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We propose a new mathematical model of the TNC oscillator and study its impact on the dynamical properties of the oscillator
subjected to an exponential nonlinearity. We establish the existence of hyperchaotic behavior in the system through theoretical
analysis and by exploiting electronic circuit experiments. The obtained numerical results are found to be in good agreement with
experimental observations.Moreover, the new technique on adaptive control theory is used on ourmodel and it is rigorously proven
that the adaptive synchronization can be achieved for hyperchaotic systems with uncertain parameters.

1. Introduction

Over the last four decades, an increasing interest has been
shown on chaotic systems with higher dimensional attractors
known as hyperchaotic.The interest for hyperchaotic dynam-
ics is justified by the rapid development of new techniques
in various areas of physics such as nonlinear circuits [1–
6], complex system studies [7, 8], laser dynamics [9–11],
secure communication [12, 13], and synchronization [14–21].
Hyperchaotic systems are usually classified as chaotic systems
with more than one positive Lyapunov exponent, indicating
that the chaotic dynamics of the systems are expanded in
some directions but rapidly shrink in other directions, which
significantly increase the system’s orbital degree or disorder
and randomness. Those systems are suitable for engineering
application such as secure communications [12–14, 19, 20,
22]. In fact, in 1995, Pérez and Cerdeira [23] have shown
that by masking signals with simple chaos with only one
Lyapunov exponent does not provide high level of security.
Hence, the use of more complex hyperchaotic signals is a
straightforward way to overcome this limitation because of

their increased randomness and higher unpredictability [24].
Therefore the dynamical behavior of several hyperchaotic
electronic circuits has been studied [1, 2, 4–6, 10, 11, 25–
27]. Within these, TNC oscillator [2] retains our attention.
Indeed, it is extremely simple and provides a powerful tool
for understanding the inherent architectures and dynamical
behavior of hyperchaotic oscillator as well as their use
as chaotic carriers in practical secure communication. Its
synchronization and dynamics have been studied using a
piecewise linear (PWL)model [4, 28].Moreover, Peng et al. in
[14], address the synchronization of hyperchaotic oscillators
using a scalar transmitted signal. Furthermore, this scalar
synchronization does not require either the computation of
the Lyapunov exponent or initial conditions belonging to the
same basin of attraction. For a possible use of hyperchaotic
behavior in secure communication, the synchronization of
hyperchaotic systems via a single dynamical variable is
demonstrated [20, 29, 30]. In 2001, Miller and Grassi [19]
described an experimental realization of observer-based
hyperchaos synchronization using the TNC oscillator [31].
X. Wang and Y. Wang in [29] deal with the synchronization
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Figure 1: (a) Schematic diagram of the modified TNC hyperchaotic oscillator. The operational amplifier with feedback resistors 𝑅
1
, 𝑅
3
, and

𝑅
4
acts both as the negative impedance converter (NIC) and the output amplifier. (b) Current-voltage characteristic showing the exponential

and the PWL models of the diode.

of uncertain hyperchaotic and chaotic systems by adaptive
control using the TNC hyperchaotic oscillator as the master
and theRössler oscillator as the slave.However, the aforemen-
tioned analysis is performed based on the piecewise linear
model of the system. Furthermore, to our knowledge, no
design tool exist that may be exploited for design purposes
of a Tamasevicius oscillator built by Grassi and Mascolo
[4]. In fact, the PWL model represents only a first-order
approximation of the reality and therefore may give rise to
different types of bifurcation compared to those exhibits by
the real oscillator. Moreover, Kengne et al. [32, 33] derive
smooth mathematical model instead of PWL to perform the
analysis of the two-stage Colpitts oscillator and the improved
Colpitts oscillator.They also synchronize those coupled oscil-
lators (with smooth mathematical model) using nonlinear
state observers. Using the same concept, we propose in this
paper a new smooth (exponential) mathematical model to
investigate the nonlinear dynamics of the TNC oscillator.
We address two key issues. The first is to point out both
theoretical and experimental tools, which may be exploited
for design and control purposes. The second is to complete
the results obtained so far by deriving a mathematical model
from which a systematic and methodological analysis of the
nonlinear dynamics of the oscillator is carried out helping to
point out some unknown and striking behavior of the TNC
oscillator.

The organization of the paper is as follows. Section 2
deals with the modeling process. The electronic structure of
the oscillator is presented and the appropriate mathematical
model is derived to describe the dynamic behavior of the
oscillator. The stability analysis of the equilibrium point and

local bifurcation is presented in Section 3. The evolution
process analysis by means of Lyapunov exponent spectrum,
bifurcation diagram, and phase portraits is investigated in
Section 4, where numerical simulations studies are given.
In Section 5, an experimental study is carried out. The
corresponding electronic circuit is implemented, exhibiting
experimental chaotic attractors in accord with numerical
simulations which serves to validate the model derived in
this work. Section 6 considers the synchronization of such
type of oscillators. By exploiting recent results on adaptive
control theory, a controller is designed that combines the
synchronization of two one-way coupled systems and the
estimation of unknown parameters of the drive system.
Finally the summary of the results is given in Section 7.

2. Circuit Description and
Mathematical Model

2.1. Circuit Description. The model under consideration is
the electronic oscillator of the Tamasevicius, Namajuas,
and Cenys (TNC) given by Figure 1(a). It consists of a
combined parallel-series LC circuit (namely, 𝐿

1
𝐶
1
-𝐿
2
𝐶
2
), a

single operational amplifier (op amp) with feedback resistors
𝑅
1
, 𝑅
3
, 𝑅
4
implementing both the negative impedance (NIC)

and the output amplifier for the oscillator with a diode. This
diode is the nonlinear device responsible for the hyperchaotic
behavior of the oscillator. One should note that as the op
amp operates in the linear region for 𝑅

3
= 𝑅
4
, the input

impedance of the NIC satisfies 𝑅 = −𝑅
1
and the output obeys

𝑉out = (1 + 𝑅
4
/𝑅
3
)𝑉
𝐶
1

.
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2.2.MathematicalModel. This subsection introduces the new
mathematical model of the TNC oscillator by considering the
following hypotheses. Firstly, we assume that all capacitors,
inductors, and resistors of the oscillator network are linear.
Secondly, the current-voltage (I-V) characteristic of the diode
𝐷 is modeled with an exponential function (Figure 1(b)) [34]
as yields in

𝐼
𝑑
= 𝑓 (𝑉

𝑑
) = 𝐼
𝑠
[exp(

𝑉
𝑑

𝜂𝑉
𝑇

) − 1] (1)

in which𝑉
𝑑
is the voltage drop across the diode, 𝐼

𝑠
represents

the saturation current of the junction, 𝜂 stands for the ideality
factor (1 < 𝜂 < 2), and 𝑉

𝑇
= 𝑘
𝑏
𝑇/𝑞 is the thermal

voltage wherein 𝑘
𝑏
is the Boltzmann constant, 𝑇 the absolute

temperature expressed in Kelvin, and 𝑞 the electron charge.
Let us note that at room temperature (300K), we have 𝑉

𝑇
≈

26mV. If we denote by 𝐼
𝑛
(𝑛 = 1, 2) the current flowing

through the inductor 𝐿
𝑛
and 𝑉

𝐶
𝑚

(𝑚 = 1, 2) the voltage
across capacitor 𝐶

𝑚
, the Kirchhoff ’s electric circuit laws can

be applied on Figure 1(a) to obtain the upcoming set of
autonomous differential equations describing the dynamics
of the TNC hyperchaotic oscillator:

𝑑𝐼
1

𝑑𝑡
=

𝑉
𝐶
1

𝐿
1

, (2a)

𝑑𝐼
2

𝑑𝑡
=

1

𝐿
2

(𝑉
𝐶
1

− 𝑉
𝑑
− 𝑅
2
𝐼
𝑑
) , (2b)

𝑑𝑉
𝐶
1

𝑑𝑡
=

1

𝐶
1

(

𝑉
𝐶
1

𝑅
− 𝐼
1
− 𝐼
𝑑
) , (2c)

𝑑𝑉
𝑑

𝑑𝑡
=

(𝑉
𝐶
1

− 𝐼
1
− 𝐼
𝑑
) /𝐶
1
− (𝐼
𝑑
− 𝐼
2
) /𝐶
2

1 + 𝑅
2
𝑑𝐼
𝑑
/𝑑𝑉
𝑑

, (2d)

where the diode current 𝐼
𝑑
is defined by (1). In contrast to

previous literature [2, 4, 31] based on PWL models of the
TNC oscillator, the exponential model is considered in this
paper. Indeed, the PWL model is only its first-order approx-
imation and can approximately match only over a limited
region (Figure 1(b)) and, thus, may exhibit different types of
bifurcation compared to the exponential model as previously
mentioned. Furthermore, owing to the fact that a smooth
mathematical model is more tractable both analytically and
numerically, it may be exploited to obtained exact bifurcation
structures occurring in the real TNC hyperchaotic oscillator
circuit. It is worth mentioning that the bifurcation diagrams
are very useful for design purpose as they allow the selection
of the right parameters settings giving rise to a regular
or erratic behavior (hyperchaotic mode of operation). For
computer simulation, we normalize the state equations (2a)–
(2d) by considering the following rescaled variables and
parameters:

𝑥 =
𝜌𝐼
1

𝜂𝑉
𝑇

; 𝑦 =
𝜌𝐼
2

𝜂𝑉
𝑇

; 𝑧 =

𝑉
𝐶
1

𝜂𝑉
𝑇

;

𝑤 =
𝑉
𝑑

𝜂𝑉
𝑇

; 𝜌 = √
𝐿
1

𝐶
1

; 𝜏 =
𝑡

√𝐿
1
𝐶
1

;

𝜀
1
=

𝐿
1

𝐿
2

; 𝛾 =
𝑅
2
𝐼
𝑠

𝜂𝑉
𝑇

; 𝜎 =
𝜌

𝑅
1

; 𝛼 =
𝜌𝐼
𝑠

𝜂𝑉
𝑇

;

𝜀
2
=

𝐶
1

𝐶
2

.

(3)

Therefore, we obtain the upcoming smooth normalized
fourth-order differential equations:

𝑥̇ = 𝑧, (4a)

̇𝑦 = 𝜀
1
(𝑧 − 𝑤 − 𝛾𝜑 (𝑤)) , (4b)

𝑧̇ = 𝜎𝑧 − 𝑥 − 𝛼𝜑 (𝑤) , (4c)

𝑤̇ =
𝜎𝑧 − 𝑥 − 𝛼𝜑 (𝑤) − 𝜀

2
(𝛼𝜑 (𝑤) − 𝑦)

1 + 𝛾 (𝜑 (𝑤) + 1)
(4d)

with

𝜑 (𝑤) = exp (𝑤) − 1, (4e)

where the dots denote differentiation with respect to 𝜏

(renamed as t in the new scale without loss of generality).
System (4a)–(4d) present only one nonlinear term and one
state variable (namely,𝑤) is involved in exponential function.
The presence of such exponential nonlinearity implies the
nonsymmetry of our model. Therefore, the system cannot
support symmetric orbits.

3. Stationary Point and Its Nature

The notion of fixed points in the state space plays a crucial
role in understanding the dynamics of nonlinear systems.The
equilibria of the system (4a)–(4d) can be calculated by solving
the following algebraic equations simultaneously:

0 = 𝑧, (5a)

0 = 𝜀
1
(𝑧 − 𝑤 − 𝛾𝜑 (𝑤)) , (5b)

0 = 𝜎𝑧 − 𝑥 − 𝛼𝜑 (𝑤) , (5c)

0 =
𝜎𝑧 − 𝑥 − 𝛼𝜑 (𝑤) − 𝜀

2
(𝛼𝜑 (𝑤) − 𝑦)

1 + 𝛾 (𝜑 (𝑤) + 1)
. (5d)

Computation of (5a)–(5d) shows that the origin
𝑂(0, 0, 0, 0)

𝑇 is the only equilibrium point of the system.
By linearizing the system at that equilibrium point, the
following 4 × 4 Jacobean matrix is obtained:

𝑀
𝐽
=

[
[
[
[
[

[

0 0 1 0

0 0 𝜀
1

−𝜀
1
𝐴
4

−1 0 𝜎 −𝛼

−1

𝐴
4

𝜀
2

𝐴
4

𝜎

𝐴
4

−𝛼 (1 + 𝜀
2
)

𝐴
4

]
]
]
]
]

]

. (6)
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Then, the eigenvalues associated with this matrix are
obtained by solving the following characteristic equation:

𝐴
4
𝜆
4
+ 𝐴
3
𝜆
3
+ 𝐴
2
𝜆
2
+ 𝐴
1
𝜆 + 𝐴

0
= 0 (7)

with

𝐴
4
= 1 + 𝛾, 𝐴

3
= 𝛼 (𝜀

2
+ 1) − 𝜎 (1 + 𝛾) ,

𝐴
2
= (1 + 𝛾) (𝜀

1
𝜀
2
+ 1) − 𝛼𝜀

2
𝜎,

𝐴
1
= 𝛼𝜀
2
(1 + 𝜀

1
) − 𝜎𝜀

1
𝜀
2
(1 + 𝛾) ,

𝐴
0
= 𝜀
1
𝜀
2
(1 + 𝛾) .

(8)

For the chosen parameters as 𝜎 = 0.65, 𝜀
1

= 3, 𝜀
2

=

3.226, 𝛼 = 5.249 ⋅ 10
−5,and 𝛾 = 5.249 ⋅ 10

−6 the eigenvalues
solutions of the characteristic equations (7) computed using
MATHEMATICA software package are 𝜆

1,2
= 0.3249 ±

0.9457𝑖 and 𝜆
3,4

= −8.7569 ⋅ 10
−5

± 3.1109𝑖. Since the
eigenvalues are complex conjugate with some positive real
parts, the equilibrium point 𝑂(0, 0, 0, 0)

𝑇 is an unstable
saddle focus. Physically, this result supports the fact that the
oscillator can oscillate chaotically and excludes the existence
of stable fixed point motion in the system.

4. Bifurcation Analysis

In order to define different routes/cascades to chaos in our
model, system (4a)–(4d) is solved numerically through the
fourth-order Runge-Kutta integration algorithm. For each
set of parameters used in this work, the time step is always
Δ𝑡 ≤ 0.005 and the simulations are done with variables and
constant parameters in extended mode. For each case, the
system (4a)–(4e) is integrated for a sufficiently long time and
the transient is discarded. Here, two indicators are combined
to identify the type of transition which leads to chaos. The
first one deals with the bifurcation diagram and the second
is related to the Lyapunov exponent’s spectra. According
to Wolf et al. [35] method, the dynamics of the nonlinear
system (4a)–(4e) can be classified in terms of the Lyapunov
exponents 𝜆

𝑖
(𝑖 = 1, 2, 3, 4) as

(1) for an equilibrium point, 𝜆
1,2,3,4

< 0;
(2) for a limit cycle (periodic orbits), 𝜆

1
= 0, 𝜆

2,3,4
< 0;

(3) for 2-torus (quasiperiodic orbits), 𝜆
1,2

= 0, 𝜆
3,4

< 0;
(4) for 3-torus, 𝜆

1,2,3
= 0, 𝜆

4
< 0;

(5) for a chaotic orbits, 𝜆
1
> 0, 𝜆

2
= 0, and 𝜆

3,4
< 0;

(6) for hyperchaotic orbits, 𝜆
1,2

> 0, 𝜆
3
= 0, and 𝜆

4
< 0;

In the next two subsections, the evolution process of the
system is analyzed precisely by the means of the Lyapunov
exponent’s spectrum, bifurcation diagrams, and phase por-
traits when varying the parameters 𝜎 and 𝜀

1
in system (4a)–

(4e).

4.1. Influence of 𝜎 with Fix 𝜀
1
. When the control parameter 𝜎

varies in the range [0.25–0.68], the graph of the bifurcation

diagrams and its corresponding Lyapunov exponent spec-
trum are depicted, respectively, in Figures 2 and 3. Each bifur-
cation diagram is obtained by plotting the localmaxima of the
related state variable in terms of the control state parameter.
In the light of Figures 2 and 3, the following scenarios
emerge when monitoring the control parameter 𝜎: periodic
→ quasiperiodic → chaos → hyperchaos → chaos →

periodic → hyperchaos → periodic → hyperchaos. In
other word, they aremany windows of hyperchaotic behavior
with respect to the control parameter 𝜎. Also, in contrast
with the traditional approach which consists of plotting the
bifurcation diagram of a single state variable, we have plotted
the bifurcation diagram of all the state variables because of
the nonuniformity observed between those diagrams. In fact,
it can be seen that in the periodic windows, each state variable
cycle has a different frequency. However, all state variables
share common bifurcation point in terms of the control
parameter. In particular, a good coincidence is observed
between band of chaos and windows of regular behavior
within those diagrams.

Moreover, for the set of parameters of Figure 2, various
numerical computations of the phase space trajectories of
the system (4a)–(4e) are obtained (Figure 4) confirming
transitions to hyperchaos. Those curves represent the phase
portraits and their corresponding frequency spectrum com-
puted for some discrete values of 𝜎: periodic oscillations →

torus state → periodic oscillations → chaotic oscillations
→ hyperchaotic dynamics. This scenario is in conformity
with the bifurcation diagram of Figure 2.

One should note that some new periodic (𝜎 =

[0.38–0.42]) windows and some routes to chaos were only
observed by using the exponential model of the diode instead
of PWL model which is only its first approximation. The
simulation results of the model proposed in [2] for exponen-
tial and piecewise-linear models are depicted in bifurcation
diagram of Figure 5. The observe differences are mainly due
to the poor PWL approximation of the exponential character-
istic (Figure 1(b)). On the other hand, the nonsmooth nature
of the piecewise-linear model of the diode can be responsible
for the different bifurcation structure exhibited by our model
and the one proposed in [2] as their I-V characteristics are not
matching perfectly.

4.2. Influence of 𝜀
1
with Fix 𝜎. As can be seen from the

bifurcation diagram (Figure 6) and the Lyapunov exponents
spectrum (Figure 7), the system (4a)–(4e) can be hyper-
chaotic, chaotic, and periodic when varying 𝜀

1
in the range

[3–8.5]. By observing Figures 3 and 7, it appears that the
hyperchaotic range is much wider for 𝜀

1
variation than when

𝜎 varies.
A better understanding of the transition from regular

oscillations to hyperchaos could be used to achieve more
effective control of chaos and also provide some novel ways
of the design using such oscillators.

Although the bifurcation analysis was restricted in this
work on the effects of parameters 𝜎 and 𝜀

1
, it is worth

mentioning that any other parameters which appear in the
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Figure 2: Bifurcation diagrams showing the coordinates 𝑥, 𝑦, 𝑧, and 𝑤 in terms of the control parameter 𝜎. The others system parameters
are 𝜀
1
= 3.0, 𝜀

2
= 3.226, 𝛾 = 5.429 ⋅ 10

−6, and 𝛼 = 5.429 ⋅ 10
−5.

characteristic equation could serve as a bifurcation control
parameter for the TNC system.

5. Experimental Study

Due to the real-time character of its results, compared to
the problems of transient phase duration and numerical
instabilities or time steps inherent to numerical simulations,
experimental study appears as a complementary technique to
the methods mentioned above. Moreover, it is of interest to
evaluate the influences of the simplifying process on the real
behavior of the oscillator.

5.1. Design of the Experimental Circuit. The circuit diagram
of the TNC oscillator depicted in Figure 8 consists of an op.
amp (TL082) powered by a symmetric ±12V DC voltage
supply, inductors (𝐿

1
∼ 𝐿
2
) implemented using gyrators [36],

capacitors (𝐶
1
∼ 𝐶
2
), resistors (𝑅

1
, 𝑅
3
, and 𝑅

4
), and a diode

𝐷 (1𝑁4148) (𝑉
𝐷
= 0.65V and 𝑅

𝑑
= 100Ω at 5mA) in series

with its resistor 𝑅
𝑑
. In the diagram of Figure 8, the inductors

are expressed in terms of the circuit components as follows:

𝐿
1
=

𝑅
5
𝑅
7
𝑅
8
𝐶
3

𝑅
6

; 𝐿
2
=

𝑅
9
𝑅
11
𝑅
12
𝐶
4

𝑅
10

. (9)

For the following set of the parameters 𝑅
5

= 300Ω,
𝑅
6
= 7.5KΩ, 𝑅

7
= 7.5KΩ, 𝑅

8
= 5KΩ, and𝐶

3
= 10 nF

and 𝑅
9
= 300Ω, 𝑅

10
= 7.5KΩ, 𝑅

11
= 7.5KΩ, 𝑅

12
= 5KΩ,

and 𝐶
4
= 10 nF, we determine the corresponding values of

the inductances: 𝐿
1
= 15mH and 𝐿

2
= 5mH. It is worth

mentioning that the use of gyrators instead of real inductors is
advantageous since it becomes possible to monitor the values
of inductances over a wide range by simply adjust a resistor.
Therefore, inductors (𝐿

1
and/or 𝐿

2
) could also be used as a

bifurcation parameters (by varying 𝜀
1
and/or 𝜀

2
). The other

circuit components are taken as 𝐶
1
= 18.4 nF, 𝐶

2
= 5.7 nF,

𝑅
3
= 𝑅
4
= 2.2KΩ, and 𝑅

2
= 100Ω.

5.2. Experimental Results. Now, we wish to analyze the
effects of the damping resistor 𝑅

1
(that deals with the
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Figure 3: Lyapunov exponent spectrum versus the control parameter 𝜎 for the system parameters of Figure 2.

control parameter 𝜎) on the dynamics of the TNC oscillator.
The experimental results are obtained by slowly adjusting
𝑅
1
and plotted phase space trajectories (𝑉

𝐶
1

, 𝑉
𝐶
2

) using a
dual trace analog oscilloscope (HAMEG HM-203

−5
) in the

𝑋𝑌mode. When monitoring the resistor 𝑅
1
, it is found that

the experimental oscillator circuit exhibits various types of
bifurcation. Indeed, for 𝑅

1
= 4KΩ, a limit cycle behavior

is observed. But when 𝑅
1
decreases gradually, the following

transition is obtained: periodic oscillations→ torus state →

chaotic oscillations→ hyperchaotic oscillations → periodic
oscillations→ hyperchaotic oscillations. The state 𝑤𝑤 is the
voltage across the capacitor 𝐶

2
as in practice it is difficult to

measure through an oscilloscope the current. Some periodic
windows appearing between the chaotic and hyperchaotic
regimes are also noted and were only figured out numerically
(𝜎 = 0.4) using the exponential model of the diode. Figure 9
presents the result of the experimental real investigation
of the TNC oscillator. From those plots, one should note
that the real circuit exhibits the same bifurcation scenarios
observed using theoretical methods. These results also give a
good agreement between numerical and experimental results
and, thereby, can be considered to validate the mathemat-
ical model (exponential model) proposed in this paper to
describe the dynamic behavior of the TNC hyperchaotic
oscillator.

6. Synchronization Study

In this section, we investigate the chaos synchronization
of the model (4a)–(4e) with the realistic assumption of
parameters uncertainty. In fact, the complex behaviors of
hyperchaotic systems are believed to have much wider appli-
cations. However, they are few discussions in the literature

when the parameters of the system are unknown. Moreover,
in practice, some or all the parameters of the system cannot
be exactly known a priori (due to temperature, external
electric and magnetic fields, etc.) or may be time varying
and/or inaccessible to direct measurements. Therefore, the
synchronization of two uncertain chaotic systems is essential
[37–42].

6.1. Design of the Slave System. For our analysis, it is assumed
that the state variables of the drive system are all accessible to
measurements and the system parameters are unknown.

Theorem 1. Let the system (4a)–(4e) be written in the follow-
ing form:

𝑋̇
𝑚
= 𝐹
0
(𝑋
𝑚
) + 𝐹
1
(𝑋
𝑚
) 𝜃 (10a)

in which we have

𝜃 = (0, 𝜀
1
, 𝜎, 𝜀
2
)
𝑇

;

𝐹
0
(𝑋
𝑚
) = (𝑧

𝑚
, 0, −𝑥

𝑚
− 𝛼𝜑 (𝑤

𝑚
) ,

(−𝑥
𝑚
− 𝛼𝜑 (𝑤

𝑚
)) /𝐵
1
(𝑤
𝑚
))
𝑇

;

𝐹
1
(𝑋
𝑚
)

=

[
[
[
[
[

[

0 0 0 0

0 𝑧
𝑚
− 𝑤
𝑚
− 𝛾𝜑 (𝑤

𝑚
) 0 0

0 0 𝑧
𝑚

0

0 0
𝑧
𝑚

𝐵
1
(𝑤
𝑚
)

(−𝛼𝜑 (𝑤
𝑚
) + 𝑦
𝑚
)

𝐵
1
(𝑤
𝑚
)

]
]
]
]
]

]

(10b)



Journal of Chaos 7

0 2 4 6 8 10
Freq.

−20

−15

−10

−5

0

5

10

15

−10 −5 0 5 10

y

w

PS
(y
)

102

100

10−2

10−4

10−6

(a)

0 2 4 6 8 10
Freq.

102

100

10−2

10−4

10−6

10−8−30

−25

−20

−15

−10

−5

0

5

10

15

w

−20 −10 0 10 20 30

y

PS
(y
)

(b)

0 2 4 6 8 10
Freq.

102

100

10−2

10−4

10−6

10−8

−20 −10 0 10 20 30

y

−35

−30

−25

−20

−15

−10

−5

0

5

10

15

w

PS
(y
)

(c)

Figure 4: Continued.
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Figure 4: Numerical phase portraits of the system obtained for various values of 𝜎: (a) periodic attractor (𝜎 = 0.25); (b) 2D torus state
(𝜎 = 0.32); (c) periodic attractor (𝜎 = 0.4); (d) chaos 𝜎 = 0.47; (e) hyperchaos state (𝜎 = 0.65).

with 𝐵
1
(𝑤
𝑚
) = 1 + 𝛾(𝜑(𝑤

𝑚
) + 1). Then the corresponding

response system which is given by

𝑋̇
𝑠
= 𝐹
0
(𝑋
𝑠
) + 𝐹
1
(𝑋
𝑠
) 𝜃 + 𝑢 (11)

can synchronize with the master system (10a) and (10b), with
the controller 𝑢 defined as

𝑢 = − {𝑒 + 𝐹
0
(𝑋
𝑠
) − 𝐹
0
(𝑋
𝑚
) + [𝐹

1
(𝑋
𝑠
) − 𝐹
1
(𝑋
𝑚
)] 𝜃 (𝑡)} ,

(12a)

̇̂
𝜃 (𝑡) = −𝐹

𝑇

1
(𝑋
𝑚
) 𝑒, (12b)

𝑒 = 𝑋
𝑚
− 𝑋
𝑠
; 𝜃 = (0, 𝜀

1
, 𝜎̂, 𝜀
2
) , (12c)

where 𝜀
1
, 𝜎̂, and 𝜀

2
are the estimation of the corresponding

parameters of the drive system (10a) and (10b).

Proof. The error of the dynamical system can be rewritten as

̇𝑒 = 𝑋̇
𝑠
− 𝑋̇
𝑚

= 𝐹
0
(𝑋
𝑠
) + 𝐹
1
(𝑋
𝑠
) 𝜃 (𝑡) − 𝑒 − 𝐹

0
(𝑋
𝑠
)

+ 𝐹
0
(𝑋
𝑚
) − [𝐹

1
(𝑋
𝑠
) − 𝐹
1
(𝑋
𝑚
)] 𝜃 (𝑡) − 𝐹

0
(𝑋
𝑚
)

− 𝐹
1
(𝑋
𝑚
) 𝜃 = −𝑒 + 𝐹

1
(𝑋
𝑚
) [𝜃 (𝑡) − 𝜃] .

(13)
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Figure 5: Comparison of the transitions exhibited by the different diode models presented in [2]. (a) Bifurcation diagram for the exponential
model. (b) Bifurcation diagram for piecewise-linear model.
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At this level, we consider the following Lyapunov function
candidate:

𝑉(𝑒, 𝜃 (𝑡)) =
1

2
𝑒
𝑇
𝑒 +

1

2
(𝜃 (𝑡) − 𝜃)

𝑇

(𝜃 (𝑡) − 𝜃) (14)

whose time derivative along the trajectory is given by

𝑉̇ =
1

2
( ̇𝑒
𝑇
𝑒 + 𝑒
𝑇

̇𝑒)

+
1

2
{(

̇̂
𝜃 (𝑡))

𝑇

(𝜃 (𝑡) − 𝜃) + (𝜃 (𝑡) − 𝜃)
𝑇 ̇̂
𝜃 (𝑡)}

=
1

2
(−𝑒
𝑇
𝑒 + (𝜃 (𝑡) − 𝜃)

𝑇

𝐹
𝑇

1
(𝑋
𝑚
) 𝑒

− 𝑒
𝑇
𝑒 + 𝑒
𝑇
𝐹
1
(𝑋
𝑚
) (𝜃 (𝑡) − 𝜃))

+
1

2
((

̇̂
𝜃 (𝑡))

𝑇

(𝜃 (𝑡) − 𝜃) + (𝜃 (𝑡) − 𝜃)
𝑇 ̇̂
𝜃 (𝑡))

= − 𝑒
𝑇
𝑒 ≤ 0.

(15)
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Owing to the result (15), we conclude that 𝑉(𝑒, 𝜃(𝑡)) is a
Lyapunov function of the error system and that (13) is stable
at the origin, traducing the fact that 𝑒, 𝜃 are bounded.

6.2. Numerical Verification. Referring to Theorem 1 above,
the response system is described by the following sets of first-
order differential equations:

̇̂𝜀
1
= − (𝑧

𝑚
− 𝑤
𝑚
− 𝛾𝜑 (𝑤

𝑚
)) 𝑒
𝑦
, (16a)

̇̂𝜎 = − (𝑧
𝑚
𝑒
𝑧
+ (𝑧
𝑚
/𝐵
1
(𝑤
𝑚
)) 𝑒
𝑤
) , (16b)

̇̂𝜀
2
= (

(𝛼𝜑 (𝑤
𝑚
) − 𝑦
𝑚
)

𝐵
1
(𝑤
𝑚
)

) 𝑒
𝑤
, (16c)

𝑥̇
𝑠
= 𝑧
𝑚
− (𝑥
𝑠
− 𝑥
𝑚
) , (16d)

̇𝑦
𝑠
= 𝜀
1
(𝑧
𝑚
− 𝑤
𝑚
− 𝛾𝜑 (𝑤

𝑚
)) − (𝑦

𝑠
− 𝑦
𝑚
) , (16e)

𝑧̇
𝑠
= 𝜎̂𝑧
𝑚
− 𝑥
𝑚
− 𝛼𝜑 (𝑤

𝑚
) − (𝑧

𝑠
− 𝑧
𝑚
) , (16f)

𝑤̇
𝑠
=

(𝜎̂𝑧
𝑚
− 𝑥
𝑚
− 𝛼𝜑 (𝑤

𝑚
) − 𝜀
2
(𝛼𝜑 (𝑤

𝑚
) − 𝑦
𝑚
))

𝐵
1
(𝑤
𝑚
) − (𝑤

𝑠
− 𝑤
𝑚
)

. (16g)

The numerical computations of (16a)–(16g) are per-
formed using the fourth-order Runge-Kutta integration algo-
rithm with a time step of Δ𝑡 = 0.005. The initial conditions

on parameters are taken as 𝜀
1
(0) = 1.8, 𝜎̂(0) = 0.4, and

𝜀
2
(0) = 2.5. We select the parameter of the drive system as

𝜀
1
= 3, 𝜎 = 0.65, and 𝜀

2
= 3.226 to ensure a hyperchaotic

behavior. Numerical results are shown on Figures 10 and 11.
From those graphs, it can be noted that the hyperchaotic
synchronization and the unknown parameters identification
are achieved simultaneously after a short transient time.
Obviously, this perfect synchronization may be exploited
in secure communication using the technique of parameter
modulation/estimation [37–39] as the system can be designed
and implemented at any given frequency band depending on
the values of circuit components.

7. Conclusion

In this paper, we have built a new mathematical model based
on the exponential nonlinearity to examine the behavior of a
simple 4D hyperchaotic electronic oscillator. This exponen-
tial model takes advantage of the PWL approximation as it
provides a close form description of the oscillator’s dynamics.
Dynamics of the system subjected to this exponential model
have been analyzed both through bifurcation diagrams,
Lyapunov exponents, phase portraits, and routes to chaos.
By monitoring the parameters, the system has exhibited
many phase portraits with different shapes from periodic
to hyperchaotic oscillations. A real physical prototype was
designed and implemented on a bread board to study the
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dynamics of our model. Theoretical and experimental results
obtained have been compared and a very good agreementwas
observed. In the context of the application to secure commu-
nication, the synchronization of coupled hyperchaotic system
of themodel with uncertain parameters has also been studied
using the recent results on adaptive control theory.
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