Synthesis of Some Imines and Investigation of their Biological Activity

MAJED M. HANIA

Chemistry Department, The Islamic University, Gaza P.O.Box 108, Gaza, Palestine.
honest_est@yahoo.com

Received 12 December 2008; Accepted 5 February 2009

Abstract: Some N-benzylidene aniline derivatives have been synthesized and tested as antibacterial agents. The results of the in vitro tests showed that most of the synthesized compounds were antibacterial inactive against E.coli.

Keywords: Synthesis, Imines, Investigation, Antibacterial activity.

Introduction

Schiff bases such as substituted N-benzylidene aniline are a class of important compounds in medicinal and pharmaceutical field. They show biological activities including antibacterial, antifungal, anticancer, and herbicidal activities. In view of the above observations, the synthesis of N-benzylidene aniline derivatives have been developed starting from various substituted benzylidene anilines with the aim of investigating their antibacterial activities.

Experimental

Melting points were determined in open capillaries and are uncorrected. IR spectra were recorded in KBr on Perkin-Elmer 883 spectrometer. The UV spectra were obtained by using UV-vis spectrophotometer instrument, Perkin-Elmer Lambda 20.1 nm. All the compounds gave satisfactory analysis. Benzaldehyde, 4-methylbenzaldehyde, 4-methoxybenzaldehyde, 4-nitobenzaldehyde and 4-chlorobenzaldehyde were obtained from Sigma- Aldrich Ltd and used without further purification. All the compounds were tested for their antibacterial activity against negative bacteria E.coli at concentration of 10 and 50 µg/disc using cup-plate method.

General method for synthesis of N-benzylideneaniline (1a), N-(4-methylbenzylidene)aniline (1b), N-(4-methoxybenzylidene)aniline (1c), N-(p-nitrobenzylidene)aniline (1d) and N-(p-chlorobenzylidene)aniline (1e)

Aniline (0.0197 mol) in 20 mL toluene was added to a solution of benzaldehyde, 4-methylbenzaldehyde, 4-methoxybenzaldehyde, 4-nitobenzaldehyde or 4-chlorobenzaldehyde (0.0197 mol), the mixture was heated under reflux for 2 h in the presence of 4A molecular
sieves. The mixture was filtered and then the solvent was evaporated. The crude products were purified by crystallization from ethanol to give compounds (1a-1e), as crystals, yield 60, 64, 57, 56 and 67% respectively.

General method for synthesis of benzylidene-naphthalen-1-yl-amine (2a), (4-methyl-benzylidene)-naphthalen-1-yl-amine (2b), (4-methoxy-benzylidene)-naphthalen-1-yl-amine (2c), (4-nitro-benzylidene)-naphthalen-1-yl-amine (2d) and (4-chloro-benzylidene)-naphthalen-1-yl-amine (2e)

1-Aminonaphthalene (0.0197 mol) in 20 mL toluene was added to a solution of benzaldehyde, 4-methylbenzaldehyde, 4-methoxybenzaldehyde, 4-nitrobenzaldehyde or 4-chlorobenzaldehyde (0.0197 mol). The mixture was heated under reflux for 2 h in the presence of 4A molecular sieves. The mixture was filtered and then the solvent was evaporated. The crude products were purified by crystallization from ethanol to give compounds (2a-2e), as crystals, yield 42, 68, 77, 69 and 49% respectively.

General method for synthesis of benzylidene-pyridin-2-yl-amine (3a), (4-methyl-benzylidene)-pyridin -2-yl-amine(3b), (4-methoxy-benzylidene)-pyridin -2-yl-amine(3c), (4-nitro-benzylidene)-pyridin -2-yl-amine (3d), and (4-chloro-benzylidene)-pyridin-2-yl-amine (3e)

2-Aminopyridine (0.0197 mol) in 20 mL toluene was added to a solution of benzaldehyde, 4-methylbenzaldehyde, 4-methoxybenzaldehyde, 4-nitrobenzaldehyde or 4-chlorobenzaldehyde (0.0197 mol), the mixture was heated under reflux for 2 h in the presence of 4A molecular sieves. The mixture was filtered and then the solvent was evaporated. The crude products were purified by crystallization from ethanol to give compounds (3a-3e), as crystals, yield 75.6, 50.7, 51.5, 86.9 and 64.6% respectively.
Results and Discussion

Imines products (1) - (15) were prepared from reaction of benzaldehyde, 4-methylbenzaldehyde, 4-methoxybenzaldehyde, 4-nitobenzaldehyde and 4-chlorobenzaldehyde with aniline, 1-amino naphthalene and 2-aminopyridine which are stable products. Some physical properties, analytical and spectral data of the imines compounds are summarized in Table 1.

Table 1. Analytical and spectral data of compounds.

<table>
<thead>
<tr>
<th>Compound No.</th>
<th>m.p., °C</th>
<th>UV λ_{max} MeOH, nm</th>
<th>IR band, cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>50-52</td>
<td>600 , 230</td>
<td>1610 v (N=C)</td>
</tr>
<tr>
<td>1b</td>
<td>35-37</td>
<td>600 , 230</td>
<td>1605 v (N=C)</td>
</tr>
<tr>
<td>1c</td>
<td>54-56</td>
<td>600 , 230</td>
<td>1600 v (N=C)</td>
</tr>
<tr>
<td>1d</td>
<td>87-89</td>
<td>600 , 230</td>
<td>1640 v (N=C)</td>
</tr>
<tr>
<td>1e</td>
<td>60-62</td>
<td>600 , 230</td>
<td>1615 v (N=C)</td>
</tr>
<tr>
<td>2a</td>
<td>118-120</td>
<td>600 , 230</td>
<td>1615 v (N=C)</td>
</tr>
<tr>
<td>2b</td>
<td>68-70</td>
<td>600 , 230</td>
<td>1610 v (N=C)</td>
</tr>
<tr>
<td>2e</td>
<td>84-86</td>
<td>600 , 230</td>
<td>1605 v (N=C)</td>
</tr>
<tr>
<td>2d</td>
<td>153-155</td>
<td>600 , 230</td>
<td>1660 v (N=C)</td>
</tr>
<tr>
<td>2e</td>
<td>90-93</td>
<td>600 , 230</td>
<td>1640 v (N=C)</td>
</tr>
<tr>
<td>2c</td>
<td>92-95</td>
<td>600 , 230</td>
<td>1620 v (N=C)</td>
</tr>
<tr>
<td>3a</td>
<td>119-122</td>
<td>600 , 230</td>
<td>1615 v (N=C)</td>
</tr>
<tr>
<td>3b</td>
<td>155-157</td>
<td>600 , 230</td>
<td>1600 v (N=C)</td>
</tr>
<tr>
<td>3c</td>
<td>120-123</td>
<td>600 , 230</td>
<td>1660 v (N=C)</td>
</tr>
<tr>
<td>3e</td>
<td>82-85</td>
<td>600 , 230</td>
<td>1620 v (N=C)</td>
</tr>
</tbody>
</table>

The infrared spectral data of the Schiff base are in agreement with the expected range. A band at 1600-1660 cm$^{-1}$ is due to C=N vibration. The UV absorption show bands for all compounds at about λ_{max} 600 and 230 nm corresponding to $n-\pi^*$ with conjugated system compounds (Table 1). The imines products which have been used were found to give no antibacterial activity Table 2.

Table 2. Antibacterial activity of compounds 1a-3e.

<table>
<thead>
<tr>
<th>Compound No.</th>
<th>10 µg</th>
<th>20 µg</th>
<th>50 µg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>1b</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>1c</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>1d</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>1e</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>2a</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>2b</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>2c</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>2d</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>2e</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>3a</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>3b</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>3c</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>3d</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>3e</td>
<td>-ve</td>
<td>-ve</td>
<td>-ve</td>
</tr>
</tbody>
</table>
This is possible due to the fact that these compounds have referred to the high electron density\(^{13,14}\). Therefore, on the basis of the observed antibacterial activity values of these compounds, it can be concluded that the conjugation has strong influence in the antibacterial activity, because the electrons are delocalized over the full length of the conjugated molecule and the diffusion of these compounds become difficult throw the body cell of the bacteria.

Acknowledgements
The author is grateful to the analytical sector staff and Islamic University for their help.

References
Submit your manuscripts at http://www.hindawi.com