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Numerous studies indicate that there is strong inherent relationship between the chemical characteristics of chemical compounds
and drugs (e.g., boiling point and melting point) and their molecular structures. Topological indices defined on these chemical
molecular structures can help researchers better understand the physical features, chemical reactivity, and biological activity.Thus,
the study of the topological indices on chemical structure of chemical materials and drugs can make up for lack of chemical
experiments and can provide a theoretical basis for the manufacturing of drugs and chemical materials. In this paper, we focus on
the family of smart polymer which is widely used in anticancer drugs manufacturing. Several topological indices are determined
in view of edge dividing methods, and these results remedy the lack of chemical and medicine experiments thus providing the
theoretical basis for pharmaceutical engineering.

1. Introduction

In this era of rapid technological development, chemical
and pharmaceutical techniques in recent years have been
rapidly evolved, and thus a large number of new nanomate-
rials, crystalline materials, and drugs emerge every year. To
determine the chemical properties of such a large number of
new compounds and new drugs requires a large amount of
chemical experiments, thereby greatly increasing the work-
load of the chemical and pharmaceutical researchers. Fortu-
nately, the chemical based experiments found that there was
strong connection between topology molecular structures
and their physical behaviors, chemical characteristics, and
biological features, such as melting point, boiling point, and
toxicity of drugs (see Wiener [1] and Katritzky et al. [2] as
examples).

The topological index of a molecule structure can be
considered as a nonempirical numerical quantity which
quantitates themolecular structure and its branching pattern.
In this point of view, topological index can be regarded as
a score function which maps each molecular structure to

a real number and used as a descriptor of the molecule under
testing. There are several famous indices applied in chemical
engineering (e.g., QSPR/QSAR study) for grasping the rela-
tionships between the molecular structure and the potential
physicochemical characteristics, such as PI index, Zagreb
index, harmonic index,Wiener index, and connectivity index
(see Yan et al. [3], Gao and Shi [4], and Gao and Wang [5, 6]
for more details).

In theoretical chemistry setting, chemical compounds,
materials, and drugs are expressed as (molecular) graphs in
which each vertex represents an atom of molecule structure
and each edge implies covalent bounds between two atoms.
Let 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) be a (molecular) graph with vertex
set 𝑉(𝐺) and edge set 𝐸(𝐺), respectively. We assume that all
the graphs considered in this paper are simple graphs, that is,
no loop and multiple edge. The notations and terminologies
used but not clearly undefined in this paper can be found in
[7].

There are several degree based indices introduced to test
the properties of compounds and drugs, which have been
widely used in chemical and pharmacy engineering. Bollobas
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and Erdos [8] introduced the general Randic index stated
as

𝑅𝑘 (𝐺) = ∑

𝑒=𝑢V
(𝑑 (𝑢) 𝑑 (V))𝑘 , (1)

where 𝑘 is a real number and 𝑑(𝑢) is the degree of vertex 𝑢. Li
and Liu [9] studied the first three minimum general Randic
indices of tree structures, and the corresponding extremal
trees are described. Liu and Gutman [10] estimated the
general Randic index and its special situations, the ordinary
index and modified Zagreb index. In what follows, we always
assume that 𝑘 is a real number.

By setting 𝑘 = 1 and 𝑘 = −1, formula (1) becomes
the second Zagreb index (𝑀2(𝐺)) and the modified second
Zagreb index (𝑀∗

2
(𝐺)) which are stated as

𝑀2 (𝐺) = ∑

𝑒=𝑢V
𝑑 (𝑢) 𝑑 (V) , (2)

𝑀
∗

2
(𝐺) = ∑

𝑒=𝑢V

1

𝑑 (𝑢) 𝑑 (V)
, (3)

respectively.
The sum connectivity index (𝜒(𝐺)) of molecular graph 𝐺

was defined by

𝜒 (𝐺) = ∑

𝑒=𝑢V
(𝑑 (𝑢) + 𝑑 (V))−1/2 . (4)

Few years ago, Zhou and Trinajstic [11] extended this concept
and introduced the general sum connectivity as follows:

𝜒𝑘 (𝐺) = ∑

𝑒=𝑢V
(𝑑 (𝑢) + 𝑑 (V))𝑘 . (5)

Note that Shirdel et al. [12] introduced a new version of
Zagreb indices named Hyper-Zagreb index as

𝐻𝑀(𝐺) = ∑

𝑒=𝑢V
(𝑑 (𝑢) + 𝑑 (V))2 . (6)

Obviously,Hyper-Zagreb index is just a special case of general
sum connectivity when 𝑘 = 2.

The harmonic index for a molecular graph𝐺 is defined as

𝐻(𝐺) = ∑

𝑒=𝑢V

2

𝑑 (𝑢) + 𝑑 (V)
. (7)

Favaron et al. [13] researched the relationship between the
eigenvalues of molecular graphs and harmonic index. Zhong
[14] obtained the minimum and maximum values of the
harmonic index for connected molecular structures and
trees, and the corresponding extremal molecular graphs are
described. Wu et al. [15] yielded the minimum harmonic
index of molecular graphs with 𝛿(𝐺) ≥ 2. Liu [16] gave
several relations between the harmonic index and diameter
of molecular graphs.

Very recently, in order to extend harmonic index formore
chemical engineering applications, Yan et al. [3] introduced
the general version of harmonic index which was formulated
by

𝐻𝑘 (𝐺) = ∑

𝑒=𝑢V
(

2

𝑑 (𝑢) + 𝑑 (V)
)

𝑘

. (8)

Eliasi and Iranmanesh [17] proposed the ordinary ge-
ometric-arithmetic index as the extension of geometric-
arithmetic index which was stated as

OGA𝑘 (𝐺) = ∑

𝑒=𝑢V
(
2√𝑑 (𝑢) 𝑑 (V)
𝑑 (𝑢) + 𝑑 (V)

)

𝑘

. (9)

Azari and Iranmanesh [18] raised the generalized version
of Zagreb index as

𝑀𝑡
1
,𝑡
2
(𝐺) = ∑

𝑒=𝑢V
(𝑑 (𝑢)

𝑡
1 𝑑 (V)𝑡2 + 𝑑 (𝑢)𝑡2 𝑑 (V)𝑡1) , (10)

where parameters 𝑡1 and 𝑡2 are arbitrary nonnegative integers.
Several polynomials closely related to degree based

indices are also introduced. For example, the first and the
second Zagreb polynomials corresponding to first and the
second Zagreb indices are expressed as

𝑀1 (𝐺, 𝑥) = ∑

𝑒=𝑢V
𝑥
𝑑(𝑢)+𝑑(V)

, (11)

𝑀2 (𝐺, 𝑥) = ∑

𝑒=𝑢V
𝑥
𝑑(𝑢)𝑑(V)

, (12)

respectively.
Additionally, the third Zagreb index and third Zagreb

polynomial were defined as

𝑀3 (𝐺) = ∑

𝑒=𝑢V
|𝑑 (𝑢) − 𝑑 (V)| ,

𝑀3 (𝐺, 𝑥) = ∑

𝑒=𝑢V
𝑥
|𝑑(𝑢)−𝑑(V)|

.

(13)

As degree based topological indices, the multiplicative
version of these Zagreb indices (the first multiplicative
Zagreb index 𝑃𝑀1(𝐺) and the second multiplicative Zagreb
index 𝑃𝑀2(𝐺)) of a (molecular) graph 𝐺 were introduced by
Gutman [19] and Ghorbani and Azimi [20] as

𝑃𝑀1 (𝐺) = ∏

𝑒=𝑢V∈𝐸(𝐺)
(𝑑 (𝑢) + 𝑑 (V)) ,

𝑃𝑀2 (𝐺) = ∏

𝑒=𝑢V∈𝐸(𝐺)
(𝑑 (𝑢) 𝑑 (V)) .

(14)

Several advances on 𝑃𝑀1(𝐺) and 𝑃𝑀2(𝐺) can be referred to
Eliasi et al. [21], Xu and Das [22], and Farahani [23].

Furthermore, the redefined version of Zagreb indices of a
(molecular) graph 𝐺 was introduced by Ranjini et al. [24] as
follows:

Re𝑍𝐺1 (𝐺) = ∑

𝑒=𝑢V∈𝐸(𝐺)

𝑑 (𝑢) + 𝑑 (V)
𝑑 (𝑢) 𝑑 (V)

,

Re𝑍𝐺2 (𝐺) = ∑

𝑒=𝑢V∈𝐸(𝐺)

𝑑 (𝑢) 𝑑 (V)
𝑑 (𝑢) + 𝑑 (V)

,

Re𝑍𝐺3 (𝐺) = ∑

𝑒=𝑢V∈𝐸(𝐺)
(𝑑 (𝑢) 𝑑 (V)) (𝑑 (𝑢) + 𝑑 (V)) .

(15)

Here, 𝑍𝐺1(𝐺), 𝑍𝐺2(𝐺), and 𝑍𝐺3(𝐺) are first, second, and
third redefined Zagreb indices.
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Figure 1: Dox-loaded micelle comprising PEG-PAsp block copoly-
mer with chemically conjugated Dox 𝑆𝑃[𝑛].

In the following contents, we first introduce the smart
polymers of Dox-loadedmicelle comprising PEG-PAsp block
copolymer with chemically conjugated Dox and explain the
importance of this molecular structure. This is the reason
why we focus on the topological indices computation on this
family ofmolecular graphs.Then, in Section 3, we present our
main results and detailed proofs.

2. Motivation

As a special class of macromolecules, smart polymers man-
ifest impressive response to physiochemical change if their
circumstance has slight interference, for example, changes
on PH value, ionic disturbance, magnetic field, light, and
temperature (see Hai and Broekmann [25], do Nascimento
Marques et al. [26], and Kroning et al. [27]). Thus, smart
polymers are also denoted by environmentally responsive
systems or stimuli responsive ones. As good delivery systems,
these structures have wide applications in biomedical field,
for instance, smart polymers with nucleic acid or protein
delivery to intracellular targets just like nucleus or ribosome
in tissue engineering (see Chonkar et al. [28], Hrubý et al.
[29], Duro-Castano et al. [30], and Khandare and Calderón
[31]). As a special class of smart polymer, polymeric micelles
(e.g., Dox-conjugated PEG-b-poly(aspartate) (PEG-PAsp)
block copolymers; see Shanthi et al. [32] andOsada et al. [33])
are widely applied in delivering anticancer drug.

The Dox-loaded micelle containing PEG-PAsp block
copolymer with chemically conjugated Dox (see Figure 1 for
its detailed structure) is a famous family of smart polymer
which is used as anthracycline anticancer antibiotic and
applied in treating various kinds of cancers. It is employed
as excipients and drug delivery carriers for strengthening the
stability and the times of drug retention.Thus, it has powerful
anticancer activity and is widely considered in the pharmacy
field (see Nishiyama and Kataoka [34] and Butt et al. [35] for
more details).

OO OH
OH

OH

OH

O
OOHO O

NH

O
NHO

O

O

CH3

H3C

H3C
NH2

Figure 2: The molecular structure of 𝑆𝑃[1].

O OOH
HO

HO

O
O OH OO

HO
HN

O

O

OO OH
OH

OH

OH

O
OOHO O

NH

ONH
NHO

O

O

O

CH3

H3C

CH3

H3C

H3C

NH2

Figure 3: The molecular structure of 𝑆𝑃[2].

As can be seen in Figure 1, the integer number 𝑛 is step of
growth in this kind of polymers. We depict the structure of
Dox-loaded micelle containing PEG-PAsp block copolymer
with chemically conjugated Dox when 𝑛 = 1, 2, and 3 (see
Figures 2, 3, and 4, resp.).

Although several advances have been made in PI index,
Zagreb index, Wiener index, hyper-Wiener index, and sum
connectivity index of different kinds of molecular graphs,
the study of topological indices for Dox-loaded micelle
comprising PEG-PAsp block copolymer with chemically
conjugated Dox has been largely limited. In addition, this
kind of smart polymer structures is widely used in medical
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Figure 4: The molecular structure of 𝑆𝑃[3].

science and pharmaceutical field. For example, it plays a
key role in delivery system and in the development of
anticancer drugs. Based on these reasons, industrial interest
and tremendous academic interest have been attracted to
research the topological indices of this molecular structure
from a mathematical point of view.

3. Main Results and Proofs

In this section, we present the main results of this paper.
The techniques we used here to get the main conclusion are
followed by the tricks of edge dividing.

Theorem 1. Let 𝑆𝑃[𝑛] be the Dox-loaded micelle comprising
PEG-PAsp block copolymer with chemically conjugated Dox.
One has

𝜒𝑘 (𝑆𝑃 [𝑛]) = (2𝑛 + 1) 3
𝑘
+ (14𝑛 + 2) 4

𝑘

+ (19𝑛 − 1) 5
𝑘
+ 18𝑛 ⋅ 6

𝑘
+ 𝑛 ⋅ 7

𝑘
,

𝑅𝑘 (𝑆𝑃 [𝑛]) = (2𝑛 + 1) 2
𝑘
+ (9𝑛 + 1) 3

𝑘
+ (6𝑛 + 4) 4

𝑘

+ (18𝑛 − 1) 6
𝑘
+ 2𝑛 ⋅ 8

𝑘
+ 16𝑛 ⋅ 9

𝑘

+ 𝑛 ⋅ 12
𝑘
.

(16)

Proof. Let 𝛿 and Δ be the minimum degree and maximum
degree of 𝑆𝑃[𝑛], respectively. In what follows, we assume that
the edge set 𝐸(𝑆𝑃[𝑛]) can be divided into several partitions:

(i) for any 𝑖, 2𝛿(𝐺) ≤ 𝑖 ≤ 2Δ(𝐺), let𝐸𝑖 = {𝑒 = 𝑢V ∈ 𝐸(𝐺) |
𝑑(𝑢) + 𝑑(V) = 𝑖};

(ii) for any 𝑗, (𝛿)2 ≤ 𝑗 ≤ (Δ)
2, let 𝐸∗

𝑗
= {𝑒 = 𝑢V ∈ 𝐸(𝐺) |

𝑑(𝑢)𝑑(V) = 𝑗}.

Specifically, by observing and computing, the edge set of
𝑆𝑃[𝑛] can be divided into the following edge subsets:

(i) 𝐸3 (or 𝐸
∗

2
): 𝑑(𝑢) = 1 and 𝑑(V) = 2;

(ii) 𝐸∗
3
: 𝑑(𝑢) = 1 and 𝑑(V) = 3;

(iii) 𝐸5 ∩ 𝐸
∗

4
: 𝑑(𝑢) = 1 and 𝑑(V) = 4;

(iv) 𝐸4 ∩ 𝐸
∗

4
: 𝑑(𝑢) = 2 and 𝑑(V) = 2;

(v) 𝐸∗
6
: 𝑑(𝑢) = 2 and 𝑑(V) = 3;

(vi) 𝐸∗
8
: 𝑑(𝑢) = 2 and 𝑑(V) = 4;

(vii) 𝐸∗
9
: 𝑑(𝑢) = 𝑑(V) = 3;

(viii) 𝐸7 (or 𝐸
∗

12
): 𝑑(𝑢) = 3 and 𝑑(V) = 4.

In terms of further calculating, we check that
|𝑉(𝑆𝑃[𝑛])| = 49𝑛 + 6 and |𝐸(𝑆𝑃[𝑛])| = 54𝑛 + 5. More
specifically, we deduce |𝐸3| = |𝐸

∗

2
| = 2𝑛 + 1, |𝐸∗

3
| = 9𝑛 + 1,

|𝐸5∩𝐸
∗

4
| = |𝐸7| = |𝐸

∗

12
| = 𝑛, |𝐸4∩𝐸

∗

4
| = 5𝑛+4, |𝐸∗

6
| = 18𝑛−1,

|𝐸
∗

8
| = 2𝑛, and |𝐸∗

9
| = 16𝑛.
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Therefore, by the definition of general sum connectivity
and general Randic index, we get

𝜒𝑘 (𝑆𝑃 [𝑛]) = ∑

𝑒=𝑢V
(𝑑 (𝑢) + 𝑑 (V))𝑘

= ∑

𝑒=𝑢V∈𝐸
3

(𝑑 (𝑢) + 𝑑 (V))𝑘

+ ∑

𝑒=𝑢V∈𝐸∗
3

(𝑑 (𝑢) + 𝑑 (V))𝑘

+ ∑

𝑒=𝑢V∈𝐸
5
∩𝐸∗
4

(𝑑 (𝑢) + 𝑑 (V))𝑘

+ ∑

𝑒=𝑢V∈𝐸
4
∩𝐸∗
4

(𝑑 (𝑢) + 𝑑 (V))𝑘

+ ∑

𝑒=𝑢V∈𝐸∗
6

(𝑑 (𝑢) + 𝑑 (V))𝑘

+ ∑

𝑒=𝑢V∈𝐸∗
8

(𝑑 (𝑢) + 𝑑 (V))𝑘

+ ∑

𝑒=𝑢V∈𝐸∗
9

(𝑑 (𝑢) + 𝑑 (V))𝑘

+ ∑

𝑒=𝑢V∈𝐸
7

(𝑑 (𝑢) + 𝑑 (V))𝑘

= (2𝑛 + 1) 3
𝑘
+ (9𝑛 + 1) 4

𝑘
+ 𝑛 ⋅ 5

𝑘

+ (5𝑛 + 4) 4
𝑘
+ (18𝑛 − 1) 5

𝑘
+ 2𝑛 ⋅ 6

𝑘

+ 16𝑛 ⋅ 6
𝑘
+ 𝑛 ⋅ 7

𝑘

= (2𝑛 + 1) 3
𝑘
+ (14𝑛 + 5) 4

𝑘

+ (19𝑛 − 1) 5
𝑘
+ 18𝑛 ⋅ 6

𝑘
+ 𝑛 ⋅ 7

𝑘
,

𝑅𝑘 (𝑆𝑃 [𝑛]) = ∑

𝑒=𝑢V
(𝑑 (𝑢) 𝑑 (V))𝑘

= ∑

𝑒=𝑢V∈𝐸
3

(𝑑 (𝑢) 𝑑 (V))𝑘

+ ∑

𝑒=𝑢V∈𝐸∗
3

(𝑑 (𝑢) 𝑑 (V))𝑘

+ ∑

𝑒=𝑢V∈𝐸
5
∩𝐸∗
4

(𝑑 (𝑢) 𝑑 (V))𝑘

+ ∑

𝑒=𝑢V∈𝐸
4
∩𝐸∗
4

(𝑑 (𝑢) 𝑑 (V))𝑘

+ ∑

𝑒=𝑢V∈𝐸∗
6

(𝑑 (𝑢) 𝑑 (V))𝑘

+ ∑

𝑒=𝑢V∈𝐸∗
8

(𝑑 (𝑢) 𝑑 (V))𝑘

+ ∑

𝑒=𝑢V∈𝐸∗
9

(𝑑 (𝑢) 𝑑 (V))𝑘

+ ∑

𝑒=𝑢V∈𝐸
7

(𝑑 (𝑢) 𝑑 (V))𝑘

= (2𝑛 + 1) 2
𝑘
+ (9𝑛 + 1) 3

𝑘
+ 𝑛 ⋅ 4

𝑘

+ (5𝑛 + 4) 4
𝑘
+ (18𝑛 − 1) 6

𝑘
+ 2𝑛 ⋅ 8

𝑘

+ 16𝑛 ⋅ 9
𝑘
+ 𝑛 ⋅ 12

𝑘

= (2𝑛 + 1) 2
𝑘
+ (9𝑛 + 1) 3

𝑘
+ (6𝑛 + 4) 4

𝑘

+ (18𝑛 − 1) 6
𝑘
+ 2𝑛 ⋅ 8

𝑘
+ 16𝑛 ⋅ 9

𝑘
+ 𝑛

⋅ 12
𝑘
.

(17)

Hence, we get the desired conclusion.

In what follows, 𝑆𝑃[𝑛] is denoted as the Dox-loaded
micelle comprising PEG-PAsp block copolymer with chem-
ically conjugated Dox, and we will not explain this notation
again.

Theorem 2. The general harmonic index of 𝑆𝑃[𝑛] is

𝐻𝑘 (𝑆𝑃 [𝑛]) = (2𝑛 + 1) (
2

3
)

𝑘

+ (14𝑛 + 5) (
1

2
)

𝑘

+ (19𝑛 − 1) (
2

5
)

𝑘

+ 18𝑛 (
1

3
)

𝑘

+ 𝑛 (
2

7
)

𝑘

.

(18)

Proof. By the definition of general harmonic index and what
we have discussed inTheorem 1, we infer

𝐻𝑘 (𝑆𝑃 [𝑛]) = ∑

𝑒=𝑢V
(

2

𝑑 (𝑢) + 𝑑 (V)
)

𝑘

= ∑

𝑒=𝑢V∈𝐸
3

(
2

𝑑 (𝑢) + 𝑑 (V)
)

𝑘

+ ∑

𝑒=𝑢V∈𝐸∗
3

(
2

𝑑 (𝑢) + 𝑑 (V)
)

𝑘

+ ∑

𝑒=𝑢V∈𝐸
5
∩𝐸∗
4

(
2

𝑑 (𝑢) + 𝑑 (V)
)

𝑘

+ ∑

𝑒=𝑢V∈𝐸
4
∩𝐸∗
4

(
2

𝑑 (𝑢) + 𝑑 (V)
)

𝑘

+ ∑

𝑒=𝑢V∈𝐸∗
6

(
2

𝑑 (𝑢) + 𝑑 (V)
)

𝑘
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+ ∑

𝑒=𝑢V∈𝐸∗
8

(
2

𝑑 (𝑢) + 𝑑 (V)
)

𝑘

+ ∑

𝑒=𝑢V∈𝐸∗
9

(
2

𝑑 (𝑢) + 𝑑 (V)
)

𝑘

+ ∑

𝑒=𝑢V∈𝐸
7

(
2

𝑑 (𝑢) + 𝑑 (V)
)

𝑘

= (2𝑛 + 1) (
2

3
)

𝑘

+ (9𝑛 + 1) (
1

2
)

𝑘

+ 𝑛 (
2

5
)

𝑘

+ (5𝑛 + 4) (
1

2
)

𝑘

+ (18𝑛 − 1) (
2

5
)

𝑘

+ 2𝑛 (
1

3
)

𝑘

+ 16𝑛

⋅ 6
𝑘
+ 𝑛 (

2

7
)

𝑘

= (2𝑛 + 1) (
2

3
)

𝑘

+ (14𝑛 + 5) (
1

2
)

𝑘

+ (19𝑛 − 1) (
2

5
)

𝑘

+ 18𝑛 (
1

3
)

𝑘

+ 𝑛 (
2

7
)

𝑘

.

(19)

We complete the proof.

By taking 𝑘 = 1 in (18), we yield the harmonic index of
𝑆𝑃[𝑛].

Corollary 3. Consider the following:

𝐻(𝑆𝑃 [𝑛]) =
2333

105
𝑛 +

83

30
. (20)

Using similar fashion, we get the following conclusions
on the exact expression of several important indices and
polynomials of 𝑆𝑃[𝑛].

Theorem4. Theordinary geometric-arithmetic index of 𝑆𝑃[𝑛]
is

OGA𝑘 (𝑆𝑃 [𝑛]) = (4𝑛 + 1) (
2√2

3
)

𝑘

+ (9𝑛 + 1) (
2√3

4
)

𝑘

+ 𝑛 (
4

5
)

𝑘

+ (21𝑛 + 4) + (18𝑛 − 1) (
2√6

5
)

𝑘

+ 𝑛(
4√3

7
)

𝑘

.

(21)

Theorem 5. The generalized version of Zagreb index of 𝑆𝑃[𝑛]
is

𝑀𝑡
1
,𝑡
2
(𝑆𝑃 [𝑛]) = (2𝑛 + 1) (2

𝑡
1 + 2
𝑡
2)

+ (9𝑛 + 1) (3
𝑡
1 + 3
𝑡
2) + 𝑛 (4

𝑡
1 + 4
𝑡
2)

+ (5𝑛 + 4) 2
𝑡
1
+𝑡
2
+1

+ (18𝑛 − 1) (2
𝑡
13
𝑡
2 + 2
𝑡
23
𝑡
1)

+ 2𝑛 (2
𝑡
1
+2𝑡
2 + 2
𝑡
2
+2𝑡
1) + 16𝑛

⋅ 3
𝑡
1
+𝑡
2
+1
+ 𝑛 (3

𝑡
14
𝑡
2 + 3
𝑡
24
𝑡
1) .

(22)

Theorem 6. The first and second Zagreb polynomials of 𝑆𝑃[𝑛]
are

𝑀1 (𝑆𝑃 [𝑛] , 𝑥) = (2𝑛 + 1) 𝑥
3
+ (14𝑛 + 5) 𝑥

4

+ (19𝑛 − 1) 𝑥
5
+ 18𝑛𝑥

6
+ 𝑛𝑥
7
,

𝑀2 (𝑆𝑃 [𝑛] , 𝑥) = (2𝑛 + 1) 𝑥
2
+ (9𝑛 + 1) 𝑥

3

+ (6𝑛 + 4) 𝑥
4
+ (18𝑛 − 1) 𝑥

6

+ 2𝑛𝑥
8
+ 16𝑛𝑥

9
+ 𝑛𝑥
12
.

(23)

Theorem 7. The third Zagreb index and polynomial of 𝑆𝑃[𝑛]
are

𝑀3 (𝑆𝑃 [𝑛]) = 46𝑛 + 2,

𝑀3 (𝑆𝑃 [𝑛] , 𝑥) = 21𝑛𝑥 + (11𝑛 + 1) 𝑥
2
+ 𝑛𝑥
3

+ (21𝑛 + 4) .

(24)

Theorem 8. The multiplicative Zagreb indices of 𝑆𝑃[𝑛] are

𝑃𝑀1 (𝑆𝑃 [𝑛]) = 3
2𝑛+1

4
14𝑛+2

5
19𝑛−1

6
18𝑛
7
𝑛
,

𝑃𝑀2 (𝑆𝑃 [𝑛]) = 2
2𝑛+1

3
9𝑛+1

4
6𝑛+4

6
18𝑛−1

8
2𝑛
9
16𝑛
12
𝑛
.

(25)

Theorem 9. The redefined Zagreb indices of 𝑆𝑃[𝑛] are

Re𝑍𝐺1 (𝑆𝑃 [𝑛]) = 49𝑛 + 6,

Re𝑍𝐺2 (𝑆𝑃 [𝑛]) =
8941

140
𝑛 +

253

60
,

Re𝑍𝐺3 (𝑆𝑃 [𝑛]) = 1804𝑛 + 52.

(26)

4. Conclusion

In this paper, inspired by widely used Dox-loaded micelle
comprising PEG-PAsp block copolymer with chemically
conjugated Dox for anticancer drug study in pharmaceutical
engineering applications, we focus on the theoretical analysis
of topological indices expression for this molecular structure.
By means of edge dividing approaches, we present the exact
expression of several important indices, including general
sum connectivity, general Randic index, general harmonic
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index, ordinary geometric-arithmetic index, generalized ver-
sion of Zagreb index, Zagreb polynomials, multiplicative
Zagreb indices, and redefined Zagreb indices. The results
obtained in our paper illustrate the promising application
prospects in chemical and pharmacy engineering.
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