Research Article

Chloride Ion Removal from the Wet Flue Gas Desulfurization and Denitrification Wastewater Using Friedel’s Salt Precipitation Method

Ping Fang,1,2 Zi-jun Tang,1,2 Xiong-bo Chen,1 Jian-hang Huang,2 Zhi-xiong Tang,2 and Chao-ping Cen1

1South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
2Guangzhou Huake Environmental Engineering Co., Ltd., Guangzhou 510655, China

Correspondence should be addressed to Chao-ping Cen; cenchaoping@scies.org

Received 12 March 2018; Accepted 29 April 2018; Published 14 May 2018

Academic Editor: Sabrina Copelli

Copyright © 2018 Ping Fang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The desulfurization and denitrification wastewater (DDW) from the wet flue gas treatment project is difficult to be treated and recycled because of high chloride ion (Cl\(^{−}\)) concentration. Cl\(^{−}\) can cause equipment and piping corrosion. However, there is a lack of cost-effective treatment technologies for the removal of Cl\(^{−}\) from the DDW. In this research, the feasibility of Cl\(^{−}\) removal from the DDW using Friedel’s salt precipitation method was evaluated. Factors affecting the Cl\(^{−}\) removal, such as Ca(OH)\(_2\) dosage, NaAlO\(_2\) dosage, solution’s initial pH, solution’s temperature, reaction time, stirring speed, and anions (SO\(_4^{2−}\), NO\(_3^{−}\), and F\(^{−}\)), were investigated, and the optimal experimental conditions for Cl\(^{−}\) removal were determined. Experimental results showed that Friedel’s salt precipitation method can remove Cl\(^{−}\) effectively and can achieve synergistic removal of SO\(_4^{2−}\), F\(^{−}\), and heavy metal ions. Under the best experimental conditions, the average removal efficiencies of Cl\(^{−}\), SO\(_4^{2−}\), F\(^{−}\), and heavy metal ions reach more than 85%, 98%, 94%, and 99%, respectively. The Cl\(^{−}\) removal mechanism studies showed that Cl\(^{−}\) can be removed by precipitation as Ca\(_4\)Al\(_2\)Cl\(_2\)(OH)\(_12\). The purified wastewater and the precipitated solid can be reused to reduce the consumption of water and alkali. Friedel’s salt precipitation method is an effective control technology for the synergistic removal of Cl\(^{−}\), SO\(_4^{2−}\), F\(^{−}\), and heavy metal ions and has enormous potential to be applied in the industrial wastewater treatment field.

1. Introduction

The wet flue gas desulfurization (WFGD) technology is one of the world’s most widely used flue gas desulfurization technology due to its high desulfurization efficiency and low investment and operating costs [1]. Meanwhile, in order to cost-effectively control SO\(_2\), NOx and other pollutants in the flue gas, scholars have developed a variety of multipollutant cooperative control technologies based on the WFGD in recent years. The main principle of the technology is through adding an oxidizing agent to the WFGD system to achieve synergistic removal of multipollutants from the flue gas. Ozone [2], chlorine dioxide [3], potassium persulfate [4], potassium permanganate [5], sodium chlorite [6, 7], and other oxidizing agents [8], have all been tested for multipollutants control, among which sodium chlorite (NaClO\(_2\)) has been shown to be one of the best-performing additives [7]. Industrial demonstration of the technology in which NaClO\(_2\) is used as an oxidant has been completed in China’s industrial boilers and furnaces, and multipollutant removal efficiencies are satisfactory. However, there are still some deficiencies in the technology that need to be improved. One of the more prominent problems is the corrosion of equipment and piping caused by Cl\(^{−}\) accumulation. The concentration of Cl\(^{−}\) in the absorption solution is generally 1000–3000 mg/L. The maximum can be more than 10000 mg/L. Cl\(^{−}\) can promote corrosion through destroying the passive film of metal and accelerating the growth of pitting corrosion [9]. Furthermore, most of the corrosion and scale inhibitors cannot really inhibit the Cl\(^{−}\) corrosion [10]. Therefore, part
of absorption solution must be discharged to regulate the concentration of Cl− and other impurities in the solution and to form the wet flue gas DDW. Furthermore, the WFGD absorption solution, industrial cooling water, and other industrial wastewater also have the Cl− absorption solution, industrial cooling water, and other ions in the actual DDW and found that the Cl− concentration in the DDW was about 1000–3000 mg/L. So chloride-rich simulated wastewater used in this study was prepared by dissolving anhydrous NaCl in deionized water to get initial Cl− concentration of 2000 mg/L. The solution’s initial pH was adjusted using HNO\textsubscript{3} (0.1 mol/L) and NaOH (0.1 mol/L). The actual DDW was obtained from a ceramic production enterprise located in Guangdong province, China.

2. Experimental Setup

2.1. Materials. NaAlO\textsubscript{2}, Ca(OH)\textsubscript{2}, Na\textsubscript{2}SO\textsubscript{4}, NaOH, NaF, NaCl, KNO\textsubscript{3}, and HNO\textsubscript{3} were analytical grade, and directly used without purification. The authors tested Cl− concentration in the actual DDW and found that the Cl− concentration in the DDW was about 1000–3000 mg/L. So chloride-rich simulated wastewater used in this study was prepared by dissolving anhydrous NaCl in deionized water to get initial Cl− concentration of 2000 mg/L. The solution’s initial pH was adjusted using HNO\textsubscript{3} (0.1 mol/L) and NaOH (0.1 mol/L). The actual DDW was obtained from a ceramic production enterprise located in Guangdong province, China.

2.2. Analytical Methods. The solution’s pH was measured with an MP511 pH detector (Shanghai Precision Instruments Co., Ltd.). Concentrations of NO\textsubscript{3}−, F−, SO\textsubscript{4}2−, and Cl− were measured with an ion chromatography system (Metrohm 883, Switzerland), and concentrations of heavy metal ions such as Ni2+, Pb2+, and Mn2+ were determined with an inductively coupled plasma emission spectrometer (ICP-AES 710, Agilent technologies). The precipitated solids were collected by filtering. The separated solids were then dried at room temperature. X-ray diffraction (XRD) was performed on the solids using an X-ray diffractometer (XRD-6000, Shimadzu, Japan).

2.3. Removal of Chloride Ions. Experiments were carried out on a six-league electric blender (ZR4-6, China). The experimental steps of Friedel’s salt precipitation method are as follows: the first step was conducted by adding a certain amount of Ca(OH)\textsubscript{2} and NaAlO\textsubscript{2} to the NaCl solution (2000 mg/L) with a volume of 1 L at the specified reaction temperature; then stirring for a certain time, at last samples were taken and filtered under vacuum through a 0.45 μm microporous membrane filter. The filtrate was analyzed for Cl− and other ions using related equipments, and finally the removal efficiencies of Cl− and other ions were calculated by the following equation. The solid phases formed in precipitation experiments were identified by XRD spectroscopy.

\[\eta = \frac{C_0 - C_f}{C_0} \times 100, \]

where \(\eta \) is the Cl− or other ion removal efficiencies; \(C_0 \) and \(C_f \) are the initial and final Cl− or other ions concentrations of solutions (mg/L), respectively.

According to the characteristics of ion composition of actual DDW, the literatures [10, 20, 22, 23] and an analysis of main factors influencing Cl− removal, a series of experiments were conducted to evaluate Cl− removal from DDW using Friedel’s salt precipitation method, and the optimal experimental conditions for Cl− removal were determined by using single factor test. In addition, the removal experiments of chloride ions from a ceramic enterprise wastewater were carried out under the best experimental conditions. The experimental conditions of the individual experiments are shown in Table 1.
3. Results and Discussion

3.1. Effect of NaAlO₂ Dosage and Ca(OH)₂ Dosage. It was reported that Cl⁻ removal was primarily controlled by the formation of Ca₄Al₂Cl₂(OH)₁₂ [22]. So NaAlO₂ dosage and Ca(OH)₂ dosage have a significant effect on Cl⁻ removal. As shown in Figure 1, good Cl⁻ removal (>85%) was observed at reasonable ranges of NaAlO₂ dosage and Ca(OH)₂ dosage. It was found that the Cl⁻ removal increased upon increasing the molar ratios of NaAlO₂ to Cl⁻ (Al/Cl) at first, then decreased with the Al/Cl increase when the molar ratio of Ca(OH)₂ to Cl⁻ (Ca/Cl) was constant. For example, when the Ca/Cl was constant at 6:1, the Cl⁻ removal sharply increased from 56.3% to 91.6% when the Al/Cl varied from 1:1 to 3:1, then Cl⁻ removal decreased from 91.6% to 59.6% with an increase of Al/Cl between 3:1 and 6:1. Higher NaAlO₂ dosage is not conducive to the Cl⁻ removal. Addition of excess NaAlO₂ results in increasing Al(OH)₄⁻ and OH⁻ ions (2) and (3)) in the solution, and the increases of OH⁻ and Al(OH)₄⁻ ions result in substitution of Cl⁻ with OH⁻ and Al(OH)₄⁻ (6) and (7)) in the solid solution formation, thus increasing the fraction of Ca₃Al₂(OH)₁₂ and
decreasing the fractions of Ca\(_4\)Al\(_2\)Cl\(_2\) (OH)\(_{12}\) and Ca\(_4\)Al\(_2\) (OH)\(_{14}\) in the solid solution. So, the results show that there is an optimum range of Al/Cl of 2–4 : 1.

Figure 2 shows the effect of Ca(OH)\(_2\) dosage on Cl\(^-\) removal. When the Al/Cl was 1 : 1, the Ca(OH)\(_2\) dosage had little effect on Cl\(^-\) removal. However, the Cl\(^-\) removal was greatly affected by the Ca(OH)\(_2\) dosage when the Al/Cl was more than 1 : 1. As depicted in Figure 2, when the Al/Cl was constant, Cl\(^-\) removal increased rapidly as the Ca/Cl increased at first, then decreased with the increase of Ca/Cl. This is because the Ca (OH)\(_2\) solubility is low, Ca\(^{2+}\) concentration in the solution increases with the increase of Ca(OH)\(_2\) dosage, meanwhile OH\(^-\) concentration also increases in the solution. The increasing of Ca\(^{2+}\) concentration leads to increased Cl\(^-\) removal; however, the increase of OH\(^-\) concentration is not conducive to the Cl\(^-\) removal because the Cl\(^-\) in the Ca\(_4\)Al\(_2\)Cl\(_2\) (OH)\(_{12}\) can be replaced by OH\(^-\) to form the Ca\(_4\)Al\(_2\) (OH)\(_{14}\) under the higher OH\(^-\) concentration condition. So, the results show that there is an optimum range of Ca/Cl of 6–8 : 1.

In order to further determine the effect of the dosage of chemical reagents on Cl\(^-\) removal and to determine the reaction product type, XRD was used to examine the crystalline phases of the precipitated solids produced under different conditions, and the results are shown in Figure 3.

Examination of the samples indicates the presence of mixed phases, the major crystalline phases are Ca\(_4\)Al\(_2\)Cl\(_2\) (OH)\(_{12}\) (ICDD PDF card \# 35-0105, \(2\theta = 11.4^\circ, 22.8^\circ, 23.6^\circ, 31.1^\circ, 35.6^\circ, \) and 42.7\(^\circ\)), Ca\(_4\)Al\(_2\) (OH)\(_{14}\) (ICDD PDF card \# 33-0255, \(2\theta = 11.4^\circ, 31.1^\circ, 38.9^\circ, \) and 64.5\(^\circ\)), Ca\(_3\)Al\(_2\) (OH)\(_{12}\) (ICDD PDF card \# 24-0217, \(2\theta = 17.4^\circ, 20.0^\circ, 26.7^\circ, 28.5^\circ, 31.9^\circ, 36.5^\circ, 39.3^\circ, 44.5^\circ, 52.6^\circ, 54.6^\circ, \) and 66.4\(^\circ\)), and Ca(OH)\(_2\) (ICDD PDF card \# 04-0733, \(2\theta = 18.3^\circ, 34.3^\circ, 47.4^\circ, \) and 51.0\(^\circ\)). As shown in Figure 3(a), the intensities of characteristic diffraction peaks of Ca\(_4\)Al\(_2\)Cl\(_2\) (OH)\(_{12}\) and Ca\(_4\)Al\(_2\) (OH)\(_{14}\) all increased with the increasing Ca(OH)\(_2\) dosage at first, then decreased slowly with the increase of Ca(OH)\(_2\) dosage. On the contrary, the intensities of characteristic diffraction peaks of Ca\(_3\)Al\(_2\) (OH)\(_{12}\) decreased as the Ca(OH)\(_2\) dosage increased at first, then increased with the increase of Ca(OH)\(_2\) dosage. This may be attributed to the increase in concentration of Ca\(^{2+}\) in solution with Ca(OH)\(_2\) dosage increase, thus promoting the Ca\(_4\)Al\(_2\)Cl\(_2\) (OH)\(_{12}\) and Ca\(_4\)Al\(_2\) (OH)\(_{14}\) generation ((4), (5) and (6)). However, higher Ca(OH)\(_2\) dosage contributes to the OH\(^-\) concentration increase in solution and promote the progress of the reactions ((7) and (8)), resulting in an increase of Ca\(_3\)Al\(_2\) (OH)\(_{12}\) and decrease of Ca\(_4\)Al\(_2\)Cl\(_2\) (OH)\(_{12}\) and Ca\(_4\)Al\(_2\) (OH)\(_{14}\) in the solids. In addition, the intensities of characteristic diffraction peaks of Ca(OH)\(_2\) increased with the increasing Ca(OH)\(_2\) dosage. The results of
XRD test are in good agreement with the results of Cl\(^-\) removal (Figure 1). Figure 3(b) shows that additions of NaAlO\(_2\) had significant influences on the distribution of solids in the solid solution. When the Ca/Cl was constant at 6 : 1 and the Al/Cl was more than 3 : 1, the intensities of characteristic diffraction peaks of Ca\(_4\)Al\(_2\)Cl\(_2\)(OH)\(_{12}\), Ca\(_4\)Al\(_2\)(OH)\(_{14}\), and Ca(OH)\(_2\) all decreased rapidly with the increasing NaAlO\(_2\) dosage; however, the intensities of characteristic diffraction peaks of Ca\(_3\)Al\(_2\)(OH)\(_{12}\) increased rapidly as the NaAlO\(_2\) dosage increased. Especially, examination of the sample (n(Ca) : n(Al) : n(Cl) = 6 : 6 : 1) indicated that phases related to crystalline Ca(OH)\(_2\) were not observed, suggesting that almost no Ca(OH)\(_2\) was contained in the solids. The results of XRD test are in good agreement with the results of Cl\(^-\) removal (Figure 2).

Based on the experimental results, composition of the solids, and the literatures [10, 20, 22, 23], Cl\(^-\) removal reaction equations and the interactions among the solids during formation of the solid solution can be described by using the following chemical equilibrium reactions:

\[
\text{NaAlO}_2 + 2\text{H}_2\text{O} = \text{NaOH} + \text{Al(OH)}_3, \quad (2)
\]

\[
\text{Al(OH)}_3 + \text{OH}^- = \text{Al(OH)}_4^-, \quad (3)
\]

\[
4\text{Ca(OH)}_2 + 2\text{Al(OH)}_3 = \text{Ca}_4\text{Al}_2(\text{OH})_{14}, \quad (4)
\]

\[
4\text{Ca(OH)}_2 + 2\text{Al(OH)}_3 + 2\text{Cl}^- = \text{Ca}_4\text{Al}_2(\text{OH})_{12}\text{Cl}_2 + 2\text{OH}^-, \quad (5)
\]

\[
\text{Ca}_4\text{Al}_2(\text{OH})_{12}\text{Cl}_2 + 2\text{OH}^- = \text{Ca}_4\text{Al}_2(\text{OH})_{14} + 2\text{Cl}^-, \quad (6)
\]

\[
3\text{Ca}_4\text{Al}_2(\text{OH})_{12}\text{Cl}_2 + 2\text{Al(OH)}_3 + 4\text{OH}^- = 4\text{Ca}_3\text{Al}_2(\text{OH})_{12} + 6\text{Cl}^- + 2\text{OH}^-, \quad (7)
\]

\[
3\text{Ca}_4\text{Al}_2(\text{OH})_{14} + 2\text{Al(OH)}_3 = 4\text{Ca}_3\text{Al}_2(\text{OH})_{12} + 2\text{OH}^- . \quad (8)
\]

Considering the Cl\(^-\) removal and economic costs, in the next series of experiments, the molar ratio of Ca(OH)\(_2\) to NaAlO\(_2\) to Cl\(^-\) were constant at 6 : 3 : 1.

3.2. Effect of the Initial pH. The effect of the solution’s initial pH ranging from 3.0 to 11.0 on Cl\(^-\) removal has been studied. Figure 4 shows that the initial pH of solution had negligible effects on the Cl\(^-\) removal, and the average removal efficiencies of Cl\(^-\) remained at around 87% when the solution’s initial pH changed from 3.0 to 11.0. The reason is that the addition of Ca(OH)\(_2\) was excessive in this series of experiments, and regardless of whether the solution was acidic or alkaline, the solution’s pH all increased to about 13.0 after adding excessive Ca(OH)\(_2\). The initial pH of solution has little effect on Cl\(^-\) removal, so the effect of wastewater pH need not be considered when using the method to control the Cl\(^-\) in practical engineering applications.

3.3. Effect of Solution’s Temperature. Figure 5 presents the effect of the solution’s temperature on Cl\(^-\) removal. The Cl\(^-\)
removal decreased with the increasing temperature of the solution. Cl$^{-}$ removal efficiencies were 88.8%, 88.9%, 86.0%, 78.7%, and 68.5% when the solution’s temperatures were 25, 30, 40, 50, and 60 °C, respectively. As Figure 5 illustrates, Cl$^{-}$ removal decreased slowly with the solution's increasing temperature when the solution’s temperature was less than 40 °C, but when the solution’s temperature was more than 40 °C, the Cl$^{-}$ removal decreased rapidly with the increase of the solution’s temperature. Because the stable existence temperature of Ca$_4$Al$_2$Cl$_2$(OH)$_{12}$ is 40 °C [23], a partial Ca$_4$Al$_2$Cl$_2$(OH)$_{12}$ will breakdown to form more stable solids such as Ca$_3$Al$_2$(OH)$_{12}$ when the solution’s temperature is more than 40 °C. So, it is necessary to reduce the wastewater temperature in practical engineering applications to achieve a higher Cl$^{-}$ removal.

3.4. Effect of Reaction Time. The effect of reaction time on Cl$^{-}$ removal is shown in Figure 6. Results show that the reaction time has a certain effect on Cl$^{-}$ removal. The NOx removal sharply increased from 75.1% to 87.9% with the increase of reaction time from 10 min to 30 min and thereafter remained almost constant at about 88%–89%. The contact time of ions in the solution increased, resulting in a more complete reaction and an increase of Cl$^{-}$ removal; however, limited by the low solubility of Ca(OH)$_2$, the increase of contact time had a little effect on Cl$^{-}$ removal. Taking into account the economic factor and Cl$^{-}$ removal, the optimum reaction time is selected as 30 min.

3.5. Effect of Stirring Speed. Stirring speed has a significant effect on Cl$^{-}$ removal. As shown in Figure 7, when stirring speed increased from 100 r/min to 200 r/min, Cl$^{-}$ removal sharply increased from 62.7% to 82.7% and then gradually increased. When the stirring speed was more than 400 r/min, the Cl$^{-}$ removal was little affected by the stirring speed and maintained between 89% and 91%. Increasing the stirring speed contributes to the dispersion and dissolution of the reagents and increases the probability of collision of various ions in the solution, resulting in higher Cl$^{-}$ removal. However, excessive stirring speed not only cannot significantly improve the Cl$^{-}$ removal, but also leads to increased operating costs, so the optimum stirring speed is selected as 400 r/min.

3.6. Effect of Anions. Various types of anions such as SO$_4^{2-}$, NO$_3^-$, and F$^-$ exist in the DDW and DW, and the concentrations of these anions are often high. So, coexistent anions in the solution have a certain effect on Cl$^{-}$ removal. In this paper, the effect of anions on Cl$^{-}$ removal has been studied, and the results are shown in Figures 8–10.

3.6.1. Effect of SO$_4^{2-}$ Concentration. Figure 8 displays the effect of SO$_4^{2-}$ concentration on Cl$^{-}$ removal. As Figure 8 illustrates, SO$_4^{2-}$ concentration has a significant effect on Cl$^{-}$ removal. Cl$^{-}$ removal sharply decreased from 77.5% to 8.3% when SO$_4^{2-}$ concentration increased from 1000 mg/L to 10000 mg/L. Compared with the low Cl$^{-}$ removal, SO$_4^{2-}$ removal almost remained stable at more than 97% when SO$_4^{2-}$ concentration varied from...
Ca₆Al₂(SO₄)₃(OH)₁₂ and Ca₄Al₂Cl₂(OH)₁₂ are about to lead to higher SO₄²⁻ in the solution. They are easier to react with SO₄²⁻. The increase of SO₄²⁻ concentration from 1000 mg/L to 4000 mg/L, then slowly decreased with the further increase of F⁻ concentration. It has been reported that SO₄²⁻ can react with Ca²⁺ and Al³⁺ to form insoluble ettringite (Ca₆Al₂(SO₄)₃(OH)₁₂). The solubility products of Ca₆Al₂(SO₄)₃(OH)₁₂ and Ca₄Al₂Cl₂(OH)₁₂ are about 10⁻¹⁰⁷.9 and 10⁻²⁷.10, respectively [10, 22]. So, Ca²⁺ and Al³⁺ in the solution are easier to react with SO₄²⁻ rather than Cl⁻, leading to higher SO₄²⁻ removal and lower Cl⁻ removal.

Results show that the presence of SO₄²⁻ in the solution has a significant inhibitory effect on Cl⁻ removal. In order to achieve high Cl⁻ removal, it is necessary to remove the SO₄²⁻ from the solution first. Table 2 shows the results of SO₄²⁻ and Cl⁻ removal using two-stage Friedel’s salt precipitation method. The average removal efficiencies of SO₄²⁻ and Cl⁻ can reach 98.9% and 86.2%, respectively.

![Figure 9: The effect of F⁻ concentration.](image)

![Figure 10: The effect of NO₃⁻ concentration.](image)

The effect of NO₃⁻ concentration on Cl⁻ removal is shown in Figure 10. The results indicate that the Cl⁻ removal was little affected when the concentration of NO₃⁻ in the solution was less than 2000 mg/L, and remained stable at about 88%; meanwhile, about 15% of NO₃⁻ removal was achieved. When the concentration of NO₃⁻ in the solution increased from 2000 mg/L to 3000 mg/L, the Cl⁻ removal slowly decreased from 87.9% to 83.3%, and the NO₃⁻ removal slowly increased from 15.4% to 23.3%. NO₃⁻ can react with Ca²⁺ and Al³⁺ to form Ca₄Al₂(NO₃)₂(OH)₁₂ that belong to AFm family of solids [24]; therefore, there is a certain negative impact on the Cl⁻ removal. Overall, NO₃⁻ has a certain inhibitory effect on Cl⁻ removal only under high NO₃⁻ concentration.

Table 2: Results of Cl⁻ and SO₄²⁻ removal.

<table>
<thead>
<tr>
<th>Number</th>
<th>Average removal efficiencies of Cl⁻ (%)</th>
<th>Average removal efficiencies of SO₄²⁻ (%)</th>
<th>Average</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85.49</td>
<td>99.06</td>
<td>86.44</td>
<td>0.138</td>
</tr>
<tr>
<td>2</td>
<td>87.56</td>
<td>99.10</td>
<td>86.26</td>
<td>0.278</td>
</tr>
<tr>
<td>3</td>
<td>86.26</td>
<td>98.60</td>
<td>87.9</td>
<td>0.086</td>
</tr>
</tbody>
</table>

Two-stage Freund’s salt precipitation method. (1) The first stage mainly removed SO₄²⁻ (4000 mg/L), the molar ratio of Ca(OH)₂ to NaAlO₂ to SO₄²⁻ was constant at 4:1:1; the solution’s temperature was 25°C, reaction time was 30 min, and the stirring speed was 400 r/min. (2) The second stage mainly removed Cl⁻ (2000 mg/L), the molar ratio of Ca(OH)₂ to NaAlO₂ to Cl⁻ was constant at 6:3:1, respectively, and other operating conditions were the same as the first stage.

3.7. Determination of the Optimal Experimental Conditions. The results indicate that using Friedel’s salt precipitation method can effectively remove Cl⁻ in the solution. Cl⁻ removal depends primarily on the Ca(OH)₂ dosage, NaAlO₂ dosage, the solution’s temperature, and SO₄²⁻ concentration, and the solution’s initial pH, reaction time, stirring speed, NO₃⁻, and F⁻ concentrations all have a certain influence on NOx removal, but these factors have a relatively little influence on the Cl⁻ removal. Finally, considering the application to the practical engineering, the optimal conditions for Cl⁻ removal using Friedel’s salt precipitation method were identified: (1) For sulfate-free wastewater, use one-stage Freund’s salt precipitation method to remove Cl⁻.
The optimal conditions were the molar ratio of Ca(OH)$_2$ to NaAlO$_2$ to Cl$^-$ 6:3:1, solution's temperature of 25°C, reaction time of 30 min, and stirring speed of 400 r/min. (2) For sulfate-containing wastewater, use two-stage Freund's action time of 30 min, and stirring speed of 400 r/min. (2)

3.8. Effect of Precipitated Solid Reuse. The XRD test (Figure 3) of the precipitated solids indicated that there existed a certain amount of Ca(OH)$_2$ in the precipitated solids, so it is possible to replace part of Ca(OH)$_2$ with the precipitated solids. As shown in Figure 11, Cl$^-$ removal rapidly decreased with the increase of replacement ratio of Ca(OH)$_2$, the main reason is that the Ca(OH)$_2$ content of the precipitated solids was low, so it can’t be achieved to use precipitated solids to replace an equivalent number of Ca(OH)$_2$. However, Cl$^-$ removal can reach more than 80% when the replacement ratio of Ca(OH)$_2$ is controlled at less than 20%.

3.9. Removal of Chloride Ion and Other Ions in Actual DDW. Removal of Cl$^-$ and other ions in actual wastewater by using Friedel’s salt precipitation method was studied. The wastewater was the actual DDW from a ceramic plant. The NaClO$_2$/NaOH solution was used to remove the NOx and SO$_2$ in the flue gas, and the wet flue gas desulfurization and denitrification system was operated under weak acid condition.

<table>
<thead>
<tr>
<th>Actual wastewater (mg/L)</th>
<th>SO$_4^{2-}$</th>
<th>Cl$^-$</th>
<th>F$^-$</th>
<th>NO$_3^-$</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>12309.5</td>
<td>1476.7</td>
<td>244.9</td>
<td>955.3</td>
<td>—</td>
<td>5.3</td>
</tr>
<tr>
<td>Purified wastewater (mg/L)</td>
<td>188.34</td>
<td>215.16</td>
<td>8.84</td>
<td>790.70</td>
<td>13.2</td>
</tr>
<tr>
<td>Average removal efficiency (%)</td>
<td>98.47</td>
<td>85.43</td>
<td>96.39</td>
<td>17.23</td>
<td>—</td>
</tr>
</tbody>
</table>

So, the effluent from the system contained large amounts of Cl$^-$ and other ions (Tables 2 and 3). Two-stage Friedel’s salt precipitation method was used to purify the anion ions and other ions, and the results are shown in Tables 3 and 4. The results indicate that Friedel’s salt precipitation method had high synergistic removal efficiencies for Cl$^-$, SO$_4^{2-}$, F$^-$, and heavy metal ions, with average removal efficiencies of 85.43%, 98.47%, 96.39%, and more than 99%, respectively. The Cl$^-$ concentration in the purified wastewater met the requirements for reuse of water which is 250 mg/L in China; meanwhile, SO$_4^{2-}$, F$^-$, and heavy metal ions were effectively removed. So the purified wastewater could be reused in the wet flue gas desulfurization and denitration system. In addition, the pH of the purified water was about 13, so purified wastewater could reduce the consumption of alkali in the flue gas treatment system.

4. Conclusions

In this study, Friedel’s salt precipitation method was used to remove the Cl$^-$, and the effects of different experimental conditions on Cl$^-$ removal were mainly studied. Based on the results of the experiments, the following conclusions can be made:

(1) Friedel’s salt precipitation method is a very effective Cl$^-$ removal technology, and Cl$^-$ removal can reach more than 85%. Meanwhile, the method can effectively synergistically remove SO$_4^{2-}$, F$^-$, and heavy metal ions. The purified wastewater can be reused to reduce the consumption of water and alkali, and the precipitated solids can be used to replace part of Ca(OH)$_2$. Thus, it has a great potential to be applied in the industrial wastewater treatment field.

(2) Ca(OH)$_2$ dosage, NaAlO$_2$ dosage, the solution’s initial pH, the solution’s temperature, reaction time, stirring speed, and anions (SO$_4^{2-}$, NO$_3^-$, and F$^-$) have all effects on the Cl$^-$ removal. Finally, considering the application to the practical engineering, the optimal conditions for Cl$^-$ removal using Friedel’s salt precipitation method were determined.

(3) The removal mechanism of Cl$^-$ was deduced based on the experimental results, composition of the precipitated solids, and the literatures. The results showed that Cl$^-$ can be removed by precipitation as Ca$_4$Al$_2$Cl$_4$(OH)$_12$.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.
Conflicts of Interest

The authors declare that they have no competing interests.

Acknowledgments

This work was supported by the National Key R&D Program of China (2017YFC0210704, 2017YFC0210803), the National Natural Science Foundation of China (NSFC-51778264), the Natural Science Foundation of Guangdong Province (2015A030310344), the Project of Science and Technology Program of Guangdong Province (2015A020220008, 2015B020215008, 2016B020241002, and 2017B020237002), the Youth Top-notch Talent Special Support Program of Guangdong Province (2016TQ03Z576), and the Pearl River S&T Nova Program of Guangzhou (201610010150).

References
