Synthesis and Structure Elucidation of 4-(4-Amino-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-3-yl-methylene)-2-phenyl-1H-imidazol-5(4H)-one

VAHEDI, HOOSHANG*, NAMI, NAVABEH§ and NAMI, NASRIN

*Department of Chemistry, Payame Noor University (PNU), Mashhad, Iran.
§Department of Chemistry, Islamic Azad University, Ghaemshahr, Mazandaran, Iran.

hooshangvahedi@yahoo.co.uk

Received 14 November 2009; Accepted 7 January 2010

Abstract: 4-(4-Amino-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-3-yl-methylene)-2-phenyl-1(3H)-imidazol-5-one (5) was synthesized in four steps in high yield. Benzimidinium chloride (1) reacted with dimethyl acetylenedicarboxylate to afford 2-phenyl-4-methoxycarbonylmethylene-1(3H)-imidazol-5-one (2) which was converted to 2-phenyl-4-hydrazinecarbonylmethylene-1(3H)-imidazol-5-one (3) using hydrazine hydrate in methanol. Furthermore, the reaction of (3) with carbon disulfide afforded compound (4) which can be used without further purification to achieve compound (5) using hydrazine hydrate.

Keywords: Dimethyl acetylenedicarboxylate (DMAD), Structure elucidation, Benzimidinium chloride, Imidazole derivative.

Introduction

Heterocyclic compounds particularly five and six member ring derivatives have occupied a prominent place among various classes of organic compounds for their diverse biological activities1. Substituted imidazoles have been reported to act as anti-inflammatory2a, analgesic2b, antibacterial3a, antifungal3b, antituberculosis3c and anticonvulsant3d. Also, imidazoles derivatives have for years been targets for the search of compounds that can modulate e.g. blood pressure, heart rate, CNS diseases and drugs like clonidine and phentolamine have been marketed for the treatment of hypertension4-6. Recently, the interest in this heterocyclic system has widened as it is a precursor to a class compounds called room temperature ionic liquids7. They have become ubiquitous ligands in organometallic chemistry and catalysis8-11.

Triazoles and condensed triazole system were reported to possess diverse types of biological activities including antifungal, antibacterial, antiparasitic, hypocholesteremic, hypotensive and anti-inflammatory properties12-13. In continuation of our work on the synthesis of heterocyclic systems containing nitrogen and sulfur14, we describe here the synthesis of new imidazole and triazole derivative.
Experimental

The melting points were obtained using an Electrothermal IA 9100 Digital melting point apparatus. The IR spectra were recorded on a Bruker IFS-88 instrument (the samples as KBr disks for the range 400-4000 cm\(^{-1}\)). The \(^1\)H and \(^{13}\)C NMR spectra were recorded on a Bruker AC-300 spectrometer (\(^1\)H, 300.134 MHz; \(^{13}\)C, 75.469 MHz) using TMS as internal standard. Mass spectrometric measurements were made on an Agilent Technologies 6890 N Network GC system. The C, H, N analyses were performed by the microanalytical service of the N.I.O.C. Research Institute of Petroleum Industry.

2-Phenyl-4-methoxycarbonylmethylen-1(3H)-imidazol-5-one (2)

A solution of benzimidinium chloride (1.57 g, 10 mmol) and DMAD (1.42 g, 10 mmol) in 15 mL of MeOH was heated at reflux for 3 h. The solution was cooled and the reaction vessel set aside overnight. The crystals formed were separated. Yield 92%, mp 156-157 °C; MS: \(m/z\) 230 (M\(^+\)); FT-IR: NH\(_2\) 3082, CO 1748, 1672 cm\(^{-1}\); \(^1\)H NMR (DMSO-\(d_6\)) \(\delta\) 3.88 (s, 3H, OMe), 7.05 (s, 1H, =CH), 7.58 (m, 3H, Ar-H), 8.08 (m, 2H, Ar-H), 11.66 (s, 3H, NH). \(^{13}\)C NMR (DMSO-\(d_6\)) \(\delta\) 51.7 (OMe), 115.9 (=CH), 126.1 (C-Ar), 128.5 (C-Ar), 129.5 (C-Ar), 132.9 (C-Ar), 151.9 (C=C), 167.5 (C=N), 168.9 (C=O), 187.4 (C=O). Anal. Calcd. for C\(_{12}\)H\(_{10}\)N\(_2\)O\(_3\): C, 62.61; H, 4.35; N, 12.17. Found: C, 62.59; H, 4.33; N, 12.18.

2-Phenyl-4-hydrazinecarbonylmethylen-1(3H)-imidazol-5-one (3)

A mixture of 2 (2.30 g, 10 mmol) and hydrazine hydrate (0.85 mL, 15 mmol, 85%) in 30 mL of methanol was heated at reflux for 1 h. The methanol, water and excess hydrazine hydrate were removed in vacuo, and the residual solid recrystallized from ethanol. Yield 88%, mp > 300 °C; MS: \(m/z\) 231 (M\(^+\)); FT-IR: NH\(_2\) 3294, CO 1688, 1695 cm\(^{-1}\); \(^1\)H NMR (DMSO-\(d_6\)) \(\delta\) 4.90 (s, 2H, NH\(_2\)), 6.79 (s, 1H, =CH), 7.55 (m, 3H, Ar-H), 7.72 (m, 2H, Ar-H), 8.41 (br, 1H, NH), 10.17 (s, 1H, NH). \(^{13}\)C NMR (DMSO-\(d_6\)) \(\delta\) 119.5 (=CH), 126.0 (C-Ar), 128.4 (C-Ar), 129.1 (C-Ar), 131.2 (C-Ar), 149.5 (=C), 158.7 (C=N), 162.9 (C=O), 165.3 (C=O). Anal. Calcd. for C\(_{11}\)H\(_{10}\)N\(_4\)O\(_2\): C, 57.14; H, 4.33; N, 24.24. Found: C, 57.15; H, 4.31; N, 24.22.

4-(4-Amino-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-3-ylmethylene)-2-phenyl-1(3H)-imidazol-5-one (5)

Carbon disulfide (0.85 mL, 14 mmol) was added drop wise to an ice-cold solution of potassium hydroxide (0.84 g, 15 mmol) and 3 (2.08 g, 9 mmol) in 30 mL absolute ethanol. The mixture was stirred at room temperature for 14 h. Dry ether 20 mL was then added and the separated solid was filtered and washed with ether (2x5 mL). The product 4 obtained in nearly quantitative yields was employed in the next reaction without further purification. A suspension of 4 (about 2.75 g, 8 mmol) and hydrazine hydrate (0.91 mL, 16 mmol, 85%) in 20 mL of water refluxed while stirring for 4 h. Hydrogen sulfide was evolved. On dilution with 100 mL of cold water and acidification with concentrated HCl, the solid was precipitated. The product was filtered, washed with water and recrystallized from ethanol. Yield 85%, mp 213 °C; MS: \(m/z\) 286 (M\(^+\)); FT-IR: NH\(_2\) 3440, CO 1678 cm\(^{-1}\); \(^1\)H NMR (DMSO-\(d_6\)) \(\delta\) 6.05 (s, 2H, NH\(_2\)), 7.15 (s, 1H, =CH), 7.64 (m, 3H, Ar-H), 8.20 (m, 2H, Ar-H), 13.07 (br, 1H, NH), 14.24 (s, 1H, NH). \(^{13}\)C NMR (DMSO-\(d_6\)) \(\delta\) 121.1 (s, 1H, NH). Anal. Calcd. for C\(_{12}\)H\(_{10}\)N\(_6\)OS: C, 50.35; H, 3.50; N, 29.37. Found: C, 50.33; H, 3.51; N, 29.35.
Results and Discussion

2-Phenyl-4-methoxycarbonylmethylen-1(3H)-imidazol-5-one (2) was obtained when benimidinium chloride (1) is heated at reflux with DMAD (dimethyl acetylenedicarboxylate) in methanol. Its 1H NMR spectrum exhibits signals corresponding to \equivCH and NH groups at δ 7.05 and 11.66 ppm, respectively. The reaction of 2 with hydrazine hydrate in methanol afforded 2-phenyl-4-hydrazinecarbonylmethylen-1(3H)-imidazol-5-one 3. The IR spectra of 3 exhibited the absorption bond of NH$_2$ at 3294 cm$^{-1}$. The 1H NMR spectra showed two broad lines δ 4.90 and 8.41 ppm arising from NH$_2$ and NH, respectively. The OMe was not observed in the 1H and 13C NMR spectra of compound 3. These can be assigned for the exchange of OMe with NH$_2$NH$_2$H$_2$O and are in agreement with carbonylhydrazine functional group in compound 3. Carbon disulfide was then added to a solution of 3 in potassium hydroxide / ethanol to give potassium N-[(2-phenyl-1(3H)-imidazol-5-one-4-yliden)acetyl] hydrazinecarbodithiolate 4. A suspension of 4, without further purification, and hydrazine hydrate in water refluxed while stirring to furnish 4-(4-amino-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-3-ylmethylene)-2-phenyl-1(3H)-imidazol-5-one 5. The structure of compound 5 was deduced from its elemental analyses and its IR, 1H and 13C NMR spectra. The 1H NMR of compound 5 exhibited two broad lines δ 13.07 and 14.24 ppm arising from NH protons along with a broad signal from NH$_2$ protons at about δ 6.05 ppm.

![Scheme 1](attachment:image.png)
Conclusion

In conclusion, a general and convenient synthesis of functionalized C=S and NH$_2$ has been developed. The main advantages of these reactions are mild reaction conditions and high yields. The new compounds could be of interest in pharmacology, biology and as building blocks for cyclocondensations$^{1-14}$.

Acknowledgments

The authors are grateful to the Islamic Azad University of Ghaemshahr and Payame Noor University (PNU) for the financial support.

References

Submit your manuscripts at http://www.hindawi.com