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A new class of pyridopyrimidinone compounds containing different nitrogenous heterocycles were synthesized starting from the
key precursor 2-hydrazinyl-5-phenyl-7-(pyridin-3-yl)pyrido[2,3-d]pyrimidin-4(3H)-one via condensation with series of aro-
matic aldehydes and cyclization using different reagents as ethyl acetoacetate, ethyl cyanoacetate, diethyl malonate, and am-
monium isothiocyanate. -e bioassay results showed compound 6 to be highly effective towards three human cancer cell lines
(HepG2, PC-3, and HCT-116) in vitro with promising activity values (IC50: 0.5 μM) relative to the standard doxorubicin (IC50:
0.6 μM). Kinase inhibitory evaluation of compound 6 displays hopeful inhibitory action against BRAF V600E, EGFR, and
PDGFRβ at100 μM. -e molecular docking studies supported the initial kinase assay.

1. Introduction

Cancer is a great public health issue characterized by an
uncontrolled increase of cancer cells through cell division
and the cells undergo modification by their DNA, leading to
death [1–3]. Due to drug resistance and the serious effects of
treatment by chemotherapy, the use of available chemo-
therapeutics is often limited [4]. -e combination of che-
motherapies with several targets increases selectivity,
reduces the resistance, and lowers toxicity towards infected
and noninfected cells. Heterocycles have emerged as strong
scaffolds for numerous biological considerations [5] and
represent a significant part in the designing and detection of
novel pharmacologically active entities [6]. -e pyridopyr-
imidine compounds are a group of fused heterocycles that
possess various pharmacological applications as antitumor,
topoisomerase I inhibitor, adenosine kinase inhibitor,

growth regulator, antihepatitis C virus, antiinflammatory,
antileishmanial, antiviral, antimicrobial, anticonvulsant,
antimycobacterial, CNS depressant, antihypertensive, anti-
allergic, diuretic, tyrosine kinase inhibitor, and calcium
channel antagonist [7–16]. Among them, pyrido[2,3-d]
pyrimidin-4-ones (A–C) were found to lower cell pro-
liferation in various cancer cell lines through inhibition of
various kinases, e.g., TKs, PI3K, and CDK4/6 (Figure 1)
[17–19]. In continuation of our earlier studies that involved
synthesis of different other substituted pyridopyrimidine
compounds [20–22] and based on the structural features of
pyrido[2,3-d]pyrimidine, this study is designed to synthesize
various groups containing different substituents in the phenyl
ring at position 5 of the parent compound pyrido[2,3-d]
pyrimidinone to further improve the SAR-relationship for
their cytotoxicity and also for their inhibitory activity against
TKs, CDK4/6, and PI3K enzymes.
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2. Materials and Methods

2.1. General Information. Electrothermal apparatus with
open capillary tubes was used in measuring melting points.
Shimadzu 435 IR spectrophotometer was used in measuring
IR spectra (KBr). Varian Mercury VX-300 NMR spectro-
photometer was used in determining NMR spectra using
DMSO-d6 as a solvent and TMS as internal standard. -e
proposed structures were within ±0.4% of the theoretical
values in microanalyses data. Shimadzu GC/MS-QP 2010
plus spectrometer was used in recording mass spectra.

2.2. Chemistry

2.2.1. 5-Phenyl-7-(pyridin-3-yl)-2-thioxo-2,3-dihydropyrido
[2,3-d]pyrimidin-4(1H)-one (3). In dry DMF (20mL),
equimolar quantities (0.01mol) of 6-amino-2,3-dihydro-2-
thioxopyrimidin-4(1H)-one 1 and α, β-unsaturated ketone 2
were refluxed for 10 h (monitored with TLC). -e residue
created was gathered and purified from DMF. Yield: 67%;
mp: >300°C; IR (KBr, ]max, cm−1): 3327, 3234 (2NH), 1668
(CO), 1178 (CS); 1H NMR (δ, ppm, DMSO-d6): 7.23–8.65
(m, 10H, Ar), 12.26, 13.01 (2s, 2H, 2NH); 13C NMR (δ, ppm,
DMSO-d6): 108.94, 113.21, 123.87, 127.19, 129.45, 134.59,
135.01, 137.66, 147.82, 149.65, 151.14, 153.02, 153.72, 159.97,
178.01; MS: [m/z, 332 (M+)]; Anal. Calcd for: C18H12N4OS

(332.38): C, 65.04; H, 3.64; N, 16.86% Found: C; 64.92, H,
3.57; N, 16.71.

2.2.2. 2-Hydrazinyl-5-phenyl-7-(pyridin-3-yl)pyrido[2,3-d]
pyrimidin-4(3H)-one (4). In dry ethyl alcohol (30mL),
(0.003mol) of 2-thioxo derivative 3 and (0.005mol) of
hydrazine hydrate 99% was heated for 12 h. -e precipitate
created was purified in DMF. Yield: 72%; mp: 286–287°C; IR
(KBr, ]max, cm−1): 3446 (NH2), 3362, 3205 (2NH), 1671
(C�O); 1H NMR (δ, ppm, DMSO-d6): 4.80 (s, 2H, NH2),
7.21–8.73 (m, 10H, Ar), 11.38, 12.76, (2s, 2H, 2NH); 13C
NMR (δ, ppm, DMSO-d6): 118.74, 121.02, 123.90, 126.38,
129.17, 130.01, 134.57, 135.01, 137.21, 147.83, 149.96, 151.93,
152.47, 153.12, 159.97, 162.41; MS: [m/z, 330 (M+)]; Anal.
Calcd for: C18H14N6O (330.34): C, 65.44; H, 4.27; N, 25.44%
Found: C; 65.29, H, 4.12; N, 25.34.

2.2.3. Synthetic Method for Derivatives (5a–g). In glacial
acetic acid (10mL), equimolar amounts of (0.001mol) of
hydrazinyl derivative 4 and several aromatic aldehydes,
benzaldehyde, 4-fluorobenzaldehyde, 4-chlorobenzaldehyde,
4-tolylaldehyde, 4-nitrobenzaldehyde, 4-methoxy benzalde-
hyde, or 4-N,N-dimethylamino benzaldehyde were refluxed
for 5–8 h. After cooling and pouring into crushed ice, the
precipitate obtained was purified in DMF/H2O.
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Figure 1: Reported and suggested pyridopyrimidines integrated with kinase inhibitors and anticancer properties.
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2-[2-Benzylidenehydrazinyl]-5-phenyl-7-(pyridin-3-yl)
pyrido[2,3-d]pyrimidin-4(3H)-one (5a). Yield: 69%; mp:
336°C; IR (KBr, ]max, cm−1): 3379, 3210 (2NH), 1667 (CO);
1H NMR (δ, ppm, DMSO-d6): 7.20–8.66 (m, 16H,
Ar +�CH), 10.87, 12.68 (2s, 2H, 2NH); 13C NMR (δ, ppm,
DMSO-d6): 116.28, 119.97, 123.64, 127.80, 128.17, 128.63,
129.10, 130.03, 131.14, 132.99, 134.13, 134.49, 139.11, 143.54,
147.68, 149.98, 151.73, 152.71, 153.69, 161.34, 162.15; MS:
[m/z, 418 (M+)]; Anal. Calcd for: C25H18N6O (418.45): C,
71.76; H, 4.34; N, 20.08% Found: C, 71.63; H, 4.17; N, 29.95.

2-[2-(4-Fluorobenzylidene)hydrazinyl]-5-phenyl-7-(pyridin-
3-yl)pyrido[2,3-d]pyrimidin-4(3H)-one (5b). Yield: 62%; mp:
317°C; IR (KBr, ]max, cm−1): 3365, 3217 (2NH), 1663 (CO); 1H
NMR (δ, ppm, DMSO-d6): 7.15–8.70 (m, 14H, Ar+�CH),
10.78, 12.29 (2s, 2H, 2NH); 13C NMR (δ, ppm, DMSO-d6):
115.79, 116.25, 119.85, 123.65, 128.13, 128.34, 128.76, 129.16,
130.24, 134.18, 134.59, 140.02, 143.28, 149.55, 150.48, 151.63,
152.69, 153.74, 161.27, 162.18, 164.72; MS: [m/z, 436 (M+)];
Anal. Calcd for: C25H17FN6O (436.44): C, 68.80; H, 3.93; N,
19.26% Found: C, 68.64; H, 3.79; N, 19.08.

2-[2-(4-Chlorobenzylidene)hydrazinyl]-5-phenyl-7-(pyridin-
3-yl)pyrido[2,3-d]pyrimidin-4(3H)-one (5c). Yield: 53%; mp:
345°C; IR (KBr, ]max, cm−1): 3381, 3195 (2NH), 1660 (CO); 1H
NMR (δ, ppm, DMSO-d6): 7.23–8.72 (m, 14H, Ar+�-CH),
10.75, 12.36, (2s, 2H, 2NH); 13C NMR (δ, ppm, DMSO-d6):
116.34, 119.36, 123.60, 128.12, 128.45, 128.84, 129.04, 130.42,
131.56, 134.21, 134.68, 137.13, 140.15, 143.36, 149.47, 150.36,
151.24, 152.72, 153.61, 161.15, 162.19; MS: [m/z, 452 (M+)];
Anal. Calcd for: C25H17ClN6O (452.9): C, 66.30; H, 3.78; N,
18.56% Found: C, 66.12; H, 3.64; N, 18.39.

2-[2-(4-Methylbenzylidene)hydrazinyl]-5-phenyl-7-(pyridin-
3-yl)pyrido[2,3-d]pyrimidin-4(3H)-one (5d). Yield: 71%; mp:
321°C; IR (KBr, ]max, cm−1): 3348, 3212 (2NH), 1668 (CO); 1H
NMR (δ, ppm, DMSO-d6): 2.40 (s, 3H, CH3), 7.20–8.73 (m,
14H, Ar+�CH), 11.05, 12.45, (2s, 2H, 2NH); 13C NMR (δ,
ppm, DMSO-d6): 24.10, 116.87, 119.82, 123.17, 128.05, 128.33,
128.96, 129.15, 130.36, 134.32, 134.59, 140.18, 141.82, 143.62,
149.38, 151.03, 151.46, 152.91, 153.73, 161.22, 162.31; MS: [m/z,
432 (M+)]; Anal. Calcd for: C26H20N6O (432.48): C, 72.21; H,
4.66; N, 19.43% Found: C, 72.04; H, 4.52; N, 19.28.

2-[2-(4-Nitrobenzylidene)hydrazinyl]-5-phenyl-7-(pyridin-
3-yl)pyrido[2,3-d]-pyrimidin-4(3H)-one (5e). Yield: 58%; mp:
312°C; IR (KBr, ]max, cm−1): 3365, 3202 (2NH), 1664 (CO); 1H
NMR (δ, ppm, DMSO-d6): 7.21–8.66 (m, 14H, Ar +�CH),
10.82, 12.35 (2s, 2H, 2NH); 13C NMR (δ, ppm, DMSO-d6):
119.87, 121.17, 123.47, 128.02, 128.66, 129.34, 130.03, 134.45,
134.62, 139.76, 140.16, 143.29, 149.35, 150.29, 151.04, 151.87,
153.04, 153.74, 161.13, 162.25; MS: [m/z, 463 (M+)]; Anal.
Calcd for: C25H17N7O3 (463.45): C, 64.79; H, 3.70; N, 21.16%
Found: C, 64.63; H, 3.56; N, 20.98.

2-[2-(4-Methoxybenzylidene)hydrazinyl]-5-phenyl-7-(pyridin-
3-yl)pyrido[2,3-d]pyrimidin-4(3H)-one (5f). Yield: 73%; mp:
295–296°C; IR (KBr, ]max, cm−1): 3376, 3198 (2NH), 1665
(CO); 1H NMR (δ, ppm, DMSO-d6): 3.81 (s, 3H, OCH3),
7.01–8.58 (m, 14H, Ar +�CH), 11.23, 12.56 (2s, 2H, 2NH);
13C NMR (δ, ppm, DMSO-d6): 56.19, 115.03, 116.89, 119.77,
123.59, 126.09, 128.14, 128.70, 129.15, 130.03, 134.26, 134.71,
140.12, 143.86, 149.27, 151.02, 151.78, 152.42, 153.84, 161.19,
162.34, 165.01; MS: [m/z, 448 (M+)]; Anal. Calcd for:

C26H20N6O2 (448.48): C, 69.63; H, 4.49; N, 18.74% Found: C,
69.47; H, 4.31; N, 18.59.

2-[2-(4-Dimethylaminobenzylidene)hydrazinyl]-5-phenyl-
7-(pyridin-3-yl)pyrido[2,3-d]-pyrimidin-4(3H)-one (5g). Yield:
75%; mp: 302°C; IR (KBr, ]max, cm−1): 3401, 3234 (2NH),
1660 (CO); 1H NMR (δ, ppm, DMSO-d6): 2.67 (s, 6H, 2CH3),
7.20–8.68 (m, 14H, Ar +�CH), 11.24, 12.58, (2s, 2H, 2NH);
13C NMR (δ, ppm, DMSO-d6): 42.03, 115.63, 116.85, 119.47,
121.17, 123.57, 128.16, 128.77, 129.16, 130.08, 134.27, 134.45,
140.01, 143.67, 148.99, 151.02, 151.87, 152.04, 152.71, 153.14,
161.17, 162.23; MS: [m/z, 461 (M+)]; Anal. Calcd for:
C27H23N7O (461.52): C, 70.27; H, 5.02; N, 21.24% Found: C,
70.12; H, 4.96; N, 21.08.

2.2.4. Synthetic Method for Derivatives (6–9). In glacial
acetic acid (15mL), equimolar amounts (0.001mol) of
hydrazinyl derivative 4 and different reagents, namely, ethyl
acetoacetate, ethyl cyanoacetate, diethyl malonate, or am-
monium isothiocanate were heated for 3–6 h. -e mixture
was allowed to cool, poured into ice, and the residue ob-
tained was purified in AcOH.

2-(3-Methyl-5-oxo-2,5-dihydro-1H-pyrazol-1-yl)-5-phenyl-7-
(pyridin-3-yl)pyrido-[2,3-d]-pyrimidin-4(3H)-one (6). Yield: 45%;
mp: 302°C; IR (KBr, ]max, cm−1): 3368, 3214 (2NH), 1725, 1660
(2CO); 1H NMR (δ, ppm, DMSO-d6): 1.87 (s, 3H, CH3),
7.21–8.65 (m, 11H, Ar+CH-pyrazolone), 10.47, 12.80 (2s, 2H,
2NH); 13C NMR (δ, ppm, DMSO-d6): 21.57, 106.48, 116.99,
119.91, 123.69, 128.11, 128.48, 129.10, 134.20, 134.58, 140.03,
149.13, 151.01, 151.96, 152.67, 152.84, 153.22, 161.38, 162.45,
172.46; MS: [m/z, 396 (M+)]; Anal. Calcd for: C22H16N6O2
(396.4): C, 66.66; H, 4.07; N, 21.20% Found: C, 66.52; H, 3.94; N,
21.06.

2-(3-Amino-5-oxo-2,5-dihydro-1H-pyrazol-1-yl)-5-phenyl-
7-(pyridin-3-yl)pyrido-[2,3-d]-pyrimidin-4(3H)-one (7). Yield:
60%; mp: 310°C; IR (KBr, ]max, cm−1): 3431 (NH2), 3346, 3196
(2NH), 1730, 1667 (2CO); 1H NMR (δ, ppm, DMSO-d6): 4.58
(s, 2H, NH2), 7.24–8.78 (m, 11H, Ar+CH-pyrazolone), 11.53,
12.39 (2s, 2H, 2NH); 13C NMR (δ, ppm, DMSO-d6): 106.75,
116.85, 119.65, 123.16, 128.05, 128.36, 129.18, 134.42, 134.81,
140.08, 149.01, 150.37, 151.90, 152.65, 153.12, 161.09, 163.14,
171.82; MS: [m/z, 397 (M+)]; Anal. Calcd for: C21H15N7O2
(397.39): C, 63.47; H, 3.80; N, 24.67% Found: C, 63.31; H, 3.65;
N, 24.58.

1-[4-Oxo-5-phenyl-7-(pyridin-3-yl)-3,4-dihydropyrido
[2,3-d]pyrimidin-2-yl]pyrazolidine-3,5-dione (8). Yield:
39%; mp: 349°C; IR (KBr, ]max, cm−1): 3420, 3210 (2NH),
1705, 1682, 1667 (3CO); 1H NMR (δ, ppm, DMSO-d6):
2.98 (s, 2H, CH2), 7.22–8.71 (m, 10H, Ar), 11.84, 12.59 (2s,
2H, 2-NH); 13C NMR (δ, ppm, DMSO-d6): 90.21, 116.93,
119.73, 123.34, 127.91, 128.41, 129.30, 134.59, 134.66,
140.03, 149.28, 151.13, 151.86, 152.74, 153.21, 161.02,
163.18, 167.49, 170.56; MS: [m/z, 398 (M+)]; Anal. Calcd
for: C21H14N66O3 (398.37): C, 63.31; H, 3.54; N, 21.10%
Found: C, 63.17; H, 3.39; N, 20.91.

3-Amino-6-phenyl-8-(pyridin-3-yl)pyrido[2,3-d]triazolo
[4,3-a]pyrimidin-5(1H)-one (9). Yield: 63%; mp: 347°C; IR
(KBr, ]max, cm−1): 3460 (NH2), 3317 (NH), 1669 (CO); 1H
NMR (δ, ppm, DMSO-d6): 5.60 (s, 2H, NH2), 7.23–8.76 (m,
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10H, Ar), 12.55 (s, 1H, NH); 13C NMR (δ, ppm, DMSO-d6):
117.30, 119.58, 123.79, 127.98, 129.01, 129.57, 134.25, 134.76,
139.53, 148.95, 151.06, 151.90, 152.64, 153.42, 155.47, 160.37,
161.77; MS: [m/z, 355 (M+)]; Anal. Calcd for: C19H13N7O
(355.35): C, 64.22; H, 3.69; N, 27.59% Found: C, 64.06; H,
3.54; N, 27.43.

3. Results and Discussion

3.1. Chemistry. A group of substituted pyridopyrimidines
were obtained via treatment of starting 1 with
α,β-unsaturated ketone 2 in dry DMF to afford 2-thioxo
derivative 3. IR spectrum of 3 revealed four strong bands at
3327, 3234, 1668, and 1178 cm−1 due to 2NH, CO, and CS
functions, respectively. In the same time, 1HNMR spec-
trum displayed two singlets at δ 12.26 and 13.01 ppm as-
signable for 2NH protons. Also, 13CNMR spectrum showed
signal at 178.01 ppm for C�S carbon. Treatment of hy-
drazine hydrate with thioxo derivative 3 afforded the
corresponding 2-hydrazinyl derivative 4. IR spectrum of 4
revealed four peaks at 3446, 3362, 3205, and 1671 cm−1
attributed to amino, two amides, and carbonyl functions,
respectively. Moreover, 1H NMR spectrum confirmed the
presence of amino and amide protons by existence of three

singlet peaks at δ 4.80, 11.38, and 12.76 ppm. -e MS
revealed [M+] at m/z 330 agreed with the MF C18H14N6O.
Compound 4 was allowed to react with different aromatic
aldehydes to afford 2-arylidene derivatives 5a–g. Com-
pounds 5a–g were confirmed on the basis of their IR
spectra and showed strong peaks around the regions
3401–3348, 3234–3195, and 1668–1660 cm−1 correspond-
ing to two amide and carbonyl functions. Furthermore, the
methine functions were proved by presence of singlet peaks
in the aromatic region in 1H NMR spectrum and signals
around 143 ppm in 13H NMR spectrum.

Treatment of the 2-hydrazinyl intermediate 4 with active
methylene, namely, ethyl acetoacetate, ethyl cyanoacetate,
diethyl malonate, or ammonium isothiocyanate afforded the
corresponding 5-substituted pyrazolones and triazolopyr-
imidines 6–9 (Scheme 1). -e new pyrazolone ring linked to
the pyridopyrimidine backbone in compound 6 was proved
with the appearance of strong bands at 3214 and 1725 cm−1
referred to NH and CO functions of the pyrazole ring in IR
spectrum and existence of two singlet peaks at δ 1.87 and
10.87 ppm due to methyl attached to the pyrazole ring and
-NH protons. -e molecular formula C18H14N6O of 6 was
confirmed by the presence of molecular ion peak [M+] atm/z
330 in MS.
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Scheme 1: Synthetic pathway for pyridopyrimidines (3–9).
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IR spectrum of compound 7 confirmed attachment of
the new 3-aminopyrazolone ring to the original backbone
by the presence of broad bands at 3431, 3196, and
1730 cm−1 due to -NH2, -NH, and CO functions of the
new moiety, respectively, besides other bands at 3346 and
1667 cm−1 for NH and CO functions of pyridopyrimidine.
Also, 1H NMR spectrum proved the presence of the new
aminopyrazolone ring by the existence of two singlet
peaks at δ 4.58 and 11.53 ppm corresponding to amino
and amide protons. -e appearance of molecular ion peak

[M+] at m/z 397 proved the molecular formula
C21H15N7O2 of 7 in MS.

On the contrary, the new pyrazolidine-3,5-dione ring in
compound 8 was proved by the existence of strong bands at
3210, 1705, and 1682 cm−1 referred to NH and 2 CO
functions in the IR spectrum. -e methylene group of the
new ring appeared as a singlet peak at δ 2.98 ppm in 1HNMR
spectrum and signal at 90.21 ppm in 13HNMR spectrum.MS
gave a [M+]-ion peak atm/z 398 equivalents to the molecular
formula C21H14N66O3.

3 4 5a 5b 5c 5d 5e 5f 5g 6 7 8 9 Doxoru
bicin

HepG2 12 97 65 42 61 19 95 45 97 100 90 86 34 100
PC-3 89 63 57 53 89 63 91 98 86 100 68 90 91 100
HCT-116 67 28 40 76 56 37 87 86 93 99 54 98 23 100
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Figure 2: Percentage of growth inhibition activity against cancer cell lines at 100 μM dose.

3 4 5a 5b 5c 5d 5e 5f 5g 6 7 8 9 Doxor
ubicin

HepG2 9.4 0.7 4.5 21.07 3 1.5 0.8 1.3 2.4 0.5 0.7 0.9 4.01 0.6

PC-3 10.76 13.61 23.7 10.65 12.9 18.5 13.98 8.6 7.5 6.82 9.65 8.76 7.3 6.8
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Figure 3: IC50 of the tested compounds against cancer cell lines.
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Finally, the new 3-aminotriazole ring fused with pyr-
idopyrimidine moiety in 9 was proved in the IR spectra by
the existence of bands at 3460 and 3317 cm−1 referred to NH2
and NH functions besides other band at 1669 cm−1 due to
carbonyl of pyridopyrimidine moiety. 1H NMR spectrum
displayed two singlets at 5.60 and 12.55 attributed to NH2
and NH protons of the new fused ring. 13C NMR spectrum
displayed the carbons at their expected regions, and MS gave
a [M+]-ion peak at m/z 355 equivalents to the molecular
formula of 9.

3.2. Biology

3.2.1. In Vitro Cytotoxic Screening against HepG2, PC-3, and
HCT-116 Cell Lines. Anticancer evaluation of the newly
obtained products represented in Figure 2 was screened
against three human cancer cell lines (HepG2, PC3, or
HCT-116) [23]. -e tested compounds that displayed
inhibitory effect more than 90% referring doxorubicin as a
standard drug (IC50 0.6 μM) were chosen for IC50 ex-
amination (concentrations required for 50% inhibition of
cell viability). -e in vitro screening of compounds 3–9 at
100 μM (Figure 3) exhibited remarkable anticancer ac-
tivities, and compound 6 showed promising potency
against hepatic cancer cell line (anti-HepG2) with
(IC50 � 0.5 μM).

3.2.2. Structure-Activity Relationships. -e cytotoxic
screening results revealed that thioxo precursor 3 displayed
poor anticancer activity against all cancer cell lines. Upon
converting the thioxo group in 3 to hydrazide in 4, antihepatic
cancer (HepG2) effect was greatly increased as a result of the
presence of the hydrophilic electron-rich nature in compound
4 which causes the electron factor to give a positive impact on
the antiproliferative properties. Attachment of the pyrazole
ring as a substituent at position 2 of the backbonemoiety as in
compounds 6, 7, and 8 afforded the highest potency of an-
ticancer activity. Compound 6 that carried 5-methyl-3-
oxopyrazole exhibited the highest activity against all the
tested cell lines. -e activity was reduced and shifted toward
the PC-3 cell line after replacement of the 5-methyl-3-oxo-
pyrazole nucleus at 6 by 3-amino-5-oxopyrazol in 7. Upon
replacing the mentioned pyrazole moiety in 6 by 3,5-diox-
opyrazole in 8, or by fused triazolo[4,3-a]pyrimidine in 9, the
activity profile was changed.

3.2.3. Kinase Inhibition Screening. According to the data of
cytotoxic assay, the highly potent derivative 6was chosen for
in vitro inhibition assessment against a list of different
protein, AKT1, AKT2, BRAF (V600E), CDK2/cyclin A1,
CHK1, EGFR, PDGFRβ, and c-RAF kinases at 100 μM
utilized the radiometric or ADP-Glo assay procedure. -ree
of the tested kinases (BRAF V600E, EGFR, and PDGFRβ)

Table 1: Percentage of kinase inhibition of derivative 6 at 100 μM.

Kinase Compound 6
% Inhibition

AKT1 −79
AKT2 −85
BRAF (V600E) −91
CDK2/cyclin A1 −78
CHK1 −6
EGFR −97
PDGFRβ −94
c-RAF 37
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Figure 4: % of kinase inhibition of target molecule 6.
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were highly inhibited by more than 90% with the highest
inhibition recorded with EGFR at 97%. On the contrary,
compound 6 appeared to partially activate the c-RAF kinase
with a rise in counts of 37% over the control substrate rates
(Table 1, Figure 4).

3.2.4. Molecular Docking Study. Molecular docking was
used to analyze the supposed binding mode of the designed
compound with CDK6 and EGFR to better understand the
mechanism of inhibition. For the docking studies, the crystal
structure of the complex CDK6 and EGFR has been chosen

Table 2: Molecular simulation results for ACV/PNV interactions with HAS.

Ligand Receptor Amino acid residues Interaction type Distance (Å) Total binding energy (kcal·mol−1) RMSD

Compd. 6

EGFR LEU 694 pi-H 3.47 −6.156 1.878(4HJO) MET 769 H-acceptor 3.86

CDK6 VAL 101 H-acceptor 3.52
−6.942 1.251LYS 147 H-acceptor 3.09

(5L2I) VAL 27 pi-H 4.35
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Figure 5:-e interaction between compound 6 and CDK6 kinase protein (PDB code: 5L2I), presented byMOE 2015: (a, b) 3D compound 6
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cavity. (d) 2D diagrams of compound 6 (green) and padlbocyclib (red) were overlapping.
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(PDB code 5L2I [24] and PDB code 4HJO [25]). -e most
active compound 6 in the current study was docked into the
CDK6 and EGFR kinase’s putative active site. For the
receptor preparation, the Molecular Operating Environ-
ment software package MOE® 2015 [26] has been used by
means of the removal of water molecules and the addition
of hydrogen atoms. MOE has also been used for the graphic
structure of ligands 3D and then saved on data lists after
minimizing structure and geometries energy. For each
receptor, the pockets were then used to dock ligands after

setting London dG to scoring function and GBVI/WSA dG
to re scoring function. -erefore, the scoring and RMSD
(root-mean-square deviation) values for the best confor-
mation of each ligand with different receptors are shown in
Table 2, as well as 2D and 3D figures of each selected
conformation are shown in Figures 3 and 4. Docking
simulation of compound 6 into kinase domain of CDK6
and EGFR postulated the pivotal function of both the
backbone moiety and the side chain substituent (Figures 5
and 6).
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4. Conclusions

A library of substituted pyridopyrimidines 3–9 were
designed and screened for their cytotoxicity. -ere are
potent growth inhibitory effects against hepatic, prostate,
and colon cancer cells lines, in comparison with doxorubicin
as positive control. Regarding HepG2 cell line, compound 6
showed the greatest inhibitory activities against hepatic
cancer (HepG2) with inhibition percent (IC50 � 0.5 μM)
more potent than doxorubicin (IC50 � 0.6 μM). A molecular
docking study of compound 6 into the ATP binding site of
EGFR exhibited identical binding as erlotinib.
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