Synthesis, Characterization and Biological Activities of 3,5-Diaryltetrahydro-\(N\)-[(phenylamino)methyl]-1,4-thiazine-1,1-dioxide

V. SUNDARI, G. NAGARAJAN*, S. GURUMURTHY and R. VALLIAPPAN§

Chemistry Division, Faculty of Engineering and Technology,
§Chemistry Wing, DDE, Annamalai University,
Annamalai Nagar- 608 002, India.

nagarajangovi@yahoo.com

Received 13 August 2008; Revised 14 September 2008; Accepted 18 September 2008

Abstract: Synthesis of 3,5-diaryltetrahydro-\(N\)-[(4’-nitroanilino)methyl-thiazine-1,1-dioxide and \(N\)-[(4’-methylanilino)methyl]-1,4-thiazine-1,1-dioxides by condensing 3,5-diaryl-tetrahydro-1,4-thiazine-1,1-dioxide with formaldehyde and 4-nitroaniline/4-methylaniline in the presence of hydrochloric acid is reported. The structures of the synthesized compounds have been confirmed by elemental and spectral analysis. The preliminary screening of the compounds for their biological activities gives significant results.

Keywords: Thiazines, Aromatic amines, Biological activities, Zone of inhibition.

Introduction

The studies related to 1,4-thiomorpholine-1,1-dioxides are of recent origin\(^1\)\(^-\)\(^3\). Amongst the various methods known, condensation of either sulfonyl diacetic acid or dialkyl sulfonyl diacetate with araldehydes in the presence of ammonia or aliphatic amines was considered as an important route\(^2\). Heterocycles containing nitrogen and sulphur have potential pharmacological properties. One such class of compounds are 1,4-thiomorpholine-1,1-dioxides which possess two important pharmacophores i.e., \(-\text{NH}-\) and \(-\text{SO}_2-\).

It is pertinent to note that the present investigation provides a facile route to synthesis of hitherto unknown substituted tetrahydro-1,4-thiazines that are in general used as sedatives, tranquilizers, antiepileptics, antitubercular, antitumour, bacteriocidal and parasiticidal agents\(^5\).

Tetrahydro-1,4-thiazine-1-oxide-3-carboxylic acid was isolated from algae\(^6\). Recently, tetrahydro-1,4-thiazine-3,5-dicarboxylic acid has been detected in the bovine brain\(^7\) and human urine\(^8\)\(^,\)\(^9\).
A series of 1,4-thiomorpholine-1,1-dioxides have been synthesized and their biological activities were studied by Baskara Reddy et al. Thiazines display many important biological activities\(^1\)\(^-\)\(^2\)\(^0\). The derivatives of thiazine act as myocardial calcium channel inhibitors\(^2\)\(^1\) and also as matrix metalloproteinase inhibitors\(^2\)\(^2\). Mannich base derivatives have been reported to possess various biological activities including anti-inflammatory\(^2\)\(^3\)\(^-\)\(^2\)\(^6\). Tetrahydro-1,4-thiazine-1,1-dioxide derivatives showed antibacterial, antifungal, antihistamine activities\(^2\)\(^7\)\(^-\)\(^3\)\(^0\). In view of synthesizing potent therapeutic agents, the title compounds were prepared.

The title compounds 3a-j were synthesized by the reaction of formaldehyde, aryl amine on 3,5-diaryl-tetrahydro-1,4-thiazine-1,1-dioxide in the presence of hydrochloric acid (Scheme 1). 3,5-diaryl-tetrahydro-1,4-thiazine-1,1-dioxide was synthesized by the chemoselective cyclization between aromatic aldehyde with sulphonyl diacetic acid and ammonium acetate in the presence of glacial acetic acid.

The structures of all these new products were elucidated by their elemental analysis, IR, \(^1\)H NMR and \(^13\)C NMR data.

<table>
<thead>
<tr>
<th>Compound</th>
<th>X</th>
<th>Y</th>
<th>Compound</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>3a</td>
<td>H</td>
<td>NO(_2)</td>
<td>3f</td>
<td>H</td>
<td>CH(_3)</td>
</tr>
<tr>
<td>3b</td>
<td>p-OCH(_3)</td>
<td>NO(_2)</td>
<td>3g</td>
<td>p-OCH(_3)</td>
<td>CH(_3)</td>
</tr>
<tr>
<td>3c</td>
<td>p-Cl</td>
<td>NO(_2)</td>
<td>3h</td>
<td>p-Cl</td>
<td>CH(_3)</td>
</tr>
<tr>
<td>3d</td>
<td>p-NO(_2)</td>
<td>NO(_2)</td>
<td>3i</td>
<td>p-NO(_2)</td>
<td>CH(_3)</td>
</tr>
<tr>
<td>3e</td>
<td>p-Me</td>
<td>NO(_2)</td>
<td>3j</td>
<td>p-Me</td>
<td>CH(_3)</td>
</tr>
</tbody>
</table>

Scheme 1.
Experimental

All the melting points were noted in open capillaries and are uncorrected. IR absorption spectra were recorded on a FT-IR spectrophotometer using KBr pellet and 1H NMR spectra on AV-300 spectrometer (300 MHz) using DMSO as internal standard. Purity of the compounds was routinely checked by TLC using silica gel G.

General methods of preparation of 3,5-diaryl-tetrahydro-1,4-thiazine-1,1-dioxide (2a-e)

Aromatic aldehyde (0.02 mole), sulphonyldiacetic acid (0.02 mole) and ammonium acetate (0.01 mole) were condensed in the presence of glacial acetic acid (25 mL) according to the earlier procedure reported4.

General methods of preparation of 3,5-diphenyl-N-[(phenylamino)methyl]-tetrahydro-1,4-thiazine-1,1-dioxide (3a-j)

A mixture of 3,5-diaryl-tetrahydro-1,4-thiazine-1,1-dioxide (0.01 mole), formaldehyde (2.0 mL), aromatic amine (0.01 mole), hydrochloric acid (5.0 mL) and dioxan (25 mL) was refluxed for 5 h on an oil bath. The cold reaction mixture was filtered and poured into ice water. The precipitate obtained was filtered and recrystallized from dioxane.

3,5-Diphenyl-N-[(4’-nitroanilino)methyl]-tetrahydro-1,4-thiazine-1,1-dioxide (3a)

M.p. 202°C yield 50%. Anal. calcd for C_{23}H_{23}O_4N_3S: C, 63.14; H, 5.30; N, 9.60%. Found: C, 63.10; H, 5.25; N, 9.55. IR: 3329 (N-H str.), 3033 (Ar-C-H str), 2921 (C-H str., asym), 2852 (C-H str). 1H NMR: δ 3.08-3.35 (m, 4H, -CH$_2$) (C$_2$, C$_6$); 4.40-4.44 (t, -CH, C$_3$, C$_5$), 3.90 (s, 2H, -N-CH$_2$-N), 5.54 (br s 1H, NH), 7.20-7.67 (m, Ar-H)

13C NMR: 40.12 (N-CH$_2$), 57.58 (C$_2$, C$_6$), 59.93 (C$_3$, C$_5$), 124.42-132.73 (Ar), 143.14 (ipso).

3,5-Bis(p-methoxyphenyl)-N-[(4’-nitroanilino)methyl]-tetrahydro-1,4-thiazine-1,1-dioxide (3b)

M.p. 218°C yield 48%. Anal. calcd for C$_{25}$H$_{27}$N$_3$O$_6$: C, 60.35; H, 5.47; N, 8.45%. Found: C, 60.24; H, 5.39; N, 8.39. IR: 3329 (N-H str.), 3191 (Ar-C-H str), 2967 (C-H str.), 2918 (C-H str). 1139 and 1329 cm$^{-1}$ (SO$_2$ str); 1H NMR: δ 3.08-3.39 (m, 4H, -CH$_2$) (C$_2$, C$_6$); 4.38-4.58 (t, -CH) (C$_3$, C$_5$), 3.71 (s, 6H, -OCH$_3$), 3.94 (s, 2H, N-CH$_2$-N), 5.50 (br s 1H, NH) 6.85, 7.00-8.05 (m, Ar-H)

13C NMR: 40.67 (N-CH$_2$), 57.58 (-OCH$_3$), 59.52 (C$_2$, C$_6$), 58.29 (C$_3$, C$_5$), 126.84-132.94 (Ar), 143.93, 160.15 (ipso).

3,5-Bis(p-chlorophenyl)-N-[(4’-nitroanilino)methyl]-tetrahydro-1,4-thiazine-1,1-dioxide (3c)

M.p. 221°C yield 60%. Anal. calcd for C$_{23}$H$_{21}$Cl$_2$N$_3$O$_4$: C, 54.55; H, 4.18; N, 8.30%. Found: C, 54.50; H, 4.12; N, 8.23. IR: 3329 (N-H str.), 3054 (Ar-C-H str), 2918 (C-H str., asym), 2866 (C-H str). 1115 and 1301 cm$^{-1}$ (SO$_2$ str); 1H NMR: δ 3.08-3.39 (m, 4H, -CH$_2$) (C$_2$, C$_6$); 4.34-4.46 (t, -CH) (C$_3$, C$_5$), 3.71 (s, 2H, N-CH$_2$-N), 5.39 (br s 1H, NH) 6.83, 7.27-7.68 (m, Ar-H)

13C NMR: 40.73 (N-CH$_2$), 57.48 (-OCH$_3$), 59.52 (C$_2$, C$_6$), 58.29 (C$_3$, C$_5$), 126.84-132.94 (Ar), 140.85 (ipso).

3,5-Bis(p-Nitrophenyl)-N-[(4’-nitroanilino)methyl]-tetrahydro-1,4-thiazine-1,1-dioxide (3d)

M.p. 201°C yield 52%. Anal. calcd for C$_{23}$H$_{23}$N$_3$O$_4$: C, 52.37; H, 4.01; N, 13.52%. Found: C, 52.32; H, 3.98; N, 13.46. IR: 3328 (N-H str.), 3054 (Ar-C-H str), 2921 (C-H str., asym), 2863 (C-H str). 1114 and 1300 cm$^{-1}$ (SO$_2$ str); 1H NMR: δ 3.16-3.24 (m, 4H, -CH$_2$) (C$_2$, C$_6$); 3.94 (s,
2H, N-CH$_2$-N), 4.40-4.44 (t, -CH) (C$_3$, C$_5$), 5.49 (br s 1H, NH) 6.91, d, 7.27-7.46 (m, Ar-H).

$^{13}$C NMR: 40.38 (N-CH$_2$), 58.28 (C$_2$, C$_6$), 59.23 (C$_3$, C$_5$), 126.59-131.46 (Ar), 140.15 (ipso).

3,5-Bis(p-methylphenyl)-N-[(4'-nitroanilino)methyl]-tetrahydro-1,4-thiazine-1,1-dioxide (3e)

M.p. 221°C yield 56%. Anal. calcd for C$_2$_H$_2$_N$_3$O$_2$S: C, 64.50; H, 5.85; N, 9.03%. Found: C, 64.12, H, 5.65; N, 8.93%. IR: 3328 (N-H str.), 3054 (Ar-C-H str), 2983 (C-H str., asym), 2865 (C-H str). 1114 and 1353 cm$^{-1}$ (SO$_2$ str); $^1$H NMR: δ 2.18 (s, 6H -CH$_3$), 3.15-3.32 (m, 4H, -CH$_2$) (C$_2$, C$_6$); 3.89 (s, 2H, N-CH$_2$-N), 4.39-4.43 (t, -CH) (C$_3$, C$_5$), 5.71 (br s 1H, NH) 7.26-7.46 (m, Ar-H). $^{13}$C NMR: 20.12 (CH$_3$), 40.63 (N-CH$_2$), 58.42 (C$_2$, C$_6$), 59.09 (C$_3$, C$_5$), 126.79-129.11 (Ar), 140.35,143.52 (ipso).

3,5-Diaryl-N-[(4'-nitroanilino)methyl]-tetrahydro-1,4-thiazine-1,1-dioxide (3f)

M.p. 213°C yield 68%. Anal. calcd for C$_2$_H$_2$_N$_3$O$_2$S: C, 70.91; H, 6.45; N, 6.89%. Found: C, 70.62, H, 6.28; N, 6.59. IR: 3377 (N-H str.), 3098 (Ar-C-H str), 2970 (C-H str., asym), 2854 (C-H str). 1135 and 1332 cm$^{-1}$ (SO$_2$ str); $^1$H NMR: δ 3.10-3.38 (m, 4H, -CH$_2$) (C$_2$, C$_6$); 4.41 (t, -CH) (C$_3$, C$_5$), 3.79 (s, 2H, N-CH$_2$-N), 5.72 (br s 1H, NH) 7.12-7.65 (m, Ar-H). $^{13}$C NMR: 20.09 (CH$_3$), 40.35 (N-CH$_2$), 58.46 (C$_2$, C$_6$), 59.09 (C$_3$, C$_5$), 126.75-129.09 (Ar), 140.35 (ipso).

3,5-Bis(p-methoxyphenyl)-N-[(4'-methylanilino)methyl]-tetrahydro-1,4-thiazine-1,1-dioxide (3g)

M.p. 213°C yield 65%. Anal. calcd for C$_2$_H$_2$_N$_3$O$_2$S: C, 66.93; H, 6.48; N, 6.00%. Found: C, 66.81, H, 5.28; N, 5.91. IR: 3328 (N-H str.), 3189 (Ar-C-H str), 2969 (C-H str., asym), 2858 (C-H str). 1157 and 1328 cm$^{-1}$ (SO$_2$ str); $^1$H NMR: δ 1.61 (s, 6H, CH$_3$), 3.30 (m, 4H, -CH$_2$) (C$_2$, C$_6$); 4.40 (t, 2H, -CH) (C$_3$, C$_5$), 3.80 (s, 6H, -OCH$_3$), 3.90 (s, 2H, N-CH$_2$-N), 5.76 (br s 1H, NH) 6.81 d, 7.11-7.69 (m, Ar-H). $^{13}$C NMR: 20.74 (CH$_3$), 40.09 (N-CH$_2$), 55.44 (C$_2$, C$_6$), 59.51 (OCH$_3$), 58.49 (C$_3$, C$_5$), 114.26-159.75 (Ar), 162.93 (ipso).

3,5-Bis(p-chlorophenyl)-N-[(4'-methylanilino)methyl]-tetrahydro-1,4-thiazine-1,1-dioxide (3h)

M.p. 218°C yield 65%. Anal. calcd for C$_2$_H$_2$_Cl$_2$N$_3$O$_2$S: C, 60.63; H, 5.09; N, 5.89%. Found: C, 60.32, H, 5.01; N, 5.63. IR: 3377 (N-H str.), 3108 (Ar-C-H str), 2918 (C-H str., asym), 2855 (C-H str). 1139 and 1338 cm$^{-1}$ (SO$_2$ str); $^1$H NMR: δ 1.67 (s, 6H, CH$_3$), 3.01-3.35 (m, 4H, -CH$_2$) (C$_2$, C$_6$); 4.41 (t, 2H, -CH) (C$_3$, C$_5$), 3.89 (s, 2H, N-CH$_2$-N), 5.79 (br s 1H, NH) 6.82 d, 7.12-7.65 (m, Ar-H). $^{13}$C NMR: 20.09 (CH$_3$), 40.78 (N-CH$_2$), 58.24 (C$_2$, C$_6$), 59.41 (C$_3$, C$_5$), 126.74-138.26 (Ar), 142.30 (ipso).

3,5-Bis(p-Nitrophenyl)-N-[(4'-methylanilino)methyl]-tetrahydro-1,4-thiazine-1,1-dioxide (3i)

M.p. 218°C yield 65%. Anal. calcd for C$_2$_H$_2$_N$_3$O$_2$S: C, 63.98; H, 5.37; N, 9.33%. Found: C, 63.90, H, 5.30; N, 9.03. IR: 3326 (N-H str.), 3166 (Ar-C-H str), 2958 (C-H str., asym), 2830 (C-H str). 1145 and 1314 cm$^{-1}$ (SO$_2$ str); $^1$H NMR: δ 1.61 (s, 6H, CH$_3$), 3.30 (m, 4H, -CH$_2$) (C$_2$, C$_6$); 3.90 (s, 2H, N-CH$_2$-N), 4.45 (t, 2H, -CH) (C$_3$, C$_5$), 5.68 (br s 1H, NH) 6.81 d, 7.11-7.69 (m, Ar-H). $^{13}$C NMR: 20.29 (CH$_3$), 40.42 (N-CH$_2$), 53.93 (C$_2$, C$_6$), 59.86 (C$_3$, C$_5$), 124.93-129.93 (Ar), 159.65 (ipso).
3,5-Bis(p-methylphenyl)-N-[(4’-methylanilino)methyl]-tetrahydro-1,4-thiazine-1, 1-dioxide (3j)

M.p. 206°C yield 61%. Anal. calc'd for C_{25}H_{23}N_{2}O_{5}S: C, 71.86; H, 6.96; N, 6.45%; Found: C, 71.40, H, 6.78, N, 6.30%. IR: 3326 (N-H str.), 3040 (Ar-C-H str), 2932 (C-H str., asym), 2865 (C-H str). 1116 and 1300 cm^{-1} (SO_{2} str); \textsuperscript{1}H NMR: δ 1.69 (s, 6H -CH_{3}), 3.10-3.38 (m, 4H, -CH_{2}) (C_{2}, C_{6}); 3.89 (s, 2H, N-CH_{2}-N), 4.451 (t, -CH) (C_{3}, C_{5}), 5.72 (br s 1H, NH) 6.82 d, 7.12-7.64 (m, Ar-H). \textsuperscript{13}C NMR: 20.18 (CH_{3}), 40.94 (N-CH_{2}), 58.23 (C_{2}, C_{6}), 59.01 (C_{3}, C_{5}), 126.74-138.58 (Ar), 142.08 (ipso).

Results and Discussion

Antimicrobial activity

The compounds 3a-j were evaluated \textit{in vitro} for antibacterial activity against \textit{Escherchia coli}, \textit{Klebsiella pneumoniae}, \textit{Staphylococcus aureus}, \textit{Bacillus subtilis} and for antifungal activity against \textit{Aspergillus niger} and \textit{Aspergillus fumigatus} in acetone of 25 µg concentration by cup-plate method. After 24 h of incubation at 37°C the zones of inhibition were measured in mm. The activity was compared with the known antibiotics, \textit{viz.}, norfloxacin, griseofulvin at the same concentration. The results are given in Table 1.

Table 1. Antibacterial activities of compounds 3a-3j (Diameter of the zone of inhibition in mm)

<table>
<thead>
<tr>
<th>Compound No.</th>
<th>Gram positive</th>
<th>Gram negative</th>
<th>Fungi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>3a</td>
<td>7</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>3b</td>
<td>10</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>3c</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>3d</td>
<td>13</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>3e</td>
<td>7</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>3f</td>
<td>7</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>3g</td>
<td>9</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>3h</td>
<td>14</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>3i</td>
<td>13</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>3j</td>
<td>7</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Norfloxacin</td>
<td>24</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>Griseoflavin</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Acetone</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

A – Streptococci; B – Bacillus subtilis; C – Klebsiella pneumoniae; D – Escherchia coli; E – Aspergillus flavus; F – Aspergillus fumigatus.

Reference compound: Norfloxacin and Griseoflavin Inactive < 8 mm; Moderate - 8-12 mm; Active > 12 mm

Of the compounds tested, 3c and 3d, 3h and 3i inhibit the growth of tested bacteria and fungi at a minimum concentration of 25 µg/mL. 3b and 3g showed moderate activity at higher concentrations ranging from 50 to 200 µg/mL. 3a, 3f, 3e and 3j do not have inhibition even at 200 µg/mL when compared to the standard norfloxacin and griseofulvin.

Conclusion

From the present investigation, the following conclusions can be drawn:

- Thiazine compounds shows excellent biological activities
- Further studies in these field is needed
Acknowledgement

The authors are thankful to the Head of the Department of Chemistry, Dean, Faculty of Medicine, and the authorities of the University for providing necessary facilities to complete this work.

References

29. ibid., 2004, 14, 47-50, 71.
Submit your manuscripts at http://www.hindawi.com