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Abstract. 
The purpose of the present paper is to investigate some properties of multivalent analytic functions.


1. Introduction
Let 
	
		
			

				𝐴
			

			

				𝑝
			

			
				(
				𝑛
				)
			

		
	
 denote the class of the functions of the form
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑧
				)
				=
				𝑧
			

			

				𝑝
			

			

				+
			

			

				∞
			

			

				
			

			
				𝑘
				=
				𝑛
			

			

				𝑎
			

			
				𝑝
				+
				𝑘
			

			

				𝑧
			

			
				𝑝
				+
				𝑘
			

			
				(
				𝑛
				,
				𝑝
				∈
				𝑁
				=
				{
				1
				,
				2
				,
				3
				,
				…
				}
				)
				,
			

		
	

					which are analytic in the open unit disk 
	
		
			
				𝑈
				=
				{
				𝑧
				∶
				𝑧
				∈
				𝐶
				a
				n
				d
				|
				𝑧
				|
				<
				1
				}
			

		
	
. Also let the Hadamard product (or convolution) of two functions
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			

				𝑓
			

			

				𝑗
			

			
				(
				𝑧
				)
				=
				𝑧
			

			

				𝑝
			

			

				+
			

			

				∞
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝑎
			

			
				𝑘
				,
				𝑗
			

			

				𝑧
			

			
				𝑝
				+
				𝑘
			

			
				(
				𝑗
				=
				1
				,
				2
				)
			

		
	

					be given by
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				
				𝑓
			

			

				1
			

			
				∗
				𝑓
			

			

				2
			

			
				
				(
				𝑧
				)
				=
				𝑧
			

			

				𝑝
			

			

				+
			

			

				∞
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝑎
			

			
				𝑘
				,
				1
			

			

				𝑎
			

			
				𝑘
				,
				2
			

			

				𝑧
			

			
				𝑝
				+
				𝑘
			

			

				.
			

		
	

In [1], Liu introduced the following generalized Srivastava-Attiya operator 
	
		
			

				ℑ
			

			
				𝑠
				,
				𝑏
			

		
	
:
						
	
 		
 			
				(
				4
				)
			
 			
				(
				5
				)
			
 		
	

	
		
			

				ℑ
			

			
				𝑠
				,
				𝑏
			

			
				∶
				𝐴
			

			

				𝑝
			

			
				(
				1
				)
				→
				𝐴
			

			

				𝑝
			

			
				ℑ
				(
				1
				)
			

			
				𝑠
				,
				𝑏
			

			
				𝑓
				(
				𝑧
				)
				=
				𝐺
			

			
				𝑝
				,
				𝑠
				,
				𝑏
			

			
				
				(
				𝑧
				)
				∗
				𝑓
				(
				𝑧
				)
				𝑧
				∈
				𝑈
				;
				𝑏
				∈
				𝐶
				⧵
				𝑍
			

			
				−
				0
			

			
				,
				𝑍
			

			
				−
				0
			

			
				
				,
				=
				{
				0
				,
				−
				1
				,
				−
				2
				,
				…
				}
				;
				𝑠
				∈
				𝐶
			

		
	

					where
						
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			

				𝐺
			

			
				𝑝
				,
				𝑠
				,
				𝑏
			

			
				(
				𝑧
				)
				=
				(
				1
				+
				𝑏
				)
			

			

				𝑠
			

			
				
				Φ
			

			

				𝑝
			

			
				(
				𝑧
				,
				𝑠
				,
				𝑏
				)
				−
				𝑏
			

			
				−
				𝑠
			

			
				
				,
				Φ
			

			

				𝑝
			

			
				1
				(
				𝑧
				,
				𝑠
				,
				𝑏
				)
				=
			

			
				
			
			

				𝑏
			

			

				𝑠
			

			
				+
				𝑧
			

			

				𝑝
			

			
				
			
			
				(
				1
				+
				𝑏
				)
			

			

				𝑠
			

			
				+
				𝑧
			

			
				𝑝
				+
				1
			

			
				
			
			
				(
				2
				+
				𝑏
				)
			

			

				𝑠
			

			
				+
				⋯
				.
			

		
	

					It is not difficult to see from (5) and (6) that
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			

				ℑ
			

			
				𝑠
				,
				𝑏
			

			
				𝑓
				(
				𝑧
				)
				=
				𝑧
			

			

				𝑝
			

			

				+
			

			

				∞
			

			

				
			

			
				𝑘
				=
				1
			

			
				
				1
				+
				𝑏
			

			
				
			
			
				
				𝑘
				+
				1
				+
				𝑏
			

			

				𝑠
			

			

				𝑎
			

			
				𝑝
				+
				𝑘
			

			

				𝑧
			

			
				𝑝
				+
				𝑘
			

			

				.
			

		
	

					When 
	
		
			
				𝑝
				=
				1
			

		
	
, the operator 
	
		
			

				ℑ
			

			
				𝑠
				,
				𝑏
			

		
	
 is the well-known Srivastava-Attiya operator 
	
		
			

				ℒ
			

			
				𝑠
				,
				𝑏
			

		
	
 [2]. The generalized Srivastava-Attiya operator has been studied by several authors (see [1–5]).
In this investigation, we focus on certain inequalities consisting of the following differential operator:
						
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			

				𝑄
			

			
				𝑝
				,
				𝑠
				,
				𝑏
			

			
				𝑧
				
				ℑ
				(
				𝛿
				,
				𝜇
				;
				𝑓
				)
				(
				𝑧
				)
				=
				𝜇
			

			
				𝑠
				,
				𝑏
			

			
				𝑓
				
				(
				𝑧
				)
			

			

				
			

			
				
			
			

				ℑ
			

			
				𝑠
				,
				𝑏
			

			
				
				𝑧
				
				ℑ
				𝑓
				(
				𝑧
				)
				+
				𝛿
				1
				+
			

			
				𝑠
				,
				𝑏
			

			
				
				𝑓
				(
				𝑧
				)
			

			
				
				
			

			
				
			
			
				
				ℑ
			

			
				𝑠
				,
				𝑏
			

			
				
				𝑓
				(
				𝑧
				)
			

			

				
			

			
				
				.
			

		
	

					Our results generalize the recent results obtained by Irmak et al. [6].
In order to prove our main results, we need the following lemmas.
Lemma 1 (see [7]).  Let 
	
		
			
				Ω
				⊂
				𝐶
			

		
	
 and suppose that the function 
	
		
			
				𝜓
				∶
				𝐶
			

			

				2
			

			
				×
				𝑈
				→
				𝐶
			

		
	
 satisfies 
	
		
			
				𝜓
				(
				𝑀
				𝑒
			

			
				𝑖
				𝜃
			

			
				,
				𝐾
				𝑒
			

			
				𝑖
				𝜃
			

			
				;
				𝑧
				)
				∉
				Ω
			

		
	
 for all 
	
		
			
				𝐾
				≥
				𝑀
				𝑛
			

		
	
, 
	
		
			
				𝜃
				∈
				𝑅
			

		
	
, and 
	
		
			
				𝑧
				∈
				𝑈
			

		
	
. If 
	
		
			
				ℎ
				(
				𝑧
				)
				=
				𝑎
				+
				ℎ
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

			
				+
				⋯
			

		
	
 is analytic in 
	
		
			

				𝑈
			

		
	
 and 
	
		
			
				𝜓
				(
				ℎ
				(
				𝑧
				)
				,
				𝑧
				ℎ
			

			

				
			

			
				(
				𝑧
				)
				;
				𝑧
				)
				∈
				Ω
			

		
	
 for all 
	
		
			
				𝑧
				∈
				𝑈
			

		
	
, then 
	
		
			
				|
				ℎ
				(
				𝑧
				)
				|
				<
				𝑀
				(
				𝑧
				∈
				𝑈
				)
			

		
	
.
Lemma 2 (see [7]).  Let 
	
		
			
				Ω
				⊂
				𝐶
			

		
	
 and suppose that the function 
	
		
			
				𝜓
				∶
				𝐶
			

			

				2
			

			
				×
				𝑈
				→
				𝐶
			

		
	
 satisfies 
	
		
			
				𝜓
				(
				𝑖
				𝑥
				,
				𝑦
				;
				𝑧
				)
				∉
				Ω
			

		
	
 for all 
	
		
			
				𝑥
				∈
				𝑅
			

		
	
, 
	
		
			
				𝑦
				≤
				−
				𝑛
				(
				1
				+
				𝑥
			

			

				2
			

			
				)
				/
				2
			

		
	
, and 
	
		
			
				𝑧
				∈
				𝑈
			

		
	
. If 
	
		
			
				ℎ
				(
				𝑧
				)
				=
				𝑎
				+
				ℎ
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

			
				+
				⋯
			

		
	
 is analytic in 
	
		
			

				𝑈
			

		
	
 and 
	
		
			
				𝜓
				(
				ℎ
				(
				𝑧
				)
				,
				𝑧
				ℎ
			

			

				
			

			
				(
				𝑧
				)
				;
				𝑧
				)
				∈
				Ω
			

		
	
 for all 
	
		
			
				𝑧
				∈
				𝑈
			

		
	
, then 
	
		
			
				R
				e
				{
				ℎ
				(
				𝑧
				)
				}
				>
				0
				(
				𝑧
				∈
				𝑈
				)
			

		
	
.
2. Main Results
We now state and then prove each of our main results given by Theorems 3 and 4 below.
Theorem 3.  Let 
	
		
			
				𝑓
				(
				𝑧
				)
				∈
				𝐴
			

			

				𝑝
			

			
				(
				𝑛
				)
			

		
	
 with 
	
		
			
				(
				ℑ
			

			
				𝑠
				,
				𝑏
			

			
				𝑓
				(
				𝑧
				)
				)
			

			

				
			

			

				ℑ
			

			
				𝑠
				,
				𝑏
			

			
				𝑓
				(
				𝑧
				)
				/
				𝑧
			

			
				2
				𝑝
				−
				1
			

			
				≠
				0
			

		
	
 for all 
	
		
			
				𝑧
				∈
				𝑈
			

		
	
, and also let 
	
		
			
				𝛿
				∈
				𝑅
			

		
	
 and 
	
		
			
				𝜇
				∈
				𝑅
			

		
	
. If
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				
				𝑄
				R
				e
			

			
				𝑝
				,
				𝑠
				,
				𝑏
			

			
				
				(
				𝛿
				,
				𝜇
				;
				𝑓
				)
				(
				𝑧
				)
				<
				𝑝
				(
				𝜇
				+
				𝛿
				)
				+
				𝑛
				𝑀
			

			
				
			
			
				𝑀
				+
				1
				(
				𝑧
				∈
				𝑈
				)
				,
			

		
	

						where 
	
		
			
				𝑀
				≥
				1
			

		
	
, then
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				|
				
				
				ℑ
			

			
				𝑠
				,
				𝑏
			

			
				
				𝑓
				(
				𝑧
				)
			

			

				
			

			
				
			
			
				𝑝
				𝑧
			

			
				𝑝
				−
				1
			

			

				
			

			

				𝛿
			

			
				
				ℑ
			

			
				𝑠
				,
				𝑏
			

			
				𝑓
				(
				𝑧
				)
			

			
				
			
			

				𝑧
			

			

				𝑝
			

			

				
			

			

				𝜇
			

			
				|
				|
				|
				|
				|
				−
				1
				<
				𝑀
				(
				𝑧
				∈
				𝑈
				)
				.
			

		
	

Proof. Put
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				
				
				ℑ
				ℎ
				(
				𝑧
				)
				=
			

			
				𝑠
				,
				𝑏
			

			
				
				𝑓
				(
				𝑧
				)
			

			

				
			

			
				
			
			
				𝑝
				𝑧
			

			
				𝑝
				−
				1
			

			

				
			

			

				𝛿
			

			
				
				ℑ
			

			
				𝑠
				,
				𝑏
			

			
				𝑓
				(
				𝑧
				)
			

			
				
			
			

				𝑧
			

			

				𝑝
			

			

				
			

			

				𝜇
			

			
				−
				1
				.
			

		
	

						Then the function 
	
		
			
				ℎ
				(
				𝑧
				)
			

		
	
 is analytic in 
	
		
			

				𝑈
			

		
	
 with 
	
		
			
				ℎ
				(
				0
				)
				=
				0
			

		
	
. A simple computation shows that
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			

				𝑄
			

			
				𝑝
				,
				𝑠
				,
				𝑏
			

			
				(
				𝛿
				,
				𝜇
				;
				𝑓
				)
				(
				𝑧
				)
				=
				𝑝
				(
				𝜇
				+
				𝛿
				)
				+
				𝑧
				ℎ
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			
				.
				ℎ
				(
				𝑧
				)
				+
				1
			

		
	
Now letting
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				𝑠
				𝜓
				(
				𝑟
				,
				𝑠
				;
				𝑧
				)
				=
				𝑝
				(
				𝜇
				+
				𝛿
				)
				+
			

			
				
			
			
				,
				
				𝑟
				+
				1
				Ω
				=
				𝑤
				∈
				𝐶
				∶
				R
				e
				(
				𝑤
				)
				<
				𝑝
				(
				𝜇
				+
				𝛿
				)
				+
				𝑛
				𝑀
			

			
				
			
			
				
				,
				𝑀
				+
				1
			

		
	

						we obtain that 
	
		
			
				𝜓
				(
				ℎ
				(
				𝑧
				)
				,
				𝑧
				ℎ
			

			

				
			

			
				(
				𝑧
				)
				;
				𝑧
				)
				=
				𝑄
			

			
				𝑝
				,
				𝑠
				,
				𝑏
			

			
				(
				𝛿
				,
				𝜇
				;
				𝑓
				)
				(
				𝑧
				)
				∈
				Ω
			

		
	
 for all 
	
		
			
				𝑧
				∈
				𝑈
			

		
	
. Further, for any 
	
		
			
				𝜃
				∈
				𝑅
			

		
	
, 
	
		
			
				𝐾
				≥
				𝑛
				𝑀
			

		
	
, and 
	
		
			
				𝑧
				∈
				𝑈
			

		
	
, since 
	
		
			
				𝑀
				≥
				1
			

		
	
, we also have
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				
				𝜓
				
				R
				e
				𝑀
				𝑒
			

			
				𝑖
				𝜃
			

			
				,
				𝐾
				𝑒
			

			
				𝑖
				𝜃
			

			
				
				1
				;
				𝑧
				
				
				=
				𝑝
				(
				𝜇
				+
				𝛿
				)
				+
				𝐾
				R
				e
			

			
				
			
			
				𝑀
				+
				𝑒
			

			
				−
				𝑖
				𝜃
			

			
				
				≥
				𝑝
				(
				𝜇
				+
				𝛿
				)
				+
				𝑛
				𝑀
			

			
				
			
			
				,
				𝑀
				+
				1
			

		
	

						which shows that 
	
		
			
				𝜓
				(
				𝑀
				𝑒
			

			
				𝑖
				𝜃
			

			
				,
				𝐾
				𝑒
			

			
				𝑖
				𝜃
			

			
				;
				𝑧
				)
				∉
				Ω
			

		
	
. Therefore, according to Lemma 1, we obtain 
	
		
			
				|
				ℎ
				(
				𝑧
				)
				|
				<
				𝑀
				(
				𝑧
				∈
				𝑈
				)
			

		
	
. This completes the proof of Theorem 3.
Theorem 4.  Let 
	
		
			
				𝑓
				(
				𝑧
				)
				∈
				𝐴
			

			

				𝑝
			

			
				(
				𝑛
				)
			

		
	
 with 
	
		
			
				(
				ℑ
			

			
				𝑠
				,
				𝑏
			

			
				𝑓
				(
				𝑧
				)
				)
			

			

				
			

			

				ℑ
			

			
				𝑠
				,
				𝑏
			

			
				𝑓
				(
				𝑧
				)
				/
				𝑧
			

			
				2
				𝑝
				−
				1
			

			
				≠
				0
			

		
	
 for 
	
		
			
				𝑧
				∈
				𝑈
			

		
	
, and also let 
	
		
			
				𝜇
				,
				𝛿
				∈
				𝑅
			

		
	
 and 
	
		
			
				𝛾
				∈
				[
				0
				,
				1
				)
			

		
	
. If
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				
				𝑄
				R
				e
			

			
				𝑝
				,
				𝑠
				,
				𝑏
			

			
				
				(
				𝛿
				,
				𝜇
				;
				𝑓
				)
				(
				𝑧
				)
				>
				𝛽
				(
				𝑝
				,
				𝛿
				,
				𝜇
				;
				𝛾
				)
				(
				𝑧
				∈
				𝑈
				)
				,
			

		
	

						where
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				⎧
				⎪
				⎨
				⎪
				⎩
				𝛽
				(
				𝑝
				,
				𝛿
				,
				𝜇
				;
				𝛾
				)
				=
				𝑝
				(
				𝜇
				+
				𝛿
				)
				−
				𝑛
				𝛾
			

			
				
			
			
				
				1
				2
				(
				1
				−
				𝛾
				)
				,
				𝛾
				∈
				0
				,
			

			
				
			
			
				2
				
				,
				𝑝
				(
				𝜇
				+
				𝛿
				)
				−
				𝑛
				(
				1
				−
				𝛾
				)
			

			
				
			
			
				
				1
				2
				𝛾
				,
				𝛾
				∈
			

			
				
			
			
				2
				
				,
				,
				1
			

		
	

						then
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				⎧
				⎪
				⎨
				⎪
				⎩
				
				
				ℑ
				R
				e
			

			
				𝑠
				,
				𝑏
			

			
				
				𝑓
				(
				𝑧
				)
			

			

				
			

			
				
			
			
				𝑝
				𝑧
			

			
				𝑝
				−
				1
			

			

				
			

			

				𝛿
			

			
				
				ℑ
			

			
				𝑠
				,
				𝑏
			

			
				𝑓
				(
				𝑧
				)
			

			
				
			
			

				𝑧
			

			

				𝑝
			

			

				
			

			

				𝜇
			

			
				⎫
				⎪
				⎬
				⎪
				⎭
				>
				𝛾
				(
				𝑧
				∈
				𝑈
				)
				.
			

		
	

Proof. Suppose that
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				1
				ℎ
				(
				𝑧
				)
				=
			

			
				
			
			
				⎛
				⎜
				⎜
				⎝
				
				
				ℑ
				1
				−
				𝛾
			

			
				𝑠
				,
				𝑏
			

			
				
				𝑓
				(
				𝑧
				)
			

			

				
			

			
				
			
			
				𝑝
				𝑧
			

			
				𝑝
				−
				1
			

			

				
			

			

				𝛿
			

			
				
				ℑ
			

			
				𝑠
				,
				𝑏
			

			
				𝑓
				(
				𝑧
				)
			

			
				
			
			

				𝑧
			

			

				𝑝
			

			

				
			

			

				𝜇
			

			
				⎞
				⎟
				⎟
				⎠
				.
				−
				𝛾
			

		
	

						Then 
	
		
			
				ℎ
				(
				𝑧
				)
				=
				1
				+
				ℎ
			

			

				𝑛
			

			

				𝑧
			

			

				𝑛
			

			
				+
				⋯
			

		
	
 is analytic in 
	
		
			

				𝑈
			

		
	
. It is easily seen from (18) that
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			

				𝑄
			

			
				𝑝
				,
				𝑠
				,
				𝑏
			

			
				(
				𝛿
				,
				𝜇
				;
				𝑓
				)
				(
				𝑧
				)
				=
				𝑝
				(
				𝜇
				+
				𝛿
				)
				+
				(
				1
				−
				𝛾
				)
				𝑧
				ℎ
			

			

				
			

			
				(
				𝑧
				)
			

			
				
			
			
				.
				(
				1
				−
				𝛾
				)
				ℎ
				(
				𝑧
				)
				+
				𝛾
			

		
	

						Further, since
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				𝜓
				(
				𝑟
				,
				𝑠
				;
				𝑧
				)
				=
				𝑝
				(
				𝜇
				+
				𝛿
				)
				+
				(
				1
				−
				𝛾
				)
				𝑠
			

			
				
			
			
				,
				(
				1
				−
				𝛾
				)
				𝑟
				+
				𝛾
				Ω
				=
				{
				𝑤
				∈
				𝐶
				∶
				R
				e
				(
				𝑤
				)
				>
				𝛽
				(
				𝑝
				,
				𝛿
				,
				𝜇
				;
				𝛾
				)
				}
				,
			

		
	

						it leads to 
	
		
			
				𝜓
				(
				ℎ
				(
				𝑧
				)
				,
				𝑧
				ℎ
			

			

				
			

			
				(
				𝑧
				)
				;
				𝑧
				)
				=
				𝑄
			

			
				𝑝
				,
				𝑠
				,
				𝑏
			

			
				(
				𝛿
				,
				𝜇
				;
				𝑓
				)
				(
				𝑧
				)
				∈
				Ω
			

		
	
 for 
	
		
			
				𝑧
				∈
				𝑈
			

		
	
. Also, for any 
	
		
			
				𝑥
				∈
				𝑅
			

		
	
, 
	
		
			
				𝑦
				≤
				−
				𝑛
				(
				1
				+
				𝑥
			

			

				2
			

			
				)
				/
				2
			

		
	
 and 
	
		
			
				𝑧
				∈
				𝑈
			

		
	
, we have
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				R
				e
				{
				𝜓
				(
				𝑖
				𝑥
				,
				𝑦
				;
				𝑧
				)
				}
				=
				𝑝
				(
				𝜇
				+
				𝛿
				)
				+
				𝛾
				(
				1
				−
				𝛾
				)
				𝑦
			

			
				
			
			
				(
				1
				−
				𝛾
				)
			

			

				2
			

			

				𝑥
			

			

				2
			

			
				+
				𝛾
			

			

				2
			

			
				≤
				𝑝
				(
				𝜇
				+
				𝛿
				)
				−
				𝑛
				𝛾
				(
				1
				−
				𝛾
				)
			

			
				
			
			
				2
				𝑥
			

			

				2
			

			
				+
				1
			

			
				
			
			
				(
				1
				−
				𝛾
				)
			

			

				2
			

			

				𝑥
			

			

				2
			

			
				+
				𝛾
			

			

				2
			

			
				⎧
				⎪
				⎨
				⎪
				⎩
				≡
				𝑞
				(
				𝑥
				)
				≤
				𝛽
				(
				𝑝
				,
				𝛿
				,
				𝜇
				;
				𝛾
				)
				=
				l
				i
				m
			

			
				𝑥
				→
				+
				∞
			

			
				
				1
				𝑞
				(
				𝑥
				)
				,
				i
				f
				𝛾
				∈
				0
				,
			

			
				
			
			
				2
				
				,
				
				1
				𝑞
				(
				0
				)
				,
				i
				f
				𝛾
				∈
			

			
				
			
			
				2
				
				,
				,
				1
			

		
	

						that is, 
	
		
			
				𝜓
				(
				𝑖
				𝑥
				,
				𝑦
				;
				𝑧
				)
				∉
				Ω
			

		
	
. Finally, by Lemma 2, we obtain that 
	
		
			
				R
				e
				ℎ
				(
				𝑧
				)
				>
				0
				(
				𝑧
				∈
				𝑈
				)
			

		
	
. The proof of Theorem 4 is completed.
Remark 5. For 
	
		
			
				𝑝
				=
				1
			

		
	
 and 
	
		
			
				𝑠
				=
				0
			

		
	
, Theorems 3 and 4 reduce to the results obtained by Irmak et al. [6].
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