Synthesis of Polyfunctionalized Amino Furans with Long Conjugated Aromatic Systems Using Nucleophilic Aromatic Isocyanide

MOHAMMAD QANDALEEa*, MASOUD MOKHTARYb, SAKINEH ASGHARIc, and MEHRDAD MEHRZADId

aDepartment of biology, Garmsar Branch
Islamic Azad University, Garmsar, Iran
bDepartment of Chemistry, Rasht Branch
Islamic Azad University, PO Box 41325-3516, Rasht, Iran
cDepartment of Organic Chemistry, Faculty of Chemistry,
University of Mazandaran, Babolsar, 47415, Iran
dDepartment of Chemistry, Ayatollah Amoli Branch,
Islamic Azad University, Amol, Iran
qandalee@gmail.com

Received 25 October 2011; Accepted 29 December 2011

Abstract: Polyfunctionalized amino furans with long conjugated aromatic systems have been synthesized by three component reaction of aldehydes, acetylenic esters and aromatic nucleophilic isocyanide.

Keywords: 2,6-Dimethylphenyl isocyanide, Acetylenic esters, Aldehydes, Amino furans.

Introduction
Polysubstituted furans are key structures in a lot of naturally occurring products and pharmaceutical compounds1. Because of this importance, synthesis of such compounds attracted great attentions. The nucleophilic character of isocyanide with a formally divalent carbon atom has made it as one of the compounds with an extraordinary functional group which is very important species in the synthesis of heterocycles like furans2,3. Recently, we considered the chemiluminescence properties of polyfunctionalized conjugated furans4,5. In this work we have used aromatic isocyanide to synthesize new furans with longer aromatic conjugated systems. The structure shows that three aromatic rings are attached by amine and olefin groups. Therefore, we expect higher chemiluminescence activities in these compounds (Scheme1).
Experimental

Dialkyl acetylenedicarboxylates, alkylisocyanide and cinnamaldehyde were purchased from fluka (Buchs, Switzerland) and were used without further purification. Melting points were measured on a thermo scientific apparatus. 1H and 13C NMR spectra were measured with a Bruker DRX-400 Avance spectrometer at 400 and 100.6 MHz, respectively. Mass spectra were recorded on a Agilent Technology (HP) 5973 mass spectrometer operating at an ionization potential of 70 eV. IR spectra were recorded on a FT-IR Bruker (WQF-510) spectrometer.

General procedure for the preparation of compound 4

To a magnetically stirred solution of cinnamaldehyde (2 mmol) and dialkyl acetylenedidicarboxylate (2 mmol) in CH$_2$Cl$_2$ (10 mL), dropwise, 2 mmol of alkyl isocyanide in CH$_2$Cl$_2$ (4 mL) was added at room temperature. The mixture was stirred at room temperature for 24 h. The solvent was removed under reduced pressure and the residue was purified by silica gel (Merck silica gel, 230-240 mesh) column chromatography using hexane:ethyl acetate (80:20) to afford pure products.

Results and Discussion

On the basis of the extraordinary properties of isocyanide6-17, it is reasonable to assume that the reaction starts by Michael addition of isocyanide to the acetylenic ester to form the zwitterionic intermediate 5, which attacks the carbonyl group of the aldehyde 3. Then, nucleophilic addition to the nitrile iminium moiety leads to the formation of the five-membered ring 6 which is aromatized to functionalized furan 4 by [1,5]-H shift (Scheme 2).
Scheme 2. Proposed mechanism for the formation of compound 4.

Spectroscopic data

Dimethyl 2-(2,6-Dimethyl-phenylamino)-5-[(E)-2-phenyl-1-ethenyl]-3,4-furan dicarboxylate (4a)

Yellow powder, m.p. 117-119 °C, yield 86%, IR (KBr) (ν_max, cm⁻¹): 1662-1712 (C=O) and 3311 (NH); ¹H NMR (400 MHz, CDCl₃): δ_H 2.32 (6H, s, 2 CH₃), 3.89 and 3.96 (6H, 2s, 2 OCH₃), 5.67 (1H, d, CH=CH, ³J_HH =16.4 Hz), 7.08 (1H, d, CH=CH, ³J_HH =16.4 Hz), 7.19 (3H, m, Ph), 7.22 (1H, t, ³J_HH =7.2 Hz, Hpara), 7.32 (2H, t, ³J_HH =7.2 Hz, Hmeta), 7.40 (2H, d, ³J_HH =7.2 Hz, Hortho), 8.36 (1H, s, NH); ¹³C NMR (400 MHz, CDCl₃): δ_C 18.50 (2 CH₃), 51.4 and 52.1 (2 OCH₃), 87.83, 113.91, 145.93 and 160.62 (furan), 114.01 and 128.01 (C=C alkene), 126.59 (Cortho), 127.23 (Cpara), 128.51 (Cmeta), 136.43 (Cipsos), 128.64 (Cortho), 128.82 (Cpara), 134.10 (Cmeta), 135.26 (Cipsos), 164.04 and 165.44 (2 CO); MS: m/z (%): 59 (C=CH₂), 77 (Ph, 25), 103 (PhCH=CH⁺, 54), 285 (M⁺ -[(CH₃)₂PhNH⁺], 32), 341 (M⁺ -[2 OCH₃ + H], 45), 374 (M⁺ -2 CH₃, 78), 404 (M⁺, 100), Anal. Caled for C₂₅H₂₃NO₅ (405.42): C, 71.10; H, 5.71; N, 3.45. Found: C, 71.17; H, 5.74; N, 3.47.

Diethyl 2-(2,6-Dimethyl-phenylamino)-5-[(E)-2-phenyl-1-ethenyl]-3,4-furan dicarboxylate (4b)

Yellow powder, m.p. 128-130 °C, yield 80%, IR (KBr) (ν_max, cm⁻¹): 1660-1710 (C=O) and 3276 (NH); ¹H NMR (400 MHz, CDCl₃): δ_H 1.39 (3H, t, ³J_HH =7.2 Hz, CH₃), 1.44 (3H, t, ³J_HH =7.2 Hz, CH₃), 2.32 (6H, s, 2 CH₃), 4.35 (2H, q, ³J_HH =7.2 Hz, OCH₂), 4.42 (2H, q, ³J_HH =7.2 Hz, OCH₂), 6.66 (1H, d, CH=CH, ³J_HH =16 Hz), 7.08 (1H, d, CH=CH, ³J_HH =16 Hz), 7.20 (3H, m, Ph), 7.22 (1H, t, ³J_HH =7.2 Hz, Hpara), 7.33 (2H, t, ³J_HH =7.2 Hz, Hortho), 7.40 (2H, d, ³J_HH =7.2 Hz, Hortho), 8.38 (1H, s, NH); ¹³C NMR (400 MHz, CDCl₃): δ_C 14.36 and 14.48 (2 CH₃), 18.58 (2 CH₃Ph), 60.07 and 61.15 (2 OCH₃), 88.09, 113.93, 145.53 and 160.51 (furan), 114.55 and 128.38 (C=C alkene), 126.53 (Cortho), 127.16 (Cpara), 127.91 (Cmeta), 136.53 (Cipsos), 128.50 (Cortho), 134.19 (Cmeta), 135.23 (Cipsos), 163.77 and 165.10 (2 CO); MS: m/z (%): 103 (PhCH=CH⁺, 59), 265 (M⁺ -[PhCH=CHfuran], 91), 313 (M⁺ -[(CH₃)₂PhNH₂ + H], 39), 342 (M⁺ -2 CH₃CH₂OH, 38), 361 (M⁺ -COOCH₂CH₃, 82), 434 (M⁺, 100), Anal. Caled for C₂₅H₂₀NO₅ (433.47): C, 72.04; H, 6.27; N, 3.23. Found: C, 72.10; H, 6.31; N, 3.25.
Dimethyl 2-[(2,6-dimethylphenyl)amino]-5-[(E)-1-methyl-2-phenylvinyl]-3,4-furan dicarboxylate (4c)

Yellow powder, m.p. 125-127 °C, yield 77%, IR (KBr) (υ_max cm⁻¹): 1675-1735 (C=O) and 3305 (NH); ¹H NMR (400 MHz, CDCl₃): δ_H = 2.02 (3H, s, CH₃), 2.32 (6H, s, 2 CH₃), 3.86 and 3.93 (6H, 2s, 2 OCH₃), 6.67 (1H, s, CH=CH), 7.15 (3H, m, Ph), 7.22 (1H, t, 3J_HH = 7.6 Hz, H_para), 7.32 (2H, t, 3_J_HH = 7.6 Hz, H_meta), 7.34 (2H, d, 3_J_HH = 7.6 Hz, H_ortho), 8.07 (1H, s, NH); ¹³C NMR (400 MHz, CDCl₃): δ_C = 14.27 (CH₃), 18.49 (2 CH₃), 51.47 and 52.71 (2 OCH₃), 88.56, 113.80, 142.90 and 159.30 (furan), 124.84 and 128.14 (C=C alkene), 126.16 (C_ortho), 126.78 (C_para), 127.19 (C_meta), 136.91 (C_ipso), 128.46 (Cortho), 129.23 (C_para), 134.10 (Cmeta), 135.23 (C_ipso), 164.86 and 166.20 (2 CO); MS: m/z (%): 59 (COOCH₃, 7), 121 (CH₃₂PhNH₂, 82), 267 (M⁺-[2 CH₃COOH + HOCH₃], 25), 328 (M⁺-[2 CH₃ + COOCH₃]), 34), 388 (M⁺-OCH₃, 54), 419 (M⁺, 100). Anal. Caled for C₂₅H₂₂NO₅ (419.45): C, 71.58; H, 6.00; N, 3.33. Found: C, 71.64; H, 6.04; N, 3.34.

Diethyl 2-[(2,6-dimethylphenyl)amino]-5-[(E)-1-methyl-2-phenylvinyl]-3,4-furan dicarboxylate (4d)

Yellow powder, m.p. 126-128 °C, yield 70%, IR (KBr) (υ_max cm⁻¹): 1675-1739 (C=O) and 3315 (NH); ¹H NMR (400 MHz, CDCl₃): δ_H = 1.36 (3H, t, 3_J_HH = 7.2 Hz, CH₃), 1.41 (3H, t, 3_J_HH = 7.2 Hz, CH₃), 2.04 (3H, s, CH₃), 2.32 (6H, s, 2 CH₃), 4.32 (2H, q, 3_J_HH = 7.2 Hz, OCH₂), 4.39 (2H, q, 3_J_HH = 7.2 Hz, OCH₂), 6.67 (1H, s, CH=CH), 7.15 (3H, m, Ph), 7.23 (1H, t, 3_J_HH = 7.6 Hz, H_para), 7.31 (2H, t, 3_J_HH = 7.6 Hz, H_meta), 7.34 (2H, d, 3_J_HH = 7.6 Hz, H_ortho), 8.10 (1H, s, NH); ¹³C NMR (400 MHz, CDCl₃): δ_C = 14.13 and 14.30 (2 CH₃), 14.42 (CH₂), 18.51 (2 CH₃), 59.99 and 61.77 (2 OCH₃), 88.75, 114.20, 142.58 and 159.33 (furan), 124.98 and 128.13 (C=C alkene), 125.83 (Cortho), 126.71 (Cpara), 127.10 (Cmeta), 136.99 (Cipso), 128.44 (Cortho), 129.23 (Cpara), 134.20 (Cmeta), 135.17 (Cipso), 164.58 and 165.78 (2 CO); MS: m/z (%): 77 (Ph, 14), 105 (Ph(CH₃)₂, 25), 121 (CH₃₂PhH₂, 100), 299 (M⁺-2 CH₃CH₂COOH, 19), 373 (M⁺-CH₃CH₂COOH, 4), 402 (M⁺-3 CH₃, 30), 447 (M⁺, 70). Anal. Caled for C₂₅H₂₂NO₅ (447.50): C, 72.46; H, 6.52; N, 3.13. Found: C, 72.51; H, 6.54; N, 3.14.

Dimethyl 2-[(2,6-Dimethyl-phenylamino)-5-furyl-3,4-furan dicarboxylate (4e)

Yellow powder, m.p. 140-142 °C, yield 85%, IR (KBr) (υ_max cm⁻¹): 1675-1737 (C=O) and 3311 (NH); ¹H NMR (400 MHz, CDCl₃): δ_H = 2.50 (6H, s, 2 CH₃), 3.87 and 3.95 (6H, 2s, 2 OCH₃), 6.38 (1H, dd, 3_J_HH = 3.5Hz, 3_J_HH = 1.6 Hz, CH), 6.46 (1H, d, 3_J_HH = 3.5 Hz, CH) 7.15 (3H, m, Ph), 7.37 (1H, d, 3_J_HH = 1.6 Hz, CH) 8.12 (1H, s, NH); ¹³C NMR (400 MHz, CDCl₃): δ_C = 18.47 (2 CH₃), 51.48 and 52.54 (2 OCH₃), 87.76 (CN=C), 107.80 and 111.28 (2 CH), 112.32 (OC=C), 127.24 and 128.47 (Ph), 134.02 (C), 135.31 and 135.39 (Ph), 142.69 (CH₂), 143.76 (C), 159.99(C), 164.49 and 165.06 (2 CO); MS: m/z (%): 168 (M⁺-C₁₂H₁₂NO, 85), 265 (M⁺-[COOCH₃ + 3 CH₃], 91), 339 (M⁺-2 CH₃, 92), 369 (M⁺, 100). Anal. Caled for C₂₀H₁₉NO₆ (369.35): C, 65.03; H, 5.18; N, 3.79. Found: C, 65.09; H, 5.21; N, 3.81.

Conclusion

We studied the synthesis of polyfunctionalized furans with longer conjugated aromatic systems that can show chemiluminescence activities by a three component reaction under the neutral conditions.
Synthesis of Polyfunctionalized Amino Furans with long Conjugated

References

Submit your manuscripts at http://www.hindawi.com