
				𝐸
				𝑉
				⊂
				𝐸
				𝑈
			

		
	
. If 
	
		
			

				𝑋
			

		
	
 is a locally convex topological vector space and 
	
		
			

				𝑈
			

		
	
 is a nonempty compact subset of 
	
		
			

				𝑋
			

		
	
, then 
	
		
			
				𝐸
				𝑈
			

		
	
 is nonempty [1, page 44], [2, page 181]. For any subset 
	
		
			

				𝑈
			

		
	
 of 
	
		
			

				𝑋
			

		
	
, we use 
	
		
			
				𝐻
				𝑈
			

		
	
 to denote the closed convex hull of 
	
		
			

				𝑈
			

		
	
. If 
	
		
			

				𝑈
			

		
	
 is a compact subset of the locally convex topological vector space 
	
		
			

				𝑋
			

		
	
, then, by Krein-Milman theorem [1, page 44], [2, page 182], 
	
		
			
				𝐻
				𝑈
				=
				𝐻
				𝐸
				𝑈
			

		
	
.
Let 
	
		
			

				𝒫
			

		
	
 be the set of all functions 
	
		
			
				𝑝
				(
				𝑧
				)
			

		
	
 which are analytic, have positive real part in 
	
		
			

				𝐷
			

		
	
, and satisfy 
	
		
			
				𝑝
				(
				0
				)
				=
				1
			

		
	
. Then 
	
		
			

				𝒫
			

		
	
 is a compact subset of 
	
		
			

				𝒜
			

		
	
 [1, page 39]. It is well known that 
	
		
			
				𝐸
				𝒫
				=
				{
				(
				1
				+
				𝑥
				𝑧
				)
				/
				(
				1
				−
				𝑥
				𝑧
				)
				∶
				|
				𝑥
				|
				=
				1
				}
			

		
	
 [1, page 48], [3–5]. Bellamy and Tkaczyńska [6] investigated the extreme points of some classes of analytic functions with positive real part and a prescribed set of coefficients. Peng [7] investigated the extreme points of a class of analytic functions with positive real part and a prescribed set of values. 
Suppose that 
	
		
			

				ℱ
			

		
	
 is a compact subset of 
	
		
			

				𝒜
			

		
	
. A function 
	
		
			

				𝑓
			

		
	
 is called a support point of 
	
		
			

				ℱ
			

		
	
 if 
	
		
			
				𝑓
				∈
				ℱ
			

		
	
 and there is a continuous linear functional 
	
		
			

				𝐽
			

		
	
 on 
	
		
			

				𝒜
			

		
	
 such that 
	
		
			
				R
				e
				𝐽
			

		
	
 is nonconstant on 
	
		
			

				ℱ
			

		
	
 and 
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				R
				e
				𝐽
				(
				𝑓
				)
				=
				m
				a
				x
				{
				R
				e
				𝐽
				(
				𝑔
				)
				∶
				𝑔
				∈
				ℱ
				}
				.
			

		
	

					The set of all support points of 
	
		
			

				ℱ
			

		
	
 is denoted by 
	
		
			
				s
				u
				p
				p
				ℱ
			

		
	
. Hallenbeck and MacGregor [1, page 94], [8] proved that the set 
	
		
			
				s
				u
				p
				p
				𝒫
			

		
	
 consists of all functions which may be written as
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				𝑝
				(
				𝑧
				)
				=
			

			

				𝑚
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝜆
			

			

				𝑘
			

			
				1
				+
				𝑥
			

			

				𝑘
			

			

				𝑧
			

			
				
			
			
				1
				−
				𝑥
			

			

				𝑘
			

			
				𝑧
				,
			

		
	

					where 
	
		
			

				𝜆
			

			

				𝑘
			

			
				≥
				0
			

		
	
, 
	
		
			

				∑
			

			
				𝑚
				𝑘
				=
				1
			

			

				𝜆
			

			

				𝑘
			

			
				=
				1
			

		
	
, and 
	
		
			
				|
				𝑥
			

			

				𝑘
			

			
				|
				=
				1
			

		
	
  
	
		
			
				(
				𝑚
				=
				1
				,
				2
				,
				…
				)
			

		
	
. The author [9] investigated the support points of a class of analytic functions with positive real part and a prescribed set of coefficients.
Suppose that 
	
		
			
				0
				<
				𝛼
				<
				𝛽
				<
				+
				∞
			

		
	
. Let 
	
		
			
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
 denote the set of functions 
	
		
			
				𝑝
				(
				𝑧
				)
			

		
	
 that are analytic in 
	
		
			
				𝐷
				=
				{
				𝑧
				∶
				|
				𝑧
				|
				<
				1
				}
			

		
	
 and satisfy 
	
		
			
				R
				e
				𝑝
				(
				𝑧
				)
				>
				0
				(
				|
				𝑧
				|
				<
				1
				)
			

		
	
 and 
	
		
			
				𝛼
				≤
				𝑝
				(
				0
				)
				≤
				𝛽
			

		
	
. It is apparent that 
	
		
			
				𝑝
				(
				𝑧
				)
				∈
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
 if and only if 
	
		
			
				𝑝
				(
				𝑧
				)
				=
				𝜇
				𝑞
				(
				𝑧
				)
			

		
	
 with some 
	
		
			
				𝑞
				(
				𝑧
				)
				∈
				𝒫
			

		
	
 and 
	
		
			
				𝛼
				≤
				𝜇
				≤
				𝛽
			

		
	
. Thus, it is easy to prove that 
	
		
			
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
 is a compact subset of 
	
		
			

				𝒜
			

		
	
. In this paper we investigate the extreme points and support points of 
	
		
			
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
. In some ways, the results we obtained generalize the results of Holland, Hallenbeck, and MacGregor.
2. Main Results
Theorem 1.  
	
		
			
				𝑝
				(
				𝑧
				)
			

		
	
 is an extreme point of 
	
		
			
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
 if and only if 
							
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				𝑝
				(
				𝑧
				)
				=
				𝛼
				1
				+
				𝑥
				𝑧
			

			
				
			
			
				1
				−
				𝑥
				𝑧
				,
				o
				r
				𝛽
				1
				+
				𝑥
				𝑧
			

			
				
			
			
				,
				1
				−
				𝑥
				𝑧
			

		
	

						where 
	
		
			
				|
				𝑥
				|
				=
				1
			

		
	
.
Proof. Suppose that 
							
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				𝛼
				1
				+
				𝑥
				𝑧
			

			
				
			
			
				1
				−
				𝑥
				𝑧
				=
				𝑡
				𝑝
			

			

				1
			

			
				(
				𝑧
				)
				+
				(
				1
				−
				𝑡
				)
				𝑝
			

			

				2
			

			
				(
				𝑧
				)
				,
			

		
	

						where 
	
		
			
				|
				𝑥
				|
				=
				1
			

		
	
,  
	
		
			
				0
				<
				𝑡
				<
				1
			

		
	
,  
	
		
			

				𝑝
			

			

				1
			

		
	
, 
	
		
			

				𝑝
			

			

				2
			

			
				∈
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
. Then 
	
		
			
				𝛼
				=
				𝑡
				𝑝
			

			

				1
			

			
				(
				0
				)
				+
				(
				1
				−
				𝑡
				)
				𝑝
			

			

				2
			

			
				(
				0
				)
			

		
	
. Since 
	
		
			
				𝛼
				≤
				𝑝
			

			

				1
			

			
				(
				0
				)
			

		
	
,  
	
		
			
				𝛼
				≤
				𝑝
			

			

				2
			

			
				(
				0
				)
			

		
	
, it follows that 
	
		
			

				𝑝
			

			

				1
			

			
				(
				0
				)
				=
				𝑝
			

			

				2
			

			
				(
				0
				)
				=
				𝛼
			

		
	
. Consequently, 
	
		
			

				𝑝
			

			

				1
			

			
				(
				𝑧
				)
				/
				𝛼
				∈
				𝒫
			

		
	
,  
	
		
			

				𝑝
			

			

				2
			

			
				(
				𝑧
				)
				/
				𝛼
				∈
				𝒫
			

		
	
. Notice that (4) is equivalent to
							
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			
				1
				+
				𝑥
				𝑧
			

			
				
			
			
				1
				1
				−
				𝑥
				𝑧
				=
				𝑡
			

			
				
			
			
				𝛼
				𝑝
			

			

				1
			

			
				1
				(
				𝑧
				)
				+
				(
				1
				−
				𝑡
				)
			

			
				
			
			
				𝛼
				𝑝
			

			

				2
			

			
				(
				𝑧
				)
				,
			

		
	

						and that 
	
		
			
				[
				1
				+
				𝑥
				𝑧
				]
				/
				[
				1
				−
				𝑥
				𝑧
				]
				∈
				𝐸
				𝒫
			

		
	
, and we have
							
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				𝛼
				𝑝
			

			

				1
			

			
				1
				(
				𝑧
				)
				=
			

			
				
			
			
				𝛼
				𝑝
			

			

				2
			

			
				(
				𝑧
				)
				.
			

		
	

						So, 
	
		
			

				𝑝
			

			

				1
			

			
				(
				𝑧
				)
				=
				𝑝
			

			

				2
			

			
				(
				𝑧
				)
			

		
	
. This proves that 
	
		
			
				[
				𝛼
				(
				1
				+
				𝑥
				𝑧
				)
				]
				/
				[
				1
				−
				𝑥
				𝑧
				]
				∈
				𝐸
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
. Similarly, we can prove that 
	
		
			
				[
				𝛽
				(
				1
				+
				𝑥
				𝑧
				)
				]
				/
				[
				1
				−
				𝑥
				𝑧
				]
				∈
				𝐸
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
. Conversely, Suppose 
	
		
			
				𝑝
				(
				𝑧
				)
				∈
				𝐸
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
. If 
	
		
			
				𝛼
				<
				𝑝
				(
				0
				)
				<
				𝛽
			

		
	
, then 
	
		
			
				𝑝
				(
				0
				)
				=
				𝑡
				𝛼
				+
				(
				1
				−
				𝑡
				)
				𝛽
			

		
	
 for some 
	
		
			
				0
				<
				𝑡
				<
				1
			

		
	
. Since 
							
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				𝛼
				𝑝
				(
				𝑧
				)
				=
				𝑡
			

			
				
			
			
				𝛽
				𝑝
				(
				0
				)
				𝑝
				(
				𝑧
				)
				+
				(
				1
				−
				𝑡
				)
			

			
				
			
			
				[
				]
				𝑝
				(
				0
				)
				𝑝
				(
				𝑧
				)
				,
				𝛼
				𝑝
				(
				𝑧
				)
			

			
				
			
			
				[
				]
				𝑝
				(
				0
				)
				∈
				𝒫
				(
				𝛼
				,
				𝛽
				)
				,
				𝛽
				𝑝
				(
				𝑧
				)
			

			
				
			
			
				[
				]
				𝑝
				(
				0
				)
				∈
				𝒫
				(
				𝛼
				,
				𝛽
				)
				,
				𝛼
				𝑝
				(
				𝑧
				)
			

			
				
			
			
				≠
				[
				]
				𝑝
				(
				0
				)
				𝛽
				𝑝
				(
				𝑧
				)
			

			
				
			
			
				,
				𝑝
				(
				0
				)
			

		
	

						it follows that 
	
		
			
				𝑝
				(
				𝑧
				)
				∉
				𝐸
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
 which contradicts the assumption. Thus 
	
		
			
				𝑝
				(
				0
				)
				=
				𝛼
			

		
	
 or 
	
		
			
				𝑝
				(
				0
				)
				=
				𝛽
			

		
	
.  If 
	
		
			
				𝑝
				(
				0
				)
				=
				𝛼
			

		
	
, then 
	
		
			
				𝑝
				(
				𝑧
				)
				/
				𝛼
				∈
				𝒫
			

		
	
. By Herglotz formula [1, page 30], [10, page 22], we have
							
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				
				𝑝
				(
				𝑧
				)
				=
				𝛼
			

			
				|
				𝑥
				|
				=
				1
			

			
				1
				+
				𝑥
				𝑧
			

			
				
			
			
				1
				−
				𝑥
				𝑧
				𝑑
				𝜇
				(
				𝑥
				)
				,
			

		
	

						where 
	
		
			

				𝜇
			

		
	
 is a probability measure on the unit circle 
	
		
			
				|
				𝑥
				|
				=
				1
			

		
	
. If 
	
		
			

				𝜇
			

		
	
 is not a point mass, then there exist probability measures 
	
		
			

				𝜇
			

			

				1
			

		
	
 and 
	
		
			

				𝜇
			

			

				2
			

		
	
 on the unit circle 
	
		
			
				|
				𝑥
				|
				=
				1
			

		
	
 such that 
	
		
			

				𝜇
			

			

				1
			

			
				≠
				𝜇
			

			

				2
			

		
	
 and 
	
		
			
				𝜇
				=
				𝑡
				𝜇
			

			

				1
			

			
				+
				(
				1
				−
				𝑡
				)
				𝜇
			

			

				2
			

		
	
 for some 
	
		
			

				𝑡
			

		
	
 with 
	
		
			
				0
				<
				𝑡
				<
				1
			

		
	
 [1, page 47]. Let 
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			

				𝑝
			

			

				1
			

			
				
				(
				𝑧
				)
				=
				𝛼
			

			
				|
				𝑥
				|
				=
				1
			

			
				1
				+
				𝑥
				𝑧
			

			
				
			
			
				1
				−
				𝑥
				𝑧
				𝑑
				𝜇
			

			

				1
			

			
				𝑝
				(
				𝑥
				)
				,
			

			

				2
			

			
				
				(
				𝑧
				)
				=
				𝛼
			

			
				|
				𝑥
				|
				=
				1
			

			
				1
				+
				𝑥
				𝑧
			

			
				
			
			
				1
				−
				𝑥
				𝑧
				𝑑
				𝜇
			

			

				2
			

			
				(
				𝑥
				)
				.
			

		
	

						Then 
	
		
			

				𝑝
			

			

				1
			

		
	
, 
	
		
			

				𝑝
			

			

				2
			

			
				∈
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
, 
	
		
			

				𝑝
			

			

				1
			

			
				≠
				𝑝
			

			

				2
			

		
	
, and 
	
		
			
				𝑝
				=
				𝑡
				𝑝
			

			

				1
			

			
				+
				(
				1
				−
				𝑡
				)
				𝑝
			

			

				2
			

		
	
. This implies that 
	
		
			

				𝑝
			

		
	
 is not an extreme point of 
	
		
			
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
. We get a contradiction. So, 
	
		
			

				𝜇
			

		
	
 is a point mass. Without loss of generality, we suppose 
	
		
			
				𝜇
				(
				{
				𝑥
				}
				)
				=
				1
			

		
	
 for some unit complex number 
	
		
			

				𝑥
			

		
	
. Then 
	
		
			
				𝑝
				(
				𝑧
				)
				=
				𝛼
				(
				1
				+
				𝑥
				𝑧
				)
				/
				(
				1
				−
				𝑥
				𝑧
				)
			

		
	
 with 
	
		
			
				|
				𝑥
				|
				=
				1
			

		
	
. Similarly, if 
	
		
			
				𝑝
				(
				0
				)
				=
				𝛽
			

		
	
, then we can prove that 
	
		
			
				𝑝
				(
				𝑧
				)
				=
				𝛽
				(
				1
				+
				𝑥
				𝑧
				)
				/
				(
				1
				−
				𝑥
				𝑧
				)
			

		
	
, where 
	
		
			
				|
				𝑥
				|
				=
				1
			

		
	
. The proof is completed. 
Theorem 2.  
	
		
			

				𝑝
			

		
	
 is a support point of 
	
		
			
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
 if and only if 
	
		
			

				𝑝
			

		
	
 satisfies one of the following conditions: (1)
	
		
			
				𝑝
				∈
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
, 
	
		
			
				𝑝
				(
				0
				)
				=
				𝛼
			

		
	
 or 
	
		
			

				𝛽
			

		
	
,(2)  
										
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				𝑝
				(
				𝑧
				)
				=
				𝛼
			

			

				𝑚
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝜆
			

			

				𝑘
			

			
				1
				+
				𝑥
			

			

				𝑘
			

			

				𝑧
			

			
				
			
			
				1
				−
				𝑥
			

			

				𝑘
			

			
				𝑧
				+
				𝛽
			

			
				𝑚
				+
				𝑛
			

			

				
			

			
				𝑘
				=
				𝑚
				+
				1
			

			

				𝜆
			

			

				𝑘
			

			
				1
				+
				𝑥
			

			

				𝑘
			

			

				𝑧
			

			
				
			
			
				1
				−
				𝑥
			

			

				𝑘
			

			
				𝑧
				,
			

		
	
where 
	
		
			

				𝜆
			

			

				𝑘
			

			
				≥
				0
			

		
	
, 
	
		
			

				∑
			

			
				𝑚
				+
				𝑛
				𝑘
				=
				1
			

			

				𝜆
			

			

				𝑘
			

			
				=
				1
			

		
	
, 
	
		
			
				|
				𝑥
			

			

				𝑘
			

			
				|
				=
				1
			

		
	
, 
	
		
			

				𝑚
			

		
	
 and 
	
		
			

				𝑛
			

		
	
 are positive integers.
Proof. Let 
	
		
			

				𝑝
			

			

				0
			

		
	
 be a support point of 
	
		
			
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
. Then there is a continuous linear functional 
	
		
			

				𝐽
			

		
	
 defined on 
	
		
			

				𝒜
			

		
	
 such that 
	
		
			
				R
				e
				𝐽
			

		
	
 is not constant on 
	
		
			
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
 and 
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				
				𝑝
				R
				e
				𝐽
			

			

				0
			

			
				
				=
				m
				a
				x
				{
				R
				e
				𝐽
				(
				𝑝
				)
				∶
				𝑝
				∈
				𝒫
				(
				𝛼
				,
				𝛽
				)
				}
				.
			

		
	

						Suppose that 
	
		
			
				R
				e
				𝐽
				(
				𝑝
			

			

				0
			

			
				)
				=
				𝑀
			

		
	
. Let 
	
		
			
				𝒬
				=
				{
				𝑞
				∶
				𝑞
				∈
				𝒫
				(
				𝛼
				,
				𝛽
				)
				,
				R
				e
				𝐽
				(
				𝑞
				)
				=
				𝑀
				}
			

		
	
. Since 
	
		
			

				𝑝
			

			

				0
			

			
				∈
				𝒬
			

		
	
 and 
	
		
			

				𝐽
			

		
	
 is continuous, 
	
		
			

				𝒬
			

		
	
 is a nonvacuous closed convex subset of 
	
		
			
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
. As 
	
		
			
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
 is a compact subset of 
	
		
			

				𝒜
			

		
	
, so is 
	
		
			

				𝒬
			

		
	
. By Krein-Milman theorem [1, page 44], [2, page 182], 
	
		
			
				𝐸
				𝒬
			

		
	
 is nonempty, and 
	
		
			
				𝒬
				=
				𝐻
				𝐸
				𝒬
			

		
	
. Suppose that 
	
		
			
				𝑞
				∈
				𝒬
			

		
	
 and 
	
		
			
				𝑞
				=
				𝑡
				𝑞
			

			

				1
			

			
				+
				(
				1
				−
				𝑡
				)
				𝑞
			

			

				2
			

		
	
, where 
	
		
			

				𝑞
			

			

				1
			

		
	
, 
	
		
			

				𝑞
			

			

				2
			

			
				∈
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
 and 
	
		
			
				0
				<
				𝑡
				<
				1
			

		
	
. Then 
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				
				𝑞
				𝑀
				=
				R
				e
				𝐽
				(
				𝑞
				)
				=
				𝑡
				R
				e
				𝐽
			

			

				1
			

			
				
				
				𝑞
				+
				(
				1
				−
				𝑡
				)
				R
				e
				𝐽
			

			

				2
			

			
				
				≤
				𝑡
				𝑀
				+
				(
				1
				−
				𝑡
				)
				𝑀
				=
				𝑀
				.
			

		
	

						Since 
	
		
			
				R
				e
				𝐽
				(
				𝑞
			

			

				1
			

			
				)
				≤
				𝑀
			

		
	
,  
	
		
			
				R
				e
				𝐽
				(
				𝑞
			

			

				2
			

			
				)
				≤
				𝑀
			

		
	
, it follows from (12) that 
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				
				𝑞
				R
				e
				𝐽
			

			

				1
			

			
				
				
				𝑞
				=
				R
				e
				𝐽
			

			

				2
			

			
				
				=
				𝑀
				.
			

		
	

						This implies that 
	
		
			

				𝑞
			

			

				1
			

		
	
, 
	
		
			

				𝑞
			

			

				2
			

			
				∈
				𝒬
			

		
	
. Thus 
	
		
			

				𝒬
			

		
	
 is an extremal subset of 
	
		
			
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
 and so 
	
		
			
				𝐸
				𝒬
				⊂
				𝐸
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
.  Since 
	
		
			

				𝐽
			

		
	
 is a continuous linear functional on 
	
		
			

				𝒜
			

		
	
, there is a sequence 
	
		
			
				{
				𝑏
			

			

				𝑛
			

			

				}
			

		
	
 of complex numbers satisfying 
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				
			
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				
				|
				|
				𝑏
			

			

				𝑛
			

			
				|
				|
				
			

			
				1
				/
				𝑛
			

			
				<
				1
				,
			

		
	

						such that 
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				𝐽
				(
				𝑓
				)
				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝑏
			

			

				𝑛
			

			

				𝑎
			

			

				𝑛
			

			

				,
			

		
	

						where 
	
		
			
				𝑓
				∈
				𝒜
			

		
	
 and 
	
		
			
				∑
				𝑓
				(
				𝑧
				)
				=
			

			
				∞
				𝑛
				=
				0
			

			

				𝑎
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

		
	
  [1, page 42]. Let 
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				
				𝐺
				(
				𝑥
				)
				=
				𝐽
				1
				+
				𝑥
				𝑧
			

			
				
			
			
				
				1
				−
				𝑥
				𝑧
				=
				𝑏
			

			

				0
			

			

				+
			

			

				∞
			

			

				
			

			
				𝑛
				=
				1
			

			
				2
				𝑏
			

			

				𝑛
			

			

				𝑥
			

			

				𝑛
			

			

				.
			

		
	

						Then 
	
		
			
				𝐺
				(
				𝑥
				)
			

		
	
 is analytic in 
	
		
			
				
			
			
				𝐷
				=
				{
				𝑥
				∶
				|
				𝑥
				|
				≤
				1
				}
			

		
	
.  If 
	
		
			
				𝐸
				𝒬
			

		
	
 has infinitely many elements, then there must be infinitely many 
	
		
			
				[
				𝛼
				(
				1
				+
				𝑥
				𝑧
				)
				]
				/
				(
				1
				−
				𝑥
				𝑧
				)
			

		
	
 or infinitely many 
	
		
			
				[
				𝛽
				(
				1
				+
				𝑥
				𝑧
				)
				]
				/
				(
				1
				−
				𝑥
				𝑧
				)
			

		
	
 in 
	
		
			
				𝐸
				𝒬
			

		
	
, where 
	
		
			
				|
				𝑥
				|
				=
				1
			

		
	
. Without loss of generality, we assume that there are infinitely many 
	
		
			
				[
				𝛼
				(
				1
				+
				𝑥
				𝑧
				)
				]
				/
				(
				1
				−
				𝑥
				𝑧
				)
			

		
	
 in 
	
		
			
				𝐸
				𝒬
			

		
	
 with 
	
		
			
				|
				𝑥
				|
				=
				1
			

		
	
. Then 
	
		
			
				R
				e
				𝐺
				(
				𝑥
				)
				=
				𝑀
				/
				𝛼
			

		
	
 has infinitely many solutions which implies that 
	
		
			
				𝐺
				(
				𝑥
				)
			

		
	
 is constant in 
	
		
			
				
			
			
				𝐷
				=
				{
				𝑧
				∶
				|
				𝑧
				|
				≤
				1
				}
			

		
	
. So, 
	
		
			
				𝐸
				𝒬
			

		
	
 contains all 
	
		
			
				[
				𝛼
				(
				1
				+
				𝑥
				𝑧
				)
				]
				/
				(
				1
				−
				𝑥
				𝑧
				)
			

		
	
 with 
	
		
			
				|
				𝑥
				|
				=
				1
			

		
	
 but contains no elements such as 
	
		
			
				[
				𝛽
				(
				1
				+
				𝑥
				𝑧
				)
				]
				/
				(
				1
				−
				𝑥
				𝑧
				)
			

		
	
 with 
	
		
			
				|
				𝑥
				|
				=
				1
			

		
	
. This prove that 
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				
				[
				]
				𝐸
				𝒬
				=
				𝛼
				(
				1
				+
				𝑥
				𝑧
				)
			

			
				
			
			
				
				,
				1
				−
				𝑥
				𝑧
				∶
				|
				𝑥
				|
				=
				1
			

		
	

						and thus 
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				𝒬
				=
				𝐻
				𝐸
				𝒬
				=
				{
				𝑝
				∶
				𝑝
				∈
				𝒫
				(
				𝛼
				,
				𝛽
				)
				,
				𝑝
				(
				0
				)
				=
				𝛼
				}
				.
			

		
	

						In particular, 
	
		
			

				𝑝
			

			

				0
			

			
				∈
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
 and 
	
		
			

				𝑝
			

			

				0
			

			
				(
				0
				)
				=
				𝛼
			

		
	
. Similarly, if we assume that there are infinitely many 
	
		
			
				[
				𝛽
				(
				1
				+
				𝑥
				𝑧
				)
				]
				/
				(
				1
				−
				𝑥
				𝑧
				)
			

		
	
 in 
	
		
			
				𝐸
				𝒬
			

		
	
 with 
	
		
			
				|
				𝑥
				|
				=
				1
			

		
	
, then we can prove that 
	
		
			

				𝑝
			

			

				0
			

			
				∈
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
 and 
	
		
			

				𝑝
			

			

				0
			

			
				(
				0
				)
				=
				𝛽
			

		
	
.  In the case that 
	
		
			
				𝐸
				𝒬
			

		
	
 has only a finite number of elements, say, 
	
		
			
				𝐸
				𝒬
				=
				{
				[
				𝛼
				(
				1
				+
				𝑥
			

			

				𝑘
			

			
				𝑧
				)
				]
				/
				(
				1
				−
				𝑥
			

			

				𝑘
			

			
				𝑧
				)
			

		
	
, 
	
		
			
				[
				𝛽
				(
				1
				+
				𝑥
			

			

				𝑗
			

			
				𝑧
				)
				]
				/
				(
				1
				−
				𝑥
			

			

				𝑗
			

			
				𝑧
				)
				∶
				|
				𝑥
			

			

				𝑘
			

			
				|
				=
				|
				𝑥
			

			

				𝑗
			

			
				|
				=
				1
			

		
	
, 
	
		
			
				𝑘
				=
				1
				,
				…
				,
				𝑚
				;
				𝑗
				=
				1
				,
				…
				,
				𝑛
				}
			

		
	
. Then 
	
		
			
				𝒬
				=
				𝐻
				𝐸
				𝒬
			

		
	
 consists of functions given by (10). 
	
		
			

				𝑝
			

			

				0
			

		
	
 especially must have the form given by (10). Conversely, Suppose that 
	
		
			

				𝑝
			

			

				0
			

			
				∈
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
 and that 
	
		
			

				𝑝
			

			

				0
			

			
				(
				0
				)
				=
				𝛼
			

		
	
. Define a continuous linear functional 
	
		
			

				𝐽
			

		
	
 on 
	
		
			

				𝒜
			

		
	
 by 
	
		
			
				𝐽
				(
				𝑓
				)
				=
				−
				𝑎
			

			

				0
			

		
	
 where 
	
		
			
				∑
				𝑓
				(
				𝑧
				)
				=
			

			
				∞
				𝑛
				=
				0
			

			

				𝑎
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

		
	
. Since 
	
		
			
				𝛼
				<
				𝛽
			

		
	
, it is clear that 
	
		
			
				R
				e
				𝐽
			

		
	
 is not constant on 
	
		
			
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
 and 
	
		
			
				R
				e
				𝐽
				(
				𝑝
			

			

				0
			

			
				)
				=
				m
				a
				x
				{
				R
				e
				𝐽
				(
				𝑝
				)
				∶
				𝑝
				∈
				𝒫
				(
				𝛼
				,
				𝛽
				)
				}
			

		
	
. So, 
	
		
			

				𝑝
			

			

				0
			

			
				∈
				s
				u
				p
				p
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
. Similarly, we can prove that 
	
		
			

				𝑝
			

			

				0
			

			
				∈
				s
				u
				p
				p
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
 if 
	
		
			
				𝑝
				∈
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
 and 
	
		
			
				𝑝
				(
				0
				)
				=
				𝛽
			

		
	
.  Now suppose that 
	
		
			

				𝑝
			

			

				0
			

		
	
 has the form (10). Then, by Lemma  7.2 in [1], there is a function 
	
		
			

				𝐹
			

		
	
 analytic on 
	
		
			
				
			
			
				𝐷
				=
				{
				𝑧
				∶
				|
				𝑧
				|
				≤
				1
				}
			

		
	
 such that 
	
		
			
				R
				e
				𝐹
				(
				𝑧
				)
				≤
				0
			

		
	
 when 
	
		
			
				|
				𝑧
				|
				≤
				1
			

		
	
 and 
	
		
			
				R
				e
				𝐹
				(
				𝑧
				)
				=
				0
			

		
	
 if and only if 
	
		
			
				𝑧
				=
				𝑥
			

			

				𝑘
			

		
	
  
	
		
			
				(
				𝑘
				=
				1
				,
				2
				,
				…
				,
				𝑚
				+
				𝑛
				)
			

		
	
. Suppose that 
	
		
			
				∑
				𝐹
				(
				𝑧
				)
				=
			

			
				∞
				𝑛
				=
				0
			

			

				𝑑
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

		
	
. Let 
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			

				𝑏
			

			

				0
			

			
				=
				𝑑
			

			

				0
			

			
				,
				𝑏
			

			

				𝑛
			

			
				=
				𝑑
			

			

				𝑛
			

			
				
			
			
				2
				(
				𝑛
				=
				1
				,
				2
				,
				…
				)
				.
			

		
	

						Then 
	
		
			
				
			
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				|
				𝑏
			

			

				𝑛
			

			

				|
			

			
				1
				/
				𝑛
			

			
				<
				1
			

		
	
. Define a linear functional 
	
		
			

				𝐽
			

		
	
 on 
	
		
			

				𝒜
			

		
	
 by 
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				𝐽
				(
				𝑓
				)
				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝑏
			

			

				𝑛
			

			

				𝑎
			

			

				𝑛
			

			

				,
			

		
	

						where 
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑧
				)
				=
			

			

				∞
			

			

				
			

			
				𝑛
				=
				0
			

			

				𝑎
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

			
				∈
				𝒜
				.
			

		
	

						Then 
	
		
			

				𝐽
			

		
	
 is continuous [1, page 42]. Since 
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				𝐽
				
				𝛼
				(
				1
				+
				𝑥
				𝑧
				)
			

			
				
			
			
				
				𝐽
				
				(
				1
				−
				𝑥
				𝑧
				)
				=
				𝛼
				𝐹
				(
				𝑥
				)
				,
				𝛽
				(
				1
				+
				𝑥
				𝑧
				)
			

			
				
			
			
				
				(
				1
				−
				𝑥
				𝑧
				)
				=
				𝛽
				𝐹
				(
				𝑥
				)
				,
			

		
	

						it follows that [1, page 44] 
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				m
				a
				x
				{
				R
				e
				𝐽
				(
				𝑝
				)
				∶
				𝑝
				∈
				𝒫
				(
				𝛼
				,
				𝛽
				)
				}
				=
				m
				a
				x
				{
				R
				e
				𝐽
				(
				𝑝
				)
				∶
				𝑝
				∈
				𝐸
				𝒫
				(
				𝛼
				,
				𝛽
				)
				}
				=
				0
				.
			

		
	

						Note that 
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				
				
				R
				e
				𝐽
				1
				+
				𝑥
			

			

				𝑘
			

			
				𝑧
				
			

			
				
			
			
				
				1
				−
				𝑥
			

			

				𝑘
			

			
				𝑧
				
				
				
				𝑥
				=
				R
				e
				𝐹
			

			

				𝑘
			

			
				
				=
				0
				(
				𝑘
				=
				1
				,
				2
				,
				…
				,
				𝑚
				+
				𝑛
				)
				,
			

		
	

						we have 
	
		
			
				R
				e
				𝐽
				(
				𝑝
			

			

				0
			

			
				)
				=
				0
			

		
	
. If 
	
		
			
				R
				e
				𝐽
			

		
	
 is constant on 
	
		
			
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
, then 
	
		
			
				R
				e
				𝐹
				(
				𝑥
				)
				=
				0
			

		
	
 when 
	
		
			
				|
				𝑥
				|
				=
				1
			

		
	
. But it is not the case. Therefore 
	
		
			

				𝑝
			

			

				0
			

			
				∈
				s
				u
				p
				p
				𝒫
				(
				𝛼
				,
				𝛽
				)
			

		
	
.
Remark 3. Though we assume that 
	
		
			
				𝛼
				<
				𝛽
			

		
	
 in Theorem 1, it is easy to see that Theorem 1 is valid for 
	
		
			
				𝛼
				=
				𝛽
				=
				1
			

		
	
, which is just the result of Holland. For 
	
		
			
				𝛼
				=
				𝛽
				=
				1
			

		
	
, Theorem 2 is invalid, since 
	
		
			
				𝑝
				∈
				𝒫
				(
				1
				,
				1
				)
				=
				𝒫
			

		
	
 and 
	
		
			
				𝑝
				(
				0
				)
				=
				1
			

		
	
 does not imply that 
	
		
			

				𝑝
			

		
	
 is a support point of 
	
		
			

				𝒫
			

		
	
. In the case where 
	
		
			
				𝛼
				=
				𝛽
				=
				1
			

		
	
, Theorem 2 should be stated as follows.  The set 
	
		
			
				s
				u
				p
				p
				𝒫
			

		
	
 consists of all functions which may be written as
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				𝑝
				(
				𝑧
				)
				=
			

			

				𝑚
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝜆
			

			

				𝑘
			

			
				1
				+
				𝑥
			

			

				𝑘
			

			

				𝑧
			

			
				
			
			
				1
				−
				𝑥
			

			

				𝑘
			

			
				𝑧
				,
			

		
	

						where 
	
		
			

				𝜆
			

			

				𝑘
			

			
				≥
				0
			

		
	
, 
	
		
			

				∑
			

			
				𝑚
				𝑘
				=
				1
			

			

				𝜆
			

			

				𝑘
			

			
				=
				1
			

		
	
, and 
	
		
			
				|
				𝑥
			

			

				𝑘
			

			
				|
				=
				1
			

		
	
  
	
		
			
				(
				𝑚
				=
				1
				,
				2
				,
				…
				)
			

		
	
.This is the result of Hallenbeck and MacGregor [1, page 94], [8]. It is easy to see that Theorem 2 generalizes the result of Hallenbeck and MacGregor in some sense.
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