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Abstract. 
We introduce and investigate two new general subclasses of multivalently analytic functions of complex order by making use of the familiar convolution structure of analytic functions. Among the various results obtained here for each of these function classes, we derive the coefficient inequalities and other interesting properties and characteristics for functions belonging to the classes introduced here.


1. Introduction and Definitions
Let 
	
		
			
				ℝ
				=
				(
				−
				∞
				,
				∞
				)
			

		
	
 be the set of real numbers, let 
	
		
			

				ℂ
			

		
	
 be the set of complex numbers, let 
	
		
			
				ℕ
				=
				{
				1
				,
				2
				,
				…
				}
			

		
	
 be the set of positive integers, and let 
	
		
			

				ℕ
			

			

				0
			

			
				=
				ℕ
				∪
				{
				0
				}
			

		
	
.
Let 
	
		
			

				𝒯
			

			

				𝑝
			

		
	
 denote the class of functions of the form
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑧
				)
				=
				𝑧
			

			

				𝑝
			

			

				−
			

			

				∞
			

			

				
			

			
				𝑗
				=
				𝑘
			

			

				𝑎
			

			

				𝑗
			

			

				𝑧
			

			

				𝑗
			

			
				
				𝑝
				<
				𝑘
				;
				𝑎
			

			

				𝑗
			

			
				
				,
				≥
				0
				(
				𝑗
				≥
				𝑘
				)
				;
				𝑘
				,
				𝑝
				∈
				ℕ
			

		
	

					which are analytic and 
	
		
			

				𝑝
			

		
	
-valent in the open unit disk
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				𝕌
				=
				{
				𝑧
				∈
				ℂ
				∶
				|
				𝑧
				|
				<
				1
				}
				.
			

		
	

Denote by 
	
		
			
				𝑓
				∗
				𝑔
			

		
	
 the Hadamard product (or convolution) of the functions 
	
		
			

				𝑓
			

		
	
 and 
	
		
			

				𝑔
			

		
	
; that is, if 
	
		
			

				𝑓
			

		
	
 is given by (1) and 
	
		
			

				𝑔
			

		
	
 is given by
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				𝑔
				(
				𝑧
				)
				=
				𝑧
			

			

				𝑝
			

			

				+
			

			

				∞
			

			

				
			

			
				𝑗
				=
				𝑘
			

			

				𝑏
			

			

				𝑗
			

			

				𝑧
			

			

				𝑗
			

			
				
				𝑝
				<
				𝑘
				;
				𝑏
			

			

				𝑗
			

			
				
				,
				≥
				0
				(
				𝑗
				≥
				𝑘
				)
				;
				𝑘
				,
				𝑝
				∈
				ℕ
			

		
	

					then
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				(
				𝑓
				∗
				𝑔
				)
				(
				𝑧
				)
				∶
				=
				𝑧
			

			

				𝑝
			

			

				−
			

			

				∞
			

			

				
			

			
				𝑗
				=
				𝑘
			

			

				𝑎
			

			

				𝑗
			

			

				𝑏
			

			

				𝑗
			

			

				𝑧
			

			

				𝑗
			

			
				=
				∶
				(
				𝑔
				∗
				𝑓
				)
				(
				𝑧
				)
				.
			

		
	

Definition 1. Let the function 
	
		
			
				𝑓
				∈
				𝒯
			

			

				𝑝
			

		
	
. Then one says that 
	
		
			

				𝑓
			

		
	
 is in the class 
	
		
			

				𝒮
			

			

				𝑔
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				)
			

		
	
 if it satisfies the condition
							
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				1
			

			
				
			
			
				𝑏
				
				𝑧
			

			

				𝑛
			

			
				
				ℱ
			

			
				𝜆
				,
				𝜇
			

			
				
				∗
				𝑔
			

			
				(
				𝑚
				+
				𝑛
				)
			

			
				(
				𝑧
				)
			

			
				
			
			
				
				ℱ
			

			
				𝜆
				,
				𝜇
			

			
				
				∗
				𝑔
			

			
				(
				𝑚
				)
			

			
				(
				𝑧
				)
				−
				(
				𝑝
				−
				𝑚
				)
			

			

				𝑛
			

			
				
				|
				|
				|
				|
				|
				
				<
				𝛽
				𝑚
				+
				𝑛
				<
				𝑝
				<
				𝑘
				;
				𝑝
				,
				𝑛
				∈
				ℕ
				;
				𝑚
				∈
				ℕ
			

			

				0
			

			
				;
				𝑏
				∈
				ℂ
				⧵
				{
				0
				}
				;
				0
				≤
				𝜇
				≤
				𝜆
				≤
				1
				;
				0
				<
				𝛽
				≤
				1
				;
				𝑧
				∈
				𝕌
				)
				,
			

		
	

						where
							
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			

				ℱ
			

			
				𝜆
				,
				𝜇
			

			
				(
				𝑧
				)
				=
				𝜆
				𝜇
				𝑧
			

			

				2
			

			

				𝑓
			

			
				′
				′
			

			
				(
				𝑧
				)
				+
				(
				𝜆
				−
				𝜇
				)
				𝑧
				𝑓
			

			

				′
			

			
				(
				𝑧
				)
				+
				(
				1
				−
				𝜆
				+
				𝜇
				)
				𝑓
				(
				𝑧
				)
				,
			

		
	

	
		
			

				𝑔
			

		
	
 is given by (3), and 
	
		
			
				(
				𝜈
				)
			

			

				𝑛
			

		
	
 denotes the falling factorial defined as follows:
							
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				(
				𝜈
				)
			

			

				0
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
				𝜈
				0
				⎞
				⎟
				⎟
				⎟
				⎠
				,
				=
				1
				=
				∶
				(
				𝜈
				)
			

			

				𝑛
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
				𝜈
				𝑛
				⎞
				⎟
				⎟
				⎟
				⎠
				=
				𝜈
				(
				𝜈
				−
				1
				)
				⋯
				(
				𝜈
				−
				𝑛
				+
				1
				)
				=
				∶
				𝑛
				!
				(
				𝑛
				∈
				ℕ
				)
				.
			

		
	

Various special cases of the class 
	
		
			

				𝒮
			

			

				𝑔
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				)
			

		
	
 were considered by many earlier researchers on this topic of Geometric Function Theory. For example, 
	
		
			

				𝒮
			

			

				𝑔
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				)
			

		
	
 reduces to the function class(i) for 
	
		
			
				𝑚
				=
				0
				,
				𝑛
				=
				1
			

		
	
, and 
	
		
			
				𝜇
				=
				0
			

		
	
, studied by Mostafa and Aouf [1];(ii)for 
	
		
			
				𝜆
				=
				𝜇
				=
				0
			

		
	
 and 
	
		
			
				𝛽
				=
				1
			

		
	
, studied by Srivastava et al. [2];(iii) for 
	
		
			
				𝑛
				=
				1
				,
				𝜆
				=
				𝜇
				=
				0
			

		
	
, and 
	
		
			
				𝛽
				=
				1
			

		
	
, studied by Prajapat et al. [3];(iv) for 
	
		
			
				𝑚
				=
				0
				,
				𝑛
				=
				1
				,
				𝛽
				=
				1
			

		
	
, and 
	
		
			
				𝑏
				=
				𝑝
				(
				1
				−
				𝛼
				)
				(
				0
				≤
				𝛼
				<
				1
				)
			

		
	
, studied by Srivastava and Bulut [4];(v)for 
	
		
			
				𝑚
				=
				0
			

		
	
, 
	
		
			
				𝑛
				=
				1
			

		
	
, 
	
		
			
				𝜆
				=
				𝜇
				=
				0
			

		
	
, 
	
		
			
				𝛽
				=
				1
			

		
	
 and 
	
		
			
				𝑏
				=
				𝑝
				(
				1
				−
				𝛼
				)
				(
				0
				≤
				𝛼
				<
				1
				)
			

		
	
, studied by Ali et al. [5].
Definition 2. Let the function 
	
		
			
				𝑓
				∈
				𝒯
			

			

				𝑝
			

		
	
. Then one says that 
	
		
			

				𝑓
			

		
	
 is in the class 
	
		
			

				𝒫
			

			

				𝑔
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				;
				𝛾
				)
			

		
	
 if it satisfies the condition
							
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				1
			

			
				
			
			
				𝑏
				⎛
				⎜
				⎜
				⎝
				(
				𝑝
				)
			

			

				𝑛
			

			
				(
				
				
				ℱ
				1
				−
				𝛾
				)
			

			
				𝜆
				,
				𝜇
			

			
				
				∗
				𝑔
				(
				𝑧
				)
			

			
				
			
			

				𝑧
			

			

				𝑛
			

			

				
			

			
				(
				𝑚
				)
			

			
				
				ℱ
				+
				𝛾
			

			
				𝜆
				,
				𝜇
			

			
				
				∗
				𝑔
			

			
				(
				𝑚
				+
				𝑛
				)
			

			
				(
				𝑧
				)
				−
				(
				𝑝
				−
				𝑚
				)
			

			

				𝑛
			

			
				⎞
				⎟
				⎟
				⎠
				|
				|
				|
				|
				|
				<
				(
				𝑝
				−
				𝑚
				)
			

			

				𝑛
			

			
				
				𝑚
				+
				𝑛
				<
				𝑝
				<
				𝑘
				;
				𝑝
				,
				𝑛
				∈
				ℕ
				;
				𝑚
				∈
				ℕ
			

			

				0
			

			
				;
				𝑏
				∈
				ℂ
				⧵
				{
				0
				}
				;
				0
				≤
				𝜇
				≤
				𝜆
				≤
				1
				;
				𝛾
				≥
				0
				;
				𝑧
				∈
				𝕌
				)
				,
			

		
	

						where 
	
		
			

				𝑔
			

		
	
 and 
	
		
			

				ℱ
			

			
				𝜆
				,
				𝜇
			

		
	
 are defined by (3) and (6), respectively. 
Setting 
	
		
			
				𝜆
				=
				𝜇
				=
				0
			

		
	
, 
	
		
			
				𝛽
				=
				1
			

		
	
 in Definition 2, we have the special class (which generalizes the class defined by Prajapat et al. [3]) introduced by Srivastava et al. [2].
Following a recent investigation by Frasin and Darus [6], if 
	
		
			
				𝑓
				∈
				𝒯
			

			

				𝑝
			

		
	
 and 
	
		
			
				𝛿
				≥
				0
			

		
	
, then we define the 
	
		
			
				(
				𝑞
				,
				𝛿
				)
			

		
	
-neighborhood of the function 
	
		
			

				𝑓
			

		
	
 by
						
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			

				𝒩
			

			
				𝑞
				𝑘
				,
				𝛿
			

			
				
				(
				𝑓
				)
				=
				ℎ
				∈
				𝒯
			

			

				𝑝
			

			
				∶
				ℎ
				(
				𝑧
				)
				=
				𝑧
			

			

				𝑝
			

			

				−
			

			

				∞
			

			

				
			

			
				𝑗
				=
				𝑘
			

			

				𝑐
			

			

				𝑗
			

			

				𝑧
			

			

				𝑗
			

			

				,
			

			

				∞
			

			

				
			

			
				𝑗
				=
				𝑘
			

			

				𝑗
			

			
				𝑞
				+
				1
			

			
				|
				|
				𝑎
			

			

				𝑗
			

			
				−
				𝑐
			

			

				𝑗
			

			
				|
				|
				
				.
				≤
				𝛿
			

		
	

It follows from the definition (9) that if
						
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				𝑒
				(
				𝑧
				)
				=
				𝑧
			

			

				𝑝
			

			
				(
				𝑝
				∈
				ℕ
				)
				,
			

		
	

					then
						
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			

				𝒩
			

			
				𝑞
				𝑘
				,
				𝛿
			

			
				
				(
				𝑒
				)
				=
				ℎ
				∈
				𝒯
			

			

				𝑝
			

			
				∶
				ℎ
				(
				𝑧
				)
				=
				𝑧
			

			

				𝑝
			

			

				−
			

			

				∞
			

			

				
			

			
				𝑗
				=
				𝑘
			

			

				𝑐
			

			

				𝑗
			

			

				𝑧
			

			

				𝑗
			

			

				,
			

			

				∞
			

			

				
			

			
				𝑗
				=
				𝑘
			

			

				𝑗
			

			
				𝑞
				+
				1
			

			
				|
				|
				𝑐
			

			

				𝑗
			

			
				|
				|
				
				.
				≤
				𝛿
			

		
	

The main object of this paper is to investigate the various properties and characteristics of functions belonging to the above-defined classes
						
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			

				𝒮
			

			

				𝑔
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				)
				,
				𝒫
			

			

				𝑔
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				;
				𝛾
				)
				.
			

		
	

					Apart from deriving coefficient bounds and coefficient inequalities for each of these classes, we establish several inclusion relationships involving the 
	
		
			
				(
				𝑞
				,
				𝛿
				)
			

		
	
-neighborhoods of functions belonging to the general classes which are introduced above.
2. Coefficient Bounds and Coefficient Inequalities
We begin by proving a necessary and sufficient condition for the function 
	
		
			
				𝑓
				∈
				𝒯
			

			

				𝑝
			

		
	
 to be in each of the classes
						
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			

				𝒮
			

			

				𝑔
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				)
				,
				𝒫
			

			

				𝑔
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				;
				𝛾
				)
				.
			

		
	

Theorem 3.  Let the function 
	
		
			
				𝑓
				∈
				𝒯
			

			

				𝑝
			

		
	
 be given by (1). Then 
	
		
			

				𝑓
			

		
	
 is in the class 
	
		
			

				𝒮
			

			

				𝑔
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				)
			

		
	
 if and only if
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑗
				=
				𝑘
			

			
				(
				𝑗
				)
			

			

				𝑚
			

			
				
				(
				𝑗
				−
				𝑚
				)
			

			

				𝑛
			

			
				−
				(
				𝑝
				−
				𝑚
				)
			

			

				𝑛
			

			
				|
				|
				𝑏
				|
				|
				
				+
				𝛽
				𝜓
				(
				𝑗
				)
				𝑎
			

			

				𝑗
			

			

				𝑏
			

			

				𝑗
			

			
				|
				|
				𝑏
				|
				|
				≤
				𝛽
				(
				𝑝
				)
			

			

				𝑚
			

			
				
				𝜓
				(
				𝑝
				)
				𝑚
				+
				𝑛
				<
				𝑝
				<
				𝑘
				;
				𝑝
				,
				𝑛
				∈
				ℕ
				;
				𝑚
				∈
				ℕ
			

			

				0
			

			
				;
				𝑏
				∈
				ℂ
				⧵
				{
				0
				}
				;
				0
				<
				𝛽
				≤
				1
				;
				𝑧
				∈
				𝕌
				)
				,
			

		
	

						where
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				𝜓
				(
				𝑠
				)
				=
				(
				𝑠
				−
				1
				)
				(
				𝜆
				𝜇
				𝑠
				+
				𝜆
				−
				𝜇
				)
				+
				1
				(
				0
				≤
				𝜇
				≤
				𝜆
				≤
				1
				)
				.
			

		
	

Proof. We first suppose that the function 
	
		
			

				𝑓
			

		
	
 given by (1) is in the class 
	
		
			

				𝒮
			

			

				𝑔
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				)
			

		
	
. Then, in view of (3)–(6), we have
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				
				𝑧
				R
				e
			

			

				𝑛
			

			
				
				ℱ
			

			
				𝜆
				,
				𝜇
			

			
				
				∗
				𝑔
			

			
				(
				𝑚
				+
				𝑛
				)
			

			
				(
				𝑧
				)
			

			
				
			
			
				
				ℱ
			

			
				𝜆
				,
				𝜇
			

			
				
				∗
				𝑔
			

			
				(
				𝑚
				)
			

			
				(
				𝑧
				)
				−
				(
				𝑝
				−
				𝑚
				)
			

			

				𝑛
			

			
				
				|
				|
				𝑏
				|
				|
				>
				−
				𝛽
			

		
	

						or equivalently
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				
				−
				∑
				R
				e
			

			
				∞
				𝑗
				=
				𝑘
			

			
				(
				𝑗
				)
			

			

				𝑚
			

			
				
				(
				𝑗
				−
				𝑚
				)
			

			

				𝑛
			

			
				−
				(
				𝑝
				−
				𝑚
				)
			

			

				𝑛
			

			
				
				𝜓
				(
				𝑗
				)
				𝑎
			

			

				𝑗
			

			

				𝑏
			

			

				𝑗
			

			

				𝑧
			

			
				𝑗
				−
				𝑝
			

			
				
			
			
				(
				𝑝
				)
			

			

				𝑚
			

			
				∑
				𝜓
				(
				𝑝
				)
				−
			

			
				∞
				𝑗
				=
				𝑘
			

			
				(
				𝑗
				)
			

			

				𝑚
			

			
				𝜓
				(
				𝑗
				)
				𝑎
			

			

				𝑗
			

			

				𝑏
			

			

				𝑗
			

			

				𝑧
			

			
				𝑗
				−
				𝑝
			

			
				
				|
				|
				𝑏
				|
				|
				.
				>
				−
				𝛽
			

		
	

						If we choose 
	
		
			

				𝑧
			

		
	
 to be real and let 
	
		
			
				𝑧
				→
				1
			

			

				−
			

		
	
, we arrive easily at the inequality (14).Conversely, we suppose that the inequality (14) holds true and let
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				𝑧
				∈
				𝜕
				𝕌
				=
				{
				𝑧
				∈
				ℂ
				∶
				|
				𝑧
				|
				=
				1
				}
				.
			

		
	

						Then, we find that
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				𝑧
			

			

				𝑛
			

			
				
				ℱ
			

			
				𝜆
				,
				𝜇
			

			
				
				∗
				𝑔
			

			
				(
				𝑚
				+
				𝑛
				)
			

			
				(
				𝑧
				)
			

			
				
			
			
				
				ℱ
			

			
				𝜆
				,
				𝜇
			

			
				
				∗
				𝑔
			

			
				(
				𝑚
				)
			

			
				(
				𝑧
				)
				−
				(
				𝑝
				−
				𝑚
				)
			

			

				𝑛
			

			
				|
				|
				|
				|
				|
				=
				|
				|
				|
				|
				|
				∑
			

			
				∞
				𝑗
				=
				𝑘
			

			
				(
				𝑗
				)
			

			

				𝑚
			

			
				
				(
				𝑗
				−
				𝑚
				)
			

			

				𝑛
			

			
				−
				(
				𝑝
				−
				𝑚
				)
			

			

				𝑛
			

			
				
				𝜓
				(
				𝑗
				)
				𝑎
			

			

				𝑗
			

			

				𝑏
			

			

				𝑗
			

			

				𝑧
			

			
				𝑗
				−
				𝑝
			

			
				
			
			
				(
				𝑝
				)
			

			

				𝑚
			

			
				∑
				𝜓
				(
				𝑝
				)
				−
			

			
				∞
				𝑗
				=
				𝑘
			

			
				(
				𝑗
				)
			

			

				𝑚
			

			
				𝜓
				(
				𝑗
				)
				𝑎
			

			

				𝑗
			

			

				𝑏
			

			

				𝑗
			

			

				𝑧
			

			
				𝑗
				−
				𝑝
			

			
				|
				|
				|
				|
				|
				≤
				∑
			

			
				∞
				𝑗
				=
				𝑘
			

			
				(
				𝑗
				)
			

			

				𝑚
			

			
				
				(
				𝑗
				−
				𝑚
				)
			

			

				𝑛
			

			
				−
				(
				𝑝
				−
				𝑚
				)
			

			

				𝑛
			

			
				
				𝜓
				(
				𝑗
				)
				𝑎
			

			

				𝑗
			

			

				𝑏
			

			

				𝑗
			

			
				
			
			
				(
				𝑝
				)
			

			

				𝑚
			

			
				𝜓
				∑
				(
				𝑝
				)
				−
			

			
				∞
				𝑗
				=
				𝑘
			

			
				(
				𝑗
				)
			

			

				𝑚
			

			
				𝜓
				(
				𝑗
				)
				𝑎
			

			

				𝑗
			

			

				𝑏
			

			

				𝑗
			

			
				<
				𝛽
				|
				|
				𝑏
				|
				|
				
				(
				𝑝
				)
			

			

				𝑚
			

			
				∑
				𝜓
				(
				𝑝
				)
				−
			

			
				∞
				𝑗
				=
				𝑘
			

			
				(
				𝑗
				)
			

			

				𝑚
			

			
				𝜓
				(
				𝑗
				)
				𝑎
			

			

				𝑗
			

			

				𝑏
			

			

				𝑗
			

			

				
			

			
				
			
			
				(
				𝑝
				)
			

			

				𝑚
			

			
				∑
				𝜓
				(
				𝑝
				)
				−
			

			
				∞
				𝑗
				=
				𝑘
			

			
				(
				𝑗
				)
			

			

				𝑚
			

			
				𝜓
				(
				𝑗
				)
				𝑎
			

			

				𝑗
			

			

				𝑏
			

			

				𝑗
			

			
				|
				|
				𝑏
				|
				|
				.
				=
				𝛽
			

		
	

						Hence, by the Maximum Modulus Theorem, we have
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				𝑓
				∈
				𝒮
			

			

				𝑔
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				)
			

		
	

						which evidently completes the proof of Theorem 3. 
Remark 4. If we set 
	
		
			
				𝜆
				=
				𝜇
				=
				0
			

		
	
 and 
	
		
			
				𝛽
				=
				1
			

		
	
 in Theorem 3, then we have [2, Theorem 1].
Lemma 5.  Let the function 
	
		
			
				𝑓
				∈
				𝒯
			

			

				𝑝
			

		
	
 given by (1) be in the class 
	
		
			

				𝒮
			

			

				𝑔
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				)
			

		
	
. Then, for 
	
		
			

				𝑏
			

			

				𝑗
			

			
				≥
				𝑏
			

			

				𝑘
			

			
				(
				𝑗
				≥
				𝑘
				)
			

		
	
, one has
							
	
 		
 			
				(
				2
				1
				)
			
 			
				(
				2
				2
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑗
				=
				𝑘
			

			

				𝑎
			

			

				𝑗
			

			
				≤
				𝛽
				|
				|
				𝑏
				|
				|
				(
				𝑝
				)
			

			

				𝑚
			

			
				𝜓
				(
				𝑝
				)
			

			
				
			
			
				(
				𝑘
				)
			

			

				𝑚
			

			
				
				(
				𝑘
				−
				𝑚
				)
			

			

				𝑛
			

			
				−
				(
				𝑝
				−
				𝑚
				)
			

			

				𝑛
			

			
				|
				|
				𝑏
				|
				|
				
				+
				𝛽
				𝜓
				(
				𝑘
				)
				𝑏
			

			

				𝑘
			

			

				,
			

			

				∞
			

			

				
			

			
				𝑗
				=
				𝑘
			

			
				𝑗
				𝑎
			

			

				𝑗
			

			
				≤
				𝛽
				|
				|
				𝑏
				|
				|
				(
				𝑝
				)
			

			

				𝑚
			

			
				𝜓
				(
				𝑝
				)
				(
				𝑘
				−
				𝑚
				)
				!
			

			
				
			
			
				
				(
				𝑘
				−
				1
				)
				!
				(
				𝑘
				−
				𝑚
				)
			

			

				𝑛
			

			
				−
				(
				𝑝
				−
				𝑚
				)
			

			

				𝑛
			

			
				|
				|
				𝑏
				|
				|
				
				+
				𝛽
				𝜓
				(
				𝑘
				)
				𝑏
			

			

				𝑘
			

			
				
				|
				|
				𝑏
				|
				|
				
				,
				𝑝
				>
			

		
	

						where 
	
		
			

				𝜓
			

		
	
 is defined by (15).
Proof.  Let 
	
		
			
				𝑓
				∈
				𝒮
			

			

				𝑔
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				)
			

		
	
. Then, in view of the assertion (14), we have
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑗
				=
				𝑘
			

			

				𝑎
			

			

				𝑗
			

			
				≤
				𝛽
				|
				|
				𝑏
				|
				|
				(
				𝑝
				)
			

			

				𝑚
			

			
				𝜓
				(
				𝑝
				)
			

			
				
			
			
				(
				𝑘
				)
			

			

				𝑚
			

			
				
				(
				𝑘
				−
				𝑚
				)
			

			

				𝑛
			

			
				−
				(
				𝑝
				−
				𝑚
				)
			

			

				𝑛
			

			
				|
				|
				𝑏
				|
				|
				
				+
				𝛽
				𝜓
				(
				𝑘
				)
				𝑏
			

			

				𝑘
			

			

				.
			

		
	

						Furthermore, by rewriting the assertion (14) as follows:
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑗
				=
				𝑘
			

			
				𝑗
				!
			

			
				
			
			
				
				(
				𝑗
				−
				𝑚
				)
				!
				(
				𝑗
				−
				𝑚
				)
			

			

				𝑛
			

			
				−
				(
				𝑝
				−
				𝑚
				)
			

			

				𝑛
			

			
				|
				|
				𝑏
				|
				|
				
				+
				𝛽
				𝜓
				(
				𝑗
				)
				𝑎
			

			

				𝑗
			

			

				𝑏
			

			

				𝑗
			

			
				|
				|
				𝑏
				|
				|
				≤
				𝛽
				(
				𝑝
				)
			

			

				𝑚
			

			
				𝜓
				(
				𝑝
				)
				,
			

		
	

						we obtain
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑗
				=
				𝑘
			

			
				𝑗
				𝑎
			

			

				𝑗
			

			
				≤
				𝛽
				|
				|
				𝑏
				|
				|
				(
				𝑝
				)
			

			

				𝑚
			

			
				𝜓
				(
				𝑝
				)
				(
				𝑘
				−
				𝑚
				)
				!
			

			
				
			
			
				
				(
				𝑘
				−
				1
				)
				!
				(
				𝑘
				−
				𝑚
				)
			

			

				𝑛
			

			
				−
				(
				𝑝
				−
				𝑚
				)
			

			

				𝑛
			

			
				|
				|
				𝑏
				|
				|
				
				+
				𝛽
				𝜓
				(
				𝑘
				)
				𝑏
			

			

				𝑘
			

			

				.
			

		
	

Similar to Theorem 3, we can prove the following result.
Theorem 6.  Let the function 
	
		
			
				𝑓
				∈
				𝒯
			

			

				𝑝
			

		
	
 be given by (1). Then 
	
		
			

				𝑓
			

		
	
 is in the class 
	
		
			

				𝒫
			

			

				𝑔
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				;
				𝛾
				)
			

		
	
 if and only if
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑗
				=
				𝑘
			

			
				(
				𝑗
				−
				𝑛
				)
			

			

				𝑚
			

			
				
				𝛾
				(
				𝑗
				)
			

			

				𝑛
			

			
				−
				(
				𝛾
				−
				1
				)
				(
				𝑝
				)
			

			

				𝑛
			

			
				
				𝜓
				(
				𝑗
				)
				𝑎
			

			

				𝑗
			

			

				𝑏
			

			

				𝑗
			

			
				≤
				(
				𝑝
				−
				𝑚
				)
			

			

				𝑛
			

			
				
				|
				|
				𝑏
				|
				|
				−
				1
				+
				(
				𝑝
				)
			

			

				𝑚
			

			
				
				
				𝜓
				(
				𝑝
				)
				𝑚
				+
				𝑛
				<
				𝑝
				<
				𝑘
				;
				𝑝
				,
				𝑛
				∈
				ℕ
				;
				𝑚
				∈
				ℕ
			

			

				0
			

			
				;
				𝑏
				∈
				ℂ
				⧵
				{
				0
				}
				;
				0
				≤
				𝜇
				≤
				𝜆
				≤
				1
				;
				𝛾
				≥
				0
				;
				𝑧
				∈
				𝕌
				)
				,
			

		
	

						where 
	
		
			

				𝜓
			

		
	
 is defined by (15).
Remark 7. If we set 
	
		
			
				𝜆
				=
				𝜇
				=
				0
			

		
	
 and 
	
		
			
				𝛽
				=
				1
			

		
	
 in Theorem 6, then we have [2, Theorem 2].
Lemma 8.  Let the function 
	
		
			
				𝑓
				∈
				𝒯
			

			

				𝑝
			

		
	
 given by (1) be in the class 
	
		
			

				𝒫
			

			

				𝑔
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				;
				𝛾
				)
			

		
	
. Then, for 
	
		
			

				𝑏
			

			

				𝑗
			

			
				≥
				𝑏
			

			

				𝑘
			

			
				(
				𝑗
				≥
				𝑘
				)
			

		
	
, one has
							
	
 		
 			
				(
				2
				7
				)
			
 			
				(
				2
				8
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑗
				=
				𝑘
			

			

				𝑎
			

			

				𝑗
			

			
				≤
				(
				𝑝
				−
				𝑚
				)
			

			

				𝑛
			

			
				
				|
				|
				𝑏
				|
				|
				−
				1
				+
				(
				𝑝
				)
			

			

				𝑚
			

			
				
				𝜓
				(
				𝑝
				)
			

			
				
			
			
				(
				𝑘
				−
				𝑛
				)
			

			

				𝑚
			

			
				
				𝛾
				(
				𝑘
				)
			

			

				𝑛
			

			
				−
				(
				𝛾
				−
				1
				)
				(
				𝑝
				)
			

			

				𝑛
			

			
				
				𝜓
				(
				𝑘
				)
				𝑏
			

			

				𝑘
			

			

				,
			

			

				∞
			

			

				
			

			
				𝑗
				=
				𝑘
			

			
				𝑗
				𝑎
			

			

				𝑗
			

			
				≤
				𝑘
				(
				𝑝
				−
				𝑚
				)
			

			

				𝑛
			

			
				
				|
				|
				𝑏
				|
				|
				−
				1
				+
				(
				𝑝
				)
			

			

				𝑚
			

			
				
				𝜓
				(
				𝑝
				)
				(
				𝑘
				−
				𝑛
				−
				𝑚
				)
				!
			

			
				
			
			
				
				(
				𝑘
				−
				𝑛
				)
				!
				𝛾
				(
				𝑘
				)
			

			

				𝑛
			

			
				−
				(
				𝛾
				−
				1
				)
				(
				𝑝
				)
			

			

				𝑛
			

			
				
				𝜓
				(
				𝑘
				)
				𝑏
			

			

				𝑘
			

			
				(
				𝛾
				>
				1
				)
				,
			

		
	

						where 
	
		
			

				𝜓
			

		
	
 is defined by (15).
Proof. Let 
	
		
			
				𝑓
				∈
				𝒫
			

			

				𝑔
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				;
				𝛾
				)
			

		
	
. Then, in view of the assertion (26), we have
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑗
				=
				𝑘
			

			

				𝑎
			

			

				𝑗
			

			
				≤
				(
				𝑝
				−
				𝑚
				)
			

			

				𝑛
			

			
				
				|
				|
				𝑏
				|
				|
				−
				1
				+
				(
				𝑝
				)
			

			

				𝑚
			

			
				
				𝜓
				(
				𝑝
				)
			

			
				
			
			
				(
				𝑘
				−
				𝑛
				)
			

			

				𝑚
			

			
				
				𝛾
				(
				𝑘
				)
			

			

				𝑛
			

			
				−
				(
				𝛾
				−
				1
				)
				(
				𝑝
				)
			

			

				𝑛
			

			
				
				𝜓
				(
				𝑘
				)
				𝑏
			

			

				𝑘
			

			

				.
			

		
	

						Furthermore, we also have from the assertion (26)
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑗
				=
				𝑘
			

			
				𝑗
				𝑎
			

			

				𝑗
			

			
				≤
				𝑘
				(
				𝑝
				−
				𝑚
				)
			

			

				𝑛
			

			
				
				|
				|
				𝑏
				|
				|
				−
				1
				+
				(
				𝑝
				)
			

			

				𝑚
			

			
				
				𝜓
				(
				𝑝
				)
				(
				𝑘
				−
				𝑛
				−
				𝑚
				)
				!
			

			
				
			
			
				
				(
				𝑘
				−
				𝑛
				)
				!
				𝛾
				(
				𝑘
				)
			

			

				𝑛
			

			
				−
				(
				𝛾
				−
				1
				)
				(
				𝑝
				)
			

			

				𝑛
			

			
				
				𝜓
				(
				𝑘
				)
				𝑏
			

			

				𝑘
			

			

				.
			

		
	

3. A Set of Inclusion Relationships
In this section, we determine inclusion relations for the classes
						
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			

				𝒮
			

			

				𝑔
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				)
				,
				𝒫
			

			

				𝑔
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				;
				𝛾
				)
			

		
	

					involving 
	
		
			
				(
				𝑞
				,
				𝛿
				)
			

		
	
-neighborhoods defined by (9) and (11).
Theorem 9.  If 
	
		
			

				𝑏
			

			

				𝑗
			

			
				≥
				𝑏
			

			

				𝑘
			

			
				(
				𝑗
				≥
				𝑘
				)
			

		
	
 and
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				𝛽
				|
				|
				𝑏
				|
				|
				𝛿
				=
				(
				𝑝
				)
			

			

				𝑚
			

			
				𝜓
				(
				𝑝
				)
				(
				𝑘
				−
				𝑚
				)
				!
			

			
				
			
			
				
				(
				𝑘
				−
				1
				)
				!
				(
				𝑘
				−
				𝑚
				)
			

			

				𝑛
			

			
				−
				(
				𝑝
				−
				𝑚
				)
			

			

				𝑛
			

			
				|
				|
				𝑏
				|
				|
				
				+
				𝛽
				𝜓
				(
				𝑘
				)
				𝑏
			

			

				𝑘
			

			
				
				|
				|
				𝑏
				|
				|
				
				,
				𝑝
				>
			

		
	

						then
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			

				𝒮
			

			

				𝑔
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				)
				⊂
				𝒩
			

			
				0
				𝑘
				,
				𝛿
			

			
				(
				𝑒
				)
				,
			

		
	

						where 
	
		
			

				𝑒
			

		
	
 and 
	
		
			

				𝜓
			

		
	
 are given by (10) and (15), respectively. 
Proof. The inclusion relation (33) would follow readily from the definition (11) and the assertion (22). 
Remark 10. If we set 
	
		
			
				𝜆
				=
				𝜇
				=
				0
			

		
	
 and 
	
		
			
				𝛽
				=
				1
			

		
	
 in Theorem 9, then we have [2, Theorem 3].
Theorem 11.  If 
	
		
			

				𝑏
			

			

				𝑗
			

			
				≥
				𝑏
			

			

				𝑘
			

			
				(
				𝑗
				≥
				𝑘
				)
			

		
	
 and
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				𝛿
				=
				𝑘
				(
				𝑝
				−
				𝑚
				)
			

			

				𝑛
			

			
				
				|
				|
				𝑏
				|
				|
				−
				1
				+
				(
				𝑝
				)
			

			

				𝑚
			

			
				
				𝜓
				(
				𝑝
				)
				(
				𝑘
				−
				𝑛
				−
				𝑚
				)
				!
			

			
				
			
			
				
				(
				𝑘
				−
				𝑛
				)
				!
				𝛾
				(
				𝑘
				)
			

			

				𝑛
			

			
				−
				(
				𝛾
				−
				1
				)
				(
				𝑝
				)
			

			

				𝑛
			

			
				
				𝜓
				(
				𝑘
				)
				𝑏
			

			

				𝑘
			

			
				(
				𝛾
				>
				1
				)
				,
			

		
	

						then
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			

				𝒫
			

			

				𝑔
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				;
				𝛾
				)
				⊂
				𝒩
			

			
				0
				𝑘
				,
				𝛿
			

			
				(
				𝑒
				)
				,
			

		
	

						where 
	
		
			

				𝑒
			

		
	
 and 
	
		
			

				𝜓
			

		
	
 are given by (10) and (15), respectively. 
Proof. The inclusion relation (35) would follow readily from the definition (11) and the assertion (28). 
Remark 12.  If we set 
	
		
			
				𝜆
				=
				𝜇
				=
				0
			

		
	
 and 
	
		
			
				𝛽
				=
				1
			

		
	
 in Theorem 11, then we have [2, Theorem 4].
4. Neighborhood Properties
In this section, we determine the neighborhood properties for each of the function classes
						
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			

				𝒮
			

			
				𝑔
				(
				𝛼
				)
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				)
				,
				𝒫
			

			
				𝑔
				(
				𝛼
				)
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				;
				𝛾
				)
			

		
	

					which are defined as follows.
Definition 13. A function 
	
		
			
				𝑓
				∈
				𝒯
			

			

				𝑝
			

		
	
 is said to be in the class 
	
		
			

				𝒮
			

			
				𝑔
				(
				𝛼
				)
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				)
			

		
	
 if there exists a function 
	
		
			
				ℎ
				∈
				𝒮
			

			

				𝑔
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				)
			

		
	
 such that
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				𝑓
				(
				𝑧
				)
			

			
				
			
			
				|
				|
				|
				|
				ℎ
				(
				𝑧
				)
				−
				1
				<
				𝑝
				−
				𝛼
				(
				0
				≤
				𝛼
				<
				𝑝
				;
				𝑧
				∈
				𝕌
				)
				.
			

		
	

Definition 14. A function 
	
		
			
				𝑓
				∈
				𝒯
			

			

				𝑝
			

		
	
 is said to be in the class 
	
		
			

				𝒫
			

			
				𝑔
				(
				𝛼
				)
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				;
				𝛾
				)
			

		
	
 if there exists a function 
	
		
			
				ℎ
				∈
				𝒫
			

			

				𝑔
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				;
				𝛾
				)
			

		
	
 such that the inequality (37) holds true. 
Setting 
	
		
			
				𝜆
				=
				𝜇
				=
				0
				,
				𝛽
				=
				1
			

		
	
 in Definitions 13 and 14, we have the special classes
						
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			

				𝒮
			

			
				𝑔
				(
				𝛼
				)
			

			
				(
				𝑝
				,
				𝑘
				,
				𝑏
				,
				𝑚
				,
				𝑛
				)
				,
				𝒫
			

			
				𝑔
				(
				𝛼
				)
			

			
				(
				𝑝
				,
				𝑘
				,
				𝑏
				,
				𝑚
				,
				𝑛
				;
				𝛾
				)
			

		
	

					introduced by Srivastava et al. [2], respectively.
Theorem 15.  If 
	
		
			
				ℎ
				∈
				𝒮
			

			

				𝑔
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				)
			

		
	
 and
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			
				𝛿
				𝛼
				=
				𝑝
				−
			

			
				
			
			

				𝑘
			

			
				𝑞
				+
				1
			

			
				×
				
				(
				𝑘
				)
			

			

				𝑚
			

			
				
				(
				𝑘
				−
				𝑚
				)
			

			

				𝑛
			

			
				−
				(
				𝑝
				−
				𝑚
				)
			

			

				𝑛
			

			
				|
				|
				𝑏
				|
				|
				
				+
				𝛽
				𝜓
				(
				𝑘
				)
				𝑏
			

			

				𝑘
			

			
				
				×
				
				(
				𝑘
				)
			

			

				𝑚
			

			
				
				(
				𝑘
				−
				𝑚
				)
			

			

				𝑛
			

			
				−
				(
				𝑝
				−
				𝑚
				)
			

			

				𝑛
			

			
				|
				|
				𝑏
				|
				|
				
				+
				𝛽
				×
				𝜓
				(
				𝑘
				)
				𝑏
			

			

				𝑘
			

			
				|
				|
				𝑏
				|
				|
				−
				𝛽
				(
				𝑝
				)
			

			

				𝑚
			

			
				
				𝜓
				(
				𝑝
				)
			

			
				−
				1
			

			

				,
			

		
	

						then
							
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			

				𝒩
			

			
				𝑞
				𝑘
				,
				𝛿
			

			
				(
				ℎ
				)
				⊂
				𝒮
			

			
				𝑔
				(
				𝛼
				)
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				)
				,
			

		
	

						where 
	
		
			

				𝜓
			

		
	
 is defined by (15).
Proof. Suppose that 
	
		
			
				𝑓
				∈
				𝒩
			

			
				𝑞
				𝑘
				,
				𝛿
			

			
				(
				ℎ
				)
			

		
	
. Then we find from (9) that
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑗
				=
				𝑘
			

			

				𝑗
			

			
				𝑞
				+
				1
			

			
				|
				|
				𝑎
			

			

				𝑗
			

			
				−
				𝑐
			

			

				𝑗
			

			
				|
				|
				≤
				𝛿
				,
			

		
	

						which readily implies that
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑗
				=
				𝑘
			

			
				|
				|
				𝑎
			

			

				𝑗
			

			
				−
				𝑐
			

			

				𝑗
			

			
				|
				|
				≤
				𝛿
			

			
				
			
			

				𝑘
			

			
				𝑞
				+
				1
			

			

				.
			

		
	

						Since 
	
		
			
				ℎ
				∈
				𝒮
			

			

				𝑔
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				)
			

		
	
, we find from (21) that
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				𝑗
				=
				𝑘
			

			

				𝑐
			

			

				𝑗
			

			
				≤
				𝛽
				|
				|
				𝑏
				|
				|
				(
				𝑝
				)
			

			

				𝑚
			

			
				𝜓
				(
				𝑝
				)
			

			
				
			
			
				(
				𝑘
				)
			

			

				𝑚
			

			
				
				(
				𝑘
				−
				𝑚
				)
			

			

				𝑛
			

			
				−
				(
				𝑝
				−
				𝑚
				)
			

			

				𝑛
			

			
				|
				|
				𝑏
				|
				|
				
				+
				𝛽
				𝜓
				(
				𝑘
				)
				𝑏
			

			

				𝑘
			

			

				,
			

		
	

						so that
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				𝑓
				(
				𝑧
				)
			

			
				
			
			
				|
				|
				|
				|
				≤
				∑
				ℎ
				(
				𝑧
				)
				−
				1
			

			
				∞
				𝑗
				=
				𝑘
			

			
				|
				|
				𝑎
			

			

				𝑗
			

			
				−
				𝑐
			

			

				𝑗
			

			
				|
				|
			

			
				
			
			
				∑
				1
				−
			

			
				∞
				𝑗
				=
				𝑘
			

			

				𝑐
			

			

				𝑗
			

			
				≤
				𝛿
			

			
				
			
			

				𝑘
			

			
				𝑞
				+
				1
			

			
				
				(
				𝑘
				)
			

			

				𝑚
			

			
				
				(
				𝑘
				−
				𝑚
				)
			

			

				𝑛
			

			
				−
				(
				𝑝
				−
				𝑚
				)
			

			

				𝑛
			

			
				|
				|
				𝑏
				|
				|
				
				+
				𝛽
				𝜓
				(
				𝑘
				)
				𝑏
			

			

				𝑘
			

			
				
				×
				
				(
				𝑘
				)
			

			

				𝑚
			

			
				
				(
				𝑘
				−
				𝑚
				)
			

			

				𝑛
			

			
				−
				(
				𝑝
				−
				𝑚
				)
			

			

				𝑛
			

			
				|
				|
				𝑏
				|
				|
				
				+
				𝛽
				×
				𝜓
				(
				𝑘
				)
				𝑏
			

			

				𝑘
			

			
				|
				|
				𝑏
				|
				|
				−
				𝛽
				(
				𝑝
				)
			

			

				𝑚
			

			
				
				𝜓
				(
				𝑝
				)
			

			
				−
				1
			

			
				=
				𝑝
				−
				𝛼
				,
			

		
	

						where 
	
		
			

				𝛼
			

		
	
 is given by (39). Thus, by Definition 13, 
	
		
			
				𝑓
				∈
				𝒮
			

			
				𝑔
				(
				𝛼
				)
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				)
			

		
	
. This completes the proof of Theorem 15.
Remark 16. If we set 
	
		
			
				𝜆
				=
				𝜇
				=
				0
			

		
	
 and 
	
		
			
				𝛽
				=
				1
			

		
	
 in Theorem 15, then we have [2, Theorem 5].
The proof of Theorem 17 (based upon Definition 14) is similar to that of Theorem 15. Therefore we omit the details involved.
Theorem 17.  If 
	
		
			
				ℎ
				∈
				𝒫
			

			

				𝑔
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				;
				𝛾
				)
			

		
	
 and
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			
				𝛿
				𝛼
				=
				𝑝
				−
			

			
				
			
			

				𝑘
			

			
				𝑞
				+
				1
			

			
				×
				
				(
				𝑘
				−
				𝑛
				)
			

			

				𝑚
			

			
				
				𝛾
				(
				𝑘
				)
			

			

				𝑛
			

			
				−
				(
				𝛾
				−
				1
				)
				(
				𝑝
				)
			

			

				𝑛
			

			
				
				𝜓
				(
				𝑘
				)
				𝑏
			

			

				𝑘
			

			
				
				×
				
				(
				𝑘
				−
				𝑛
				)
			

			

				𝑚
			

			
				
				𝛾
				(
				𝑘
				)
			

			

				𝑛
			

			
				−
				(
				𝛾
				−
				1
				)
				(
				𝑝
				)
			

			

				𝑛
			

			
				
				𝜓
				(
				𝑘
				)
				𝑏
			

			

				𝑘
			

			
				−
				(
				𝑝
				−
				𝑚
				)
			

			

				𝑛
			

			
				
				|
				|
				𝑏
				|
				|
				−
				1
				+
				(
				𝑝
				)
			

			

				𝑚
			

			
				𝜓
				(
				𝑝
				)
				
				
			

			
				−
				1
			

			

				,
			

		
	

						then
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			

				𝒩
			

			
				𝑞
				𝑘
				,
				𝛿
			

			
				(
				ℎ
				)
				⊂
				𝒫
			

			
				𝑔
				(
				𝛼
				)
			

			
				(
				𝑝
				,
				𝑘
				,
				𝜆
				,
				𝜇
				,
				𝑏
				,
				𝛽
				,
				𝑚
				,
				𝑛
				;
				𝛾
				)
				,
			

		
	

						where 
	
		
			

				𝜓
			

		
	
 is defined by (15).
Remark 18. If we set 
	
		
			
				𝜆
				=
				𝜇
				=
				0
			

		
	
 and 
	
		
			
				𝛽
				=
				1
			

		
	
 in Theorem 17, then we have [2, Theorem 6].
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