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A simple, highly efficient andmild catalytic oxidation of benzoins to the corresponding benzils was developed usingmanganese(II)
Schiff base complexes as novel and reusable catalyst in the presence of acetonitrile as solvent andH2O2 as green oxidant.is simple
method affords benzil derivatives at room temperature in short reaction timeswith high yield and purity.is convenient procedure
will allow a further increase of the diversity within the benzil family.

1. Introduction

Benzil, an alpha diketone, is one of the important organic
intermediates and has received an enormous attention
because of its practical applications in organic and phar-
maceutical industry such as photosensitive and synthetic
reagents [1–3]. e oxidation of benzoins is one of the most
efficient and practical methods for the synthesis of benzils. In
general, the oxidation of benzoins to benzils has been accom-
plished by classical reagents such as nitric acid [4], Fehling’s
solution [4], thalliumnitrate [5], ammoniumnitrate—copper
acetate [6], bismuth nitrate—copper acetate [7], and ferric
nitrate [8]. In addition, the oxidation of benzoins to benzils
was studied using p-benzoquinone or air in the presence of
(FeII(SPh)4)2 and (FeII(SePh)4)2 [9], Fe(II)-cysteine peptide
complexes [7] and ter. butyl peroxide [10]. e electrochem-
ical oxidation of benzoins to benzils in the presence of a
catalytic amount of KI in basic media [11] was also studied.
Also, Paris et al. used (MnIII (pydx-en)Cl(H2O))-Y as catalyst
and H2O2 as an oxidant for oxidation of benzoin to benzil in
methanol at re�ux temperature [12].

However, in spite of their potential utility, some of the
reportedmethods suffer from drawbacks such as longer reac-
tion time, lower yields, expensive catalysts, harsh conditions,

or complexity of workup. ere still appears a need either to
improve the existing oxidationmethods or to introduce novel
reagents to permit better selectivity under milder conditions
and with easy work-up procedures [12].

Transition metal catalysts supported by Schiff base lig-
ands have assumed a prominent role in modern synthesis.
Schiff base complexes of transition metals having O and N
donor atoms have shown an exponential increase as inor-
ganic catalysts for various organic transformations. Distinct
advantages of such ligands include their low cost, facile
syntheses, and convenient incorporation of inexpensive,
chiral 1,2-diamines into the ligand backbone. Moreover, the
ligands generally afford air and moisture-stable complexes.
On the other hand, coordination chemistry of manganese
has been studied extensively so that that manganese center
is surrounded by O- or N-donor ligands [13, 14]. In addition,
they also act as catalysts for important reactions [15–20].

e development of manganese(II) Schiff base heteroge-
neous catalysts for oxidation reaction has become a major
area of research recently [21–23], as the potential advantages
of these materials over homogeneous systems can make
a major impact on the environmental performance of a
synthesis. While the homogeneous catalysts exhibit excellent
activity and selectivity, the technical problems encountered
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in their use, such as the difficulty in product separation, long
reaction times, self-aggregation of active sites, and undesir-
able side products [24]. In order to overcome the problems
associated with homogeneous systems, heterogeneous cata-
lyst was used in Organic Chemistry. In the present study,
we have reported a simple and convenient method for the
effective oxidation of benzoin derivatives to corresponding
benzils under mild conditions by manganese(ΙΙ) Schiff base
complex and H2O2 at room temperature (Scheme 1). H2O2
is inexpensive and environmental friendly oxidant. It is
observed that the homogeneous catalyst is very active in high
conversion rate of benzoin to benzil. However, the homoge-
neous catalysts have the difficulty in separating the catalysts
from the reaction mixture at the end of the process. But, this
simple method aimed to overcome the limitations. e easy
removal of the catalyst makes them better compared to other
homogeneous catalyst. Moreover, the catalytic oxidation can
be carried out at room temperature in short reaction time
with high yield and purity.

2. Experimental

2.1. Materials. Chemicals were purchased from the Merck
and Fluka Chemical Companies in high purity. All of the
materials were of commercial reagent grade. e amines and
carbonyl compounds were puri�ed by standard procedures
[25].

2.2. Apparatus. IR spectra were recorded as KBr pellets on
a Perkin-Elmer 781 spectrophotometer and on an Impact
400 Nicolet FTIR spectrophotometer. 1H NMR (400MHz)
and 13C NMR (100MHz) spectra were recorded on a Bruker
DPX-400 Avance spectrometer. Tetramethyl silane (TMS)
was used as an internal reference. UV spectra were recorded
on a Hitachi 200-20 spectrometer using spectrophotometric
grade ethanol (Baker). e melting points were determined
by a Yanagimoto micromelting point apparatus. e purity
determination of the substrates and reactionmonitoringwere
accomplished by thin layer chromatography (TLC) on silica
gel polygram SILG/UV 254 plates.

2.3. General Procedure

2.3.1. General Procedure for the Preparation of the Schiff Base
Ligands. To a mixture of salicylaldehyde (0.4 g, 3.27mmol)
in MeOH was added the diamine (1.65mmol) with stirring
in one portion. e stirring was continued to complete the
reaction. e progress of the reaction was monitored by
thin layer chromatography (TLC). Aer the completion of
the reaction, a colored substance was obtained. e solid
product was �ltered off and washed with cold MeOH. e
crude product was puri�ed by recrystallization from ethanol
and the pure Schiff base was obtained in high yield aer
leaving for the appropriate time. e Schiff base products
were identi�ed by physical and spectroscopic data and by a
comparison with authentic samples prepared in accordance
to the literature procedures (Scheme 2) [26].

N,𝑁𝑁�-Bis(salicylidene)ethylenediamin (Salen): Yellow.
Yield: 93%; M.P: 125–127∘C. 1H NMR (CDCl3, 400MHz)
𝛿𝛿: 3.96 (s, 4H), 6.88 (t, 2H, Ar), 6.95 (t, 2H, Ar), 7.20 (q,
2H, Ar), 7.28 (q, 2H, Ar), 8.23 (s, 2CH), 13.23 (s, 2OH)
ppm; 13C NMR (CDCl3, 100MHz) 𝛿𝛿: 57.41, 117.32, 118.91,
121.62, 130.39, 132.31, 158.33, 161.19; IR (KBr, 𝜈𝜈max, cm

−1):
3250–3550, 1634, 1416, 1570, 1285.

2.3.2. General Procedure for the Preparation of the Schiff Base
Complexes of Mn(II). To a solution of the Schiff base lig-
and (1mmol) in MeOH (10mL) was added Mn(O2CCH3)2
(1mmol) dropwise under re�uxing conditions. e reaction
mixture was stirred to complete the reaction. e progress
of the reaction was monitored by TLC. Aer the completion
of complex formation, a colored substance was obtained.
e solid product was �ltered off and washed with MeOH.
e crude product was puri�ed by recrystallization from
methanol and the pure Schiff base complex was obtained.
e complex products were identi�ed by comparison with
authentic samples prepared in accordance to the literature
procedures (Scheme 2) [26].

N,𝑁𝑁�-Bis(salicylidene)ethylenediaminemanganese(II) (Mn
(Salen)): Dark green. Yield: 88%; M.P.: >300∘C. 1H NMR
(CDCl3, 400MHz) 𝛿𝛿: 4.3 (s (br), 4H), 6.35 (t, 2H, Ar), 7.24
(t, 2H, Ar), 7.41 (q, 2H, Ar), 7.39 (q, 2H, Ar), 8.71 (s (br),
2CH), ppm; 13C NMR (CDCl3, 100MHz) 𝛿𝛿: 57.41, 117.32,
118.91, 121.62, 130.39, 132.31, 158.33, 161.19; IR (KBr, 𝜈𝜈max,
cm−1): 1621, 1402, 1568, 1283.

2.3.3. General Procedure for Oxidation of Benzoin to Benzil.
Oxidation of benzoin was carried out using Mn(II) Schiff
base complexes as a catalyst in a 50mL �ask. In a typical
reaction, 1mmol of benzoin was dissolved in 10mL acetoni-
trile in the presence of KOH. Oxidation of reaction mixture
was done with H2O2 with catalytic amount manganese(II)
Schiff base. e reaction mixture was stirred to completion
at room temperature and gave excellent yields under the
mild oxidation conditions. e completion of reaction was
monitored by TLC (petroleum ether: ethyl acetate, 4 : 1 v/v).
Aer the completion of the reaction, the catalyst was removed
by addition of absolute methanol to the mixture and Schiff
base complex was recrystallized from petroleum ether. e
solvent was evaporated, and the pure benzil derivatives
were obtained. e structure of these compounds has been
investigated using different methods of spectroscopy and
spectrometry: UV, 1H NMR, 13C NMR, IR, and MS.

3. Results and Discussion

Schiff base complexes of metal(II) have been recognized
as being among the most promising catalysts for various
reactions. We used Mn(II) Schiff base complexes as catalyst
and H2O2 as oxidant, for the oxidation of some benzoins into
benzils at room temperature in high yield.

Firstly, among the various oxidants, it was concluded
that the best activity and selectivity can be achieved by
H2O2 under optimized reaction conditions. Diluted solution
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of hydrogen peroxide is a universal, ecologically clean and
convenient way to handle reagents for different oxidations
in the liquid phase [27, 28]. is is an environmentally
friendly oxidizing agent as its breakdown products are water
and oxygen. erefore, its decomposition produces no other
pollutant in the environment. As shown in Table 1, the
effect of Oxidant on the reaction was studied by considering
substrate-to-oxidant ratios of 1 : 1, 1 : 1.5, 1 : 2, 1 : 2.5, and
1 : 3 for the substrate (0.2 g, 1mmol) in 10mL of CH3CN at
room temperature.e yield increases from 52% to 98%with
increasing substrate-to-oxidant ratios from 1 : 1 to 1 : 2. At
the substrate to oxidant ratio of 1 : 2, the best yield of benzil
was achieved (Table 1, Entry 3). Experiments under the same
conditions in the absence of catalyst were also performed and
only small amounts of product were detected in the reaction
mixture.

We initiated a solvent screen to explore the effect of differ-
ent solvents on the oxidation of benzoin and also summarized
in Table 2. e results in Table 2 show that the highest
yield of benzil was achieved with acetonitrile. When other
solvents were used, no signi�cant improvement in the yield
was observed. In the oxidation procedure, acetonitrile was
chosen because of its high polarity and solubility of catalyst
in the solvent.

Aer the completion of the reaction, the catalyst was
removed by addition of absolute methanol to the mixture
and Schiff base complex was recrystallized from petroleum
ether. en the solvent was removed by evaporation under
reduced pressure to give the pure products. Under this

condition, several benzoin derivatives were oxidized to the
corresponding benzils. e results are summarized in Table
3. Oxidation of the benzoin substrates proceeded with
decomposition of hydrogen peroxide in the presence of the
Schiff base complex catalyst at room temperature.e results
clearly suggest that Mn(II) Schiff base complex efficiently
catalyses the conversion of benzoin to benzil in CH3CN.
e greater activity of the (OH)2-salen system has clearly
arisen from the existence of an electron donating ligand
which facilitates the electron transfer rate, a process that
has previously been observed in other oxidation reactions
[29–34]. A cyclic mechanism has been proposed for the
oxidation of benzoin using catalyst Mn(II) Schiff base com-
plex with hydrogen peroxide as an oxidant (Scheme 3).
An oxygen molecule from decomposition of H2O2 reacts
with Mn(II) to form an oxomanganese complex A [35, 36],
which undergoes oxidative addition to benzoin and gives an
intermediate �which �nally undergoes reductive elimination
to give the desired product [37] and Mn(II) is regenerated
back.

As shown in Table 3, the oxidation of benzoins by Mn(II)
Schiff base complex was carried out in good yield at room
temperature. From the results in Table 3, it seems that the
benzoins containing electron-donating group were found to
be more reactive and could be oxidized more easily (b and
f). In contrast, the benzoins containing electron-withdrawing
group have shown lower reactivity (j). is shows that the
electronic effects of substituents have a signi�cant role in the
oxidation.
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T 1: e effect of reaction conditions on the oxidation of benzoin in the presence of Mn(II) Schiff base complex in CH3CN at room
temperature.

Entry Molar ratio Time Schiff base complexe (mmol) Isolated yield (%)
1 1 : 1 25 0.01 52
2 1 : 1.5 25 0.01 68
3 1 : 2 25 0.01 98
4 1 : 2.5 25 0.01 82
5 1 : 3 25 0.01 75
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S 3: Proposed catalytic cycle for the oxidation of benzoins to benzils using catalyst Mn(II) Schiff base complex with hydrogen peroxide
as an oxidant.

T 2: e effect of solvent on the yield of reaction at room
temperature.

Solvent Unreacted benzoin (%) Yield (%)a

CH3CN 2 98
CCl4 40 60
CH2Cl2 70 30
CH3OH — —
CH3CH2OH — —
a
Yields refer to the pure isolated product.

Aer completion of reaction, the catalyst was washed
with petroleum ether (3 times) and then kept for drying at
100∘C for 2 h, aer which the catalyst was reused for next
cycle without any appreciable loss of its activity. Similarly,
reusability for sequential reaction was also carried out and
catalyst was found to be reusable for �ve cycles (Table 4).

Finally, the structure of these compounds has been inves-
tigated using different methods of spectroscopy and spec-
trometry: UV, 1HNMR, 13C NMR, IR, and MS.

4. Spectroscopic Data

Compound (a) Benzil: UV (CH3OH) 𝜆𝜆max: 224 nm; 1HNMR
(CDCl3, 400MHz) 𝛿𝛿: 7.54 (t, 2H, CH, 𝐽𝐽 𝐽 𝐽𝐽𝐽Hz), 7.69 (t,
4H, CH, 𝐽𝐽 𝐽 𝐽𝐽𝐽Hz), 7.98 (d, 4H, CH, 𝐽𝐽 𝐽 𝐽𝐽𝐽Hz) ppm; 13C
NMR (CDCl3, 100MHz) 𝛿𝛿: 128.90 (4CH), 129.70 (4CH), 133
(2CH), 134.93 (2C), 194.30 (2CO) ppm; IR (KBr, 𝜈𝜈max, cm

−1):
1650 (C=O, s), 1450, 1580 (C=C,m), 720 (CH,m);MS (70 Ev,
EI)𝑚𝑚𝑚𝑚𝑚 𝐽 𝑚𝑚𝑚 (M+⋅), 104, 76.

Compound (b), 4,4�-dimethoxybenzil: UV (CH3OH)
𝜆𝜆max: 225 nm; 1H NMR (CDCl3, 400MHz) 𝛿𝛿: 3.89 (s, 6H,
OCH3), 6.97 (d, 4H, CH, 𝐽𝐽 𝐽 𝑚𝐽𝑚Hz), 7.95 (d, 4H, CH, 𝐽𝐽 𝐽
𝑚𝐽𝑚Hz) ppm; 13CNMR (CDCl3, 100MHz) 𝛿𝛿: 55.62 (2OCH3),
114.29 (4CH), 126.19 (4CH), 132.30 (2C), 64.86 (2C), 193.54
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T 3: Oxidation of benzoin derivatives using H2O2 in the presence of Mn(II) Schiff base complex in CH3CN at room temperature.

R1 R2 Time (min) Yielda (%) mprep/mplit. (
∘C)

a H H 25 98 92–95/94–96 [24]
b 4-OCH3 4-OCH3 20 91 133–135/132–134 [24]
c 4-NCH3 H 30 70 117-118/115-116 [24]
d 4-CH3 4-CH3 23 78 103–105/101–104 [24]
e 4-OCH3 H 20 85 65–67/62-63 [24]
f NC5H5 NC5H5 22 89 119–121
g 2,4-diOCH3 2,4-diOCH3 35 73 195–197
h H 3-OCH3 21 58 133-134/133 [24]
i H 4-CH3 26 84 27-28/31 [24]
j 4-CH3 3-Br 30 45 141-142
a
Isolated yields.

T 4: Reusability study of Mn(II) Schiff base complex as catalyst
for oxidation of benzoin.

Run Yield (%)
1 98
2 95
3 90
4 88
5 85

(2CO) ppm; IR (KBr, 𝜈𝜈max, cm
−1): 1650 (C=O, s), 1586 (C=C,

m), 769 (CH, m); MS (70 Ev, EI) 𝑚𝑚𝑚𝑚𝑚 𝑚 𝑚𝑚𝑚 (M+⋅), 135, 120,
107, 104, 76.

Compound (c) 4-Dimethylaminobenzil: UV (CH3OH)
𝜆𝜆max: 229 nm; 1H NMR (CDCl3, 400MHz) 𝛿𝛿: 3.38 (s, 6H,
CH3), 6.67 (d, 2H, CH, 𝐽𝐽 𝑚 𝐽𝐽𝑚Hz), 7.48 (d, 2H, CH,
𝐽𝐽 𝑚 𝐽𝐽1Hz), 7.61 (d, 2H, CH, 𝐽𝐽 𝑚 𝐽𝐽1Hz), 7.8 (d, H, CH,
𝐽𝐽 𝑚 𝐽𝐽1Hz), 8.28 (d, 2H, CH, 𝐽𝐽 𝑚 𝐽𝐽𝑚Hz) ppm; 13C NMR
(CDCl3, 100MHz) 𝛿𝛿: 55.91 (2CH3), 111.20 (2CH), 128.90
(2CH), 129.01 (C), 129.70 (2CH), 135.37 (CH), 135.50 (C),
141.47 (C), 153.76 (C), 196.72 (CO) ppm; IR (KBr, 𝜈𝜈max,
cm−1): 1650, 1700 (C=O, s), 1440, 1620 (C=C, m), 705 (CH,
m); MS (70 Ev, EI) 252 (M+⋅), 148, 120, 104, 76.

Compound (d), 4,4�-dimethylbenzil: UV (CH3OH) 𝜆𝜆max:
225 nm; 1HNMR (CDCl3, 400MHz) 𝛿𝛿: 2.45 (s, 6H, CH3), 7.4
(d, 4H, CH, 𝐽𝐽 𝑚 𝑚𝐽𝑚Hz), 7.75 (d, 4H, CH, 𝐽𝐽 𝑚 𝑚𝐽𝐽Hz) ppm;
13CNMR (CDCl3, 100MHz) 𝛿𝛿: 21.95 (2CH3), 129.72 (4CH),
130.03 (4CH), 130.69 (2C), 146.11 (2C), 194.54 (2CO) ppm;
IR (KBr, 𝜈𝜈max, cm

−1): 1650, (C=O, s), 1586 (C=C, m), 769
(CH, m); MS (70 Ev, EI) 238 (M+⋅), 119, 104, 91, 76.

Compound (e), 4-Methoxybenzil: UV (CH3OH) 𝜆𝜆max:
228 nm; 1H NMR (CDCl3, 400MHz) 𝛿𝛿: 3.76 (s, 3H, OCH3),
6.82 (2H, d), 7.34–7.61 (5H, m), 7.86 (2H, d) ppm, 13C NMR
(CDCl3, 100MHz) 𝛿𝛿: 55.19 (CH3), 113.20 (2CH), 128.90
(2CH), 129.70 (2CH), 130.30 (C), 131.37 (CH), 133 (2CH),
133.26 (C), 164.69 (C), 194.30 (CO) ppm; IR (KBr, 𝜈𝜈max,
cm−1): 1650, (C=O, s), 1586 (C=C, m), 769 (CH, m); MS
(70 Ev, EI) 239 (M+⋅), 135, 107, 104, 76.

Compound (f), 2-pyridil:UV (CH3OH) 𝜆𝜆max: 365 nm; 1H
NMR (CDCl3, 400MHz) 𝛿𝛿: 7.49 (t, 2H, CH, 𝐽𝐽 𝑚 𝐽𝐽1Hz), 7.91

(t, 2H, CH, 𝐽𝐽 𝑚 𝐽𝐽1Hz), 8.18 (d, 2H, CH, 𝐽𝐽 𝑚 𝐽𝐽1Hz), 8.56
(d, 2H, CH, 𝐽𝐽 𝑚 𝐽𝐽1Hz) ppm; 13C NMR (CDCl3, 100MHz)
𝛿𝛿: 122.27 (2CH), 127.99 (2CH), 137.26 (2CH), 149.46 (2CH),
151.65 (2C), 197.02 (2CO) ppm; IR (KBr, 𝜈𝜈max, cm

−1): 1713
(C=O, s), 1274 (C=N, s), 1505 (C=C, m); MS (70 Ev, EI)
𝑚𝑚𝑚𝑚𝑚 𝑚 𝑚1𝑚 (M+⋅), 106, 78.

Compound (g), 2,2�,4,4�-tetramethoxybenzil: UV (CH3
OH) 𝜆𝜆max: 226 nm; 1H NMR (CDCl3, 400MHz) 𝛿𝛿: 3.88 (s,
3H,OCH3), 3.90 (s, 3H,OCH3), 6.44 (s, 2H,CH), 6.53 (d, 2H,
CH, 𝐽𝐽 𝑚 𝐽𝐽𝐽Hz), 7.81 (d, 2H, CH, 𝐽𝐽 𝑚 𝐽𝐽𝐽Hz) ppm; 13CNMR
(CDCl3, 100MHz) 𝛿𝛿: 55.23 (OCH3), 55.80 (OCH3), 101.58
(2CH), 113.03 (2CH), 116.91 (2C), 131.22 (2CH), 161.83
(2C), 162.93 (2C), 186.91 (2CO) ppm; IR (KBr, 𝜈𝜈max, cm

−1):
1630–1680 (C=O, s), 1470, 1618 (C=C, m), 738 (CH, m); MS
(70 Ev, EI)𝑚𝑚𝑚𝑚𝑚 𝑚 33𝑚 (M+⋅), 167, 135, 107, 104, 76.

Compound (h), 3-Methoxybenzil: UV (CH3OH) 𝜆𝜆max:
234 nm; 1H NMR (CDCl3, 400MHz) 𝛿𝛿: 3.72 (s, 3H, OCH3),
7.01 (1H, t), 7.1 (1H, s) 7.32 (1H, d), 751 (2H, t), 7.60 (1H,
t), 7.72 (2H, d) ppm; 13C NMR (CDCl3, 100MHz) 𝛿𝛿: 54.00
(OCH3), 116.80 (CH), 120.13 (CH), 124.16 (CH), 128.90
(2CH), 129.70 (2CH), 131.05 (CH), 131.37 (CH), 132.88 (C),
135.27 (C), 163.09 (C), 193.41 (CO), 194.30 (CO) ppm; IR
(KBr, 𝜈𝜈max, cm

−1): 1660, (C=O, s), 1396, 1613 (C=C, m), 725
(CH, m); MS (70 Ev, EI) 239 (M+⋅), 135, 107, 104, 76.

Compound (i), 4-Methylbenzil: UV (CH3OH) 𝜆𝜆max:
223 nm; 1H NMR (CDCl3, 400MHz) 𝛿𝛿: 2.34 (s, 3H, CH3),
7.3 (m, 2H), 7.35 (m, 2H), 7.42 (t, 1H, 𝐽𝐽 𝑚 𝐽Hz), 7.55 (t,
2H, 𝐽𝐽 𝑚 𝐽, 7.2Hz), 7.92 (d.d, 2H, 𝐽𝐽 𝑚 𝑚𝐽𝐽𝑚, 1.2Hz) ppm;
13C NMR (CDCl3, 100MHz) 𝛿𝛿: 22.06 (CH3), 122.71 (2CH),
130.12 (2CH), 130.28 (2CH), 131.18 (2CH), 132.54 (2CH),
133.17 (C), 133.83 (C), 147.02 (C), 193.95 (CO), 194.08 (CO)
ppm; IR (KBr, 𝜈𝜈max, cm

−1): 1640, 1680, (C=O, s), 1420, 1630
(C=C, m), 724 (CH, m); MS (70 Ev, EI) 223 (M+⋅), 119, 104,
76.

Compound (j), 3-Bromo-4�-methylbenzil: UV (CH3OH)
𝜆𝜆max: 227 nm; 1H NMR (CDCl3, 400MHz) 𝛿𝛿: 2.42 (s, 3H,
CH3), 7.34 (t, 1H, CH), 7.61 (d, 1H, CH), 7.74 (d, 3H, 3CH),
8.04 (s, H, CH), 8.59 (s, 1H, CH), 8.65 (s, 1H, CH) ppm;
13C NMR (CDCl3, 100MHz) 𝛿𝛿: 55.65 (CH3), 144.44 (2CH),
123.21 (C), 129.12 (CH), 129.76 (C), 130.47 (2CH), 131.37
(CH), 132.44 (CH), 134.91 (CH), 137.46 (C), 165.18 (C),
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192.04 (CO), 193.08 (CO) ppm; IR (KBr, 𝜈𝜈max, cm
−1): 1640,

1700, (C=O, s), 1420, 1620 (C=C, m), 705, 730 (CH, m); MS
(70 Ev, EI)319 (M+⋅), 193, 119, 104, 76.

5. Conclusions

In summary, we have found a facile and efficient method for
the oxidation of symmetrical and unsymmetrical benzoins
to corresponding benzils using with the environmentally
friendly H2O2 as a sole oxidant and of Mn(II) Schiff base
complex as catalyst under milder conditions. e Schiff base
complex exhibited good catalytic activity in the oxidation
of various benzil derivatives with hydrogen peroxide. e
present procedure has many advantages such as short reac-
tion times, mild conditions, easy operation procedures, easy
removal catalyst, and high yields.
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