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Supplementary Material 

The calculation of the bond orbital matrix elements within the BPT approach χχ BB VV ˆ=  

over hybrids (see manuscript eq. (1 b)) requires computing a sum of pseudo two centre 

integrals:  
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The charges are centred at the sites X, and the hybrids are located at the positions of A or B. 

The hybrid coefficients h are calculated from the geometry of the bond system. Slater type 

atomic orbitals are used to derive simple analytic formulas for the integrals – see Table 1. 
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Table 1: Integrals over Slater type atomic orbitals for sp2 and sp3 bonded atoms. These integrals are needed 

for the calculation of bond polarization energies. 

 
 

The knowledge of atomic charges is of substantial interest; and there several methods to 

calculate this atomic property, i.e. ESP (charges derived from electrostatic potentials) (1), 

MPA (Mulliken population analysis) (2), DI (density integration) (3), NPA (natural 
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population analysis) (4), ENC (electronegativity charges) (5) or PACHA (partial atomic 

charges and hardness analysis) (6). Several models: NPA, MPA, ESP, PACHA and ENC were 

applied to a pseudopeptide zinc complex (7) consisting of 64 atoms (H ,C, N, O, Zn). The 

structure was optimized with GAUSSIAN 98 (8) applying density functional theory with a 6–

31G(d,p) basis set. The charge calculations were carried out with best performance 

parameters (NPA with a 6–31G basis set, MPA and ESP with a 3–21G basis set). PACHA 

charges were calculated by Marc Henry (private communication) and ENC with the 

COSMOS program (9). The results of these models were correlated and compared with each 

another. The following correlation matrix was obtained (left to right and top to bottom: NPA, 

MPA, ESP, PACHA and ENC) 
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The comparison of NPA charges with PACHA charges yields a correlation coefficient of 

0.941 for instance. The best correlation is observed between NPA and MPA: the correlation 

coefficient is 0.963. The data was further analyzed by a multivariate normal distribution with 

the density function 
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covariance matrix elements 
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and hence resulted: 
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The vector Q
v

=(q1 , q2 , q3 , q4 , q5) = (qNPA, qMPA, qESP , qPACHA, qENC) is the vector of charge 

models, and Q
v

 is the corresponding vector of means. The covariance matrix C is symmetric, 

and a transformation in the principal value system is performed. The coordinate system is 

changed by a rigid rotation to remove any correlations between the variables in qi: 
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with the transformation matrix 
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The eigenvector corresponding to the largest eigenvalue having the smallest variance, has the 

form 

 

q1’ ~ (qNPA + 0.87 qESP + 0.81 qMPA + 0.46 qENC + 0.34 qPACHA). 

 

Due to the large eigenvalue of 0.609/e2, which corresponds to the smallest variance of 1.64e2 

or a standard deviation of 1.28e, this coordinate dominates all other coordinates q′i. NPA has a 
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major contribution to the eigenvector and the probability distribution which can be 

approximated by 
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NPA is the charge calculation model of choice judged by the statistical investigation above. In 

this work, the BPT was parameterized using the methods NPA, ESP and MPA to test for best 

performance. The models PACHA and ENC were not employed for three reasons: i)They 

showed a low contribution to the eigenvector q′1, ii) they cannot be calculated by ab initio 

techniques and iii) they are less coordinate dependent than the BPT formalism. 

 

For the BPT parameterization, a set of 175 model structures including 12 zinc compounds 

were optimized with DFT/B3LYP applying a 6–31G(d,p) basis set. The calibration was done 

in two steps. First, a subset of 163 molecules consisting of H, C, N, O, F, Si, P, S and Cl was 

employed for calibration testing 11 different basis sets for best performance (best correlation 

with BPT). In a second step, the best basis sets, that are also applicable to Zn-calculations, 

were used for the calibration with a set of 175 structures. 

 

Mulliken Population Analysis (MPA) 

The simplest and most common approximate ab initio treatment is SCF-MO-LCAO-CGTO 

(Self Consistent Field approach of Molecular Orbitals that are approximated as Linear 

Combinations of Atomic Orbitals using Contracted Gauss Type Orbitals). The SCF closed 

shell molecular wave function of N electrons is approximated from the CI or CC model as 
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using an anti-symmetric sum of products of N molecular spin orbitals ( )jiΦ  
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with ( ) ( ) ( )kkk iii χα=−Φ 12 , ( ) ( ) ( )kkk iii χβ=Φ 2  and k = 1…N/2. P̂  is the 

permutation operator. The molecular orbitals ( )kiχ  are approximated as LCAOs (Linear 

Combination of Atomic Orbitals) of STOs. In order to understand a population analysis, the 

local density operator at atom position A is defined as 

 

AAA rr
vv=ρ̂  , 

 

with 1ˆ =∑
A

Aρ . The local density is given by 
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Defining the bond-order matrix D̂  with its matrix elements as ∑=
2/
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Thus, the population at atom A can be calculated by 
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with ( )( ) ( )( )∫= dVrrS lAkA
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νµµν φφ * , and the atomic charge can be defined as 
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( )AAA NZeQ −=  . 

 

There are two problems connected with the MPA (2). First, the overlap contribution, called 

interference density, ∑ ∑
≠B

B

SD
νµν

νµνµ
,

,,  of atom A to all other atoms B is equally distributed to 

A as well as B, which is a inadequate assumption for strongly polarized hetero-atomic bonds. 

Second, problems arise in case of delocalized contributions which describe the electron 

density of A, ∑
A

D
µ

µµ . This effect is strongly basis set dependent. 

 
MPA    

 R SD [e] SD/∆Q [%] 

STO-2G 0.9912 0.0247 13.15 

STO-3G 0.9911 0.0247 13.22 

STO-6G 0.9944 0.0244 10.50 

3-21G 0.9941 0.0448 10.77 

6-21G 0.9941 0.0439 10.80 

6-31G(d,p) 0.9917 0.0391 12.73 

6-31+G( ,p) 0.9583 0.1036 27.38 

6-31++G(d,p) 0.9325 0.1325 33.69 

6-311G(d,p) 0.9850 0.0476 16.98 

6-311G+(d,p) 0.8466 0.1322 45.06 

6-311G++(d,p) 0.8182 0.1463 47.05 
 

 

Table 2: Basis set dependence of the MPA charge parameterization of BPT with basis sets (first column), 

correlation coefficients R (second column) compared to ab initio charges, standard deviation SD (third column), 

ratios of the standard deviation and the absolute charge distribution deviation ∆Q (last column). 

 

The extreme dependence of the Mulliken charges on the basis set is illustrated in the 

following example: The second carbon atom of CH2CFCl has a positive charge (+0.05 e) 

calculated with a 3–21G basis set, it is negatively charged (-0.11e) when calculated with a 6–

311++G(d,p) basis.  

A sum of one-electron operators for MPAs can be defined 
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This is important, because BPT assumes one-electron operators. 

A first parameterization applying STO–3G Mulliken charges were done by Sternberg et al. 

(10, 11). The best correlation (correlation coefficient R=0.9944) is achieved with a STO–6G 

basis set, see Table 2. This basis set not applicable to Zn, since it is incomplete in 

GAUSSIAN98. Therefore, the basis set with the second best correlation (3–21G) was applied 

for necessary charge calculations to parameterize the BPT method on 175 molecules 

including 12 zinc structures. The correlation coefficient is 0.9933, the standard deviation is 

0.05 e. The BPT parameters qi and Ai, are given in Table 3. 

 
MPA-Parameter MPA-Parameter 

q(C=O) 0.17211 q(H-N) 0.26131 

A(C=O) 1.59284 A(H-N) 0.3906 

A(C=C) 0.74459 q(C-F) 0.30133 

q(C=N) 0.20782 A(C-F) -0.06306 

A(C=N) 2.14726 q(Cl-C) 0.23255 

q(P=O) 0.19201 A(Cl-C) 0.0112 

A(P=O) 0.15857 q(Si-H) 0.12036 

q(S=O) -0.29007 A(Si-H) 1.44897 

A(S=O) -0.19149 q(Si-C) 0.28795 

q(S=C) 0.07191 A(Si-C) 0.89486 

A(S=C) 0.99008 q(Si-O) 0.46332 

q(P-O) 0.21615 A(Si-O) -1.0826 

A(P-O) 0.83216 q(Si-Cl) 0.25731 

q(S-O) 0.75986 A(Si-Cl) 3.34254 

A(S-O) 2.94333 q(S-H) -0.10449 

q(C-N) 0.14506 A(S-H) -1.16316 

A(C-N) -0.77123 A(S-S) 2.03518 

A(C-C) 0.36218 q(S-C) 0.26439 

q(C-O) 0.25771 A(S-C) -0.43828 

A(C-O) -1.38054 q(Zn-N) 0.24496 

q(H-O) 0.33601 A(Zn-N) 4.33392 

A(H-O) 0.26976 q(Zn-O) 0.39707 

q(H-C) 0.19878 A(Zn-O) -0.14277 

A(H-C) 0.30287   
 

 

Table 3: BPT parameters of MPA/3-21G (qi in e and Ai in e/H). 
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Electrostatic Charges (ESP) 

A totally different approach is used to compute partial charges via the molecular electrostatic 

potential which is evaluated at points in space around the molecule, and the data are fitted to a 

classical atomic point charge model (1). The fitting parameters are the charges. The number 

of layers and the density of points per unit area are input parameters. In this work 10 layers 

and 10 points per unit area were used since these parameters gave good results within a 

reasonable computational time. 

 
ESP    

 R SD [e] SD/∆Q [%] 

STO-2G 0.9597 0.0824 26.97 

STO-3G 0.9595 0.0825 27.04 

STO-6G 0.9659 0.0832 25.03 

3-21G 0.9768 0.0818 20.93 

6-21G 0.9758 0.0820 21.34 

6-31G(d,p) 0.9668 0.0813 24.71 

6-31+G(d,p) 0.9414 0.1155 31.75 

6-31++G(d,p) 0.9426 0.1137 31.46 

6-311G(d,p) 0.9470 0.1081 30.43 

6-311G+(d,p) 0.9427 0.1172 31.44 

6-311G++(d,p) 0.9427 0.1171 31.47 
 

  

Table 4: Basis set dependence of the ESP charge parameterization of BPT with basis sets (first column), 

correlation coefficients compared to ab initio charges are listed R (second column), standard deviations SD 

(third column), ratios of the standard deviation and the absolute charge distribution deviation ∆Q (last column). 

 

There is no sum of one-electron operators for ESPs defined which makes its theoretical 

application within the BPT approach uncertain, since BPT parameters cannot be correctly 

interpreted. Nevertheless, the parameterization was carried out in respect to different basis 

sets. The results are given in Table 4. The correlations are not as good as the calculations done 

using MPA. The best parameterization is obtained with a 3–21G basis set, R=0.9768. The 

complete parameterization of the 175 structures was performed employing a 3–21G basis set 

and ESP. The correlation coefficient is 0.9721 with a standard deviation of 0.08 e. The 

obtained BPT parameters are given in Table 5. 
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ESP-Parameter ESP-Parameter 

q(C=O) 0.19053 q(H-N) 0.19726 

A(C=O) 2.40837 A(H-N) 3.13988 

A(C=C) 3.13028 q(C-F) 0.18888 

q(C=N) -0.12967 A(C-F) 1.1354 

A(C=N) 4.49582 q(Cl-C) -0.00286 

q(P=O) 0.55216 A(Cl-C) 1.70729 

A(P=O) 0.11158 q(Si-H) 0.11869 

q(S=O) -1.20227 A(Si-H) 5.0306 

A(S=O) 2.20363 q(Si-C) 0.09691 

q(S=C) -0.03686 A(Si-C) 2.70133 

A(S=C) 1.79232 q(Si-O) 0.37292 

q(P-O) -0.15059 A(Si-O) 1.0639 

A(P-O) 2.75509 q(Si-Cl) 0.21257 

q(S-O) 1.11203 A(Si-Cl) 6.16056 

A(S-O) -0.1139 q(S-H) -0.24591 

q(C-N) 0.06987 A(S-H) -2.06931 

A(C-N) 2.83202 A(S-S) 7.40194 

A(C-C) 2.52632 q(S-C) -0.05875 

q(C-O) 0.20341 A(S-C) 0.90494 

A(C-O) -0.64017 q(Zn-N) 0.11386 

q(H-O) 0.40384 A(Zn-N) 4.48369 

A(H-O) 0.32417 q(Zn-O) 0.69723 

q(H-C) 0.10118 A(Zn-O) 2.23474 

A(H-C) 1.89935   
 

  

Table 5: BPT parameters of ESP/3-21G (qi in e and Ai in e/H). 

 

 

Natural Population Analysis (NPA) 

The natural population analysis method was formulated by Reed et al. (4). It is based on the 

fact that the non-orthogonal atomic orbitals { }kφ  can be transformed to ortho-normal NAOs 

(Natural Atomic Orbitals) { }µψ  

 

∑=
k

kkT φψ µµ  

 

Due to this property of the NAOs, the overlap matrix elements vanishes for different orbitals 
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and the population at atom A can be calculated: 

 

∑=
A

A DN
µ

µµ . 

 
NPA    

 R SD [e] SD/∆Q [%] 

STO-2G 0.9955 0.0449 9.41 

STO-3G 0.9878 0.0308 15.35 

STO-6G 0.9928 0.0290 11.91 

3-21G 0.9960 0.0437 8.89 

6-21G 0.9960 0.0435 8.91 

6-31G(d,p) 0.9967 0.0437 8.12 

6-31+G(d,p) 0.9893 0.0774 14.40 

6-31++G(d p) 0.9897 0.0748 14.14 

6-311G(d,p) 0.9896 0.0710 14.24 

6-311G+(d,p) 0.9795 0.0959 19.69 

6-311G++(d,p) 0.9796 0.0958 19.68 
 

  

Table 6: Basis set dependence of the NPA charge parameterization of BPT with basis sets (first column), 

correlation coefficients compared to ab initio charges are listed R (second column), standard deviations SD 

(third column), ratios of the standard deviation and the absolute charge distribution deviation ∆Q (last 

column). 

 

The overlap matrix elements and interference terms vanish. These are big advantages in 

comparison to MPA. Problems arise in case of less localized basis sets, since delocalized 

contributions of the wave functions describe the electron density of a neighbouring atom 

causing errors in the description. Therefore, compact basis sets should be employed. A sum of 

one-electron operators of NPAs can be defined from the population NA using the natural spin 

atomic orbitals by 
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The parameterization results (of 163 structures) can be seen in Table 6. The 6–31G(d,p) basis 

set gave the best correlation (R=0.9967). The same basis set was applied for the 

parameterization including the 12 Zn-structures which yielded a correlation coefficient of 

0.9961 with a standard deviation of 0.05 e. The BPT parameters qi and Ai for effective charge 

calculation are given in Table 7. 

 
NPA-Parameter NPA-Parameter 

q(C=O) 0.24732 q(H-N) 0.38172 

A(C=O) 1.48918 A(H-N) 0.27397 

A(C=C) 0.59962 q(C-F) 0.39704 

q(C=N) 0.13766 A(C-F) -0.58294 

A(C=N) 1.13287 q(Cl-C) 0.04777 

q(P=O) 0.47328 A(Cl-C) -0.00124 

A(P=O) 0.14528 q(Si-H) 0.14891 

q(S=O) -0.98019 A(Si-H) 2.17524 

A(S=O) 0.13009 q(Si-C) 0.38416 

q(S=C) -0.09903 A(Si-C) 1.08137 

A(S=C) 1.29061 q(Si-O) 0.63482 

q(P-O) 0.29554 A(Si-O) -0.12469 

A(P-O) 0.37048 q(Si-Cl) 0.3487 

q(S-O) 1.49458 A(Si-Cl) 1.741996 

A(S-O) 3.29897 q(S-H) -0.16454 

q(C-N) 0.12007 A(S-H) -0.26373 

A(C-N) -0.97646 A(S-S) 3.21091 

A(C-C) 0.53831 q(S-C) 0.15962 

q(C-O) 0.29676 A(S-C) -0.10032 

A(C-O) -1.39582 q(Zn-N) 1.04517 

q(H-O) 0.47641 A(Zn-N) -7.8104 

A(H-O) 0.15249 q(Zn-O) 0.17456 

q(H-C) 0.22781 A(Zn-O) 12.85987 

A(H-C) 0.44427   
 

  

Table 7: BPT parameters of NPA/6-31G(d,p) (qi in e and Ai in e/H). 
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