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Topological indices are numerical numbers that represent the topology of a molecule and are calculated from the graphical
depiction of the molecule. )e importance of topological indices is due to their use as descriptors in QSPR/QSAR modeling.
QSPRs (quantitative structure-property relationships) and QSARs (quantitative structure-activity relationships) are mathematical
correlations between a specified molecular property or biological activity and one or more physicochemical and/or molecular
structural properties. In this paper, we give explicit expressions of some degree-based topological indices of two classes of metal-
organic frameworks (MOFs), namely, butylated hydroxytoluene- (BHT-) based metal-organic (M � Co, Fe, Mn, Cr) (MBHT)
frameworks and M1TPyP − M2 (TPyP� 5, 10, 15, 20-tetrakis(4-pyridyl)porphyrin and M1,M2 � Fe and Co) MOFs.

1. Introduction

Metal-organic frameworks (MOFs) are defined by their
regular array of metal cores and organic linkers in a three-
dimensional framework. In MOFs, all metal cores are
connected to organic linkers to construct networks which
can contain a range of guest molecules. )e first MOF was
reported in 1959 by Kinoshita et al. [1]. MOFs receive at-
tention due to the use of reticular chemistry for their design
and synthesis [2]. After that, thousands of MOFs have been
synthesized and broaden the scope of their potential ap-
plications. MOFs have shown applications in the area of gas
catalysis [3–5], delivery of drugs [6–8], sensing [9, 10],
separation [11, 12], storage [13–15], and adsorption [16–20].
)ere are many open sites in MOFs that are capable of
capturing industrial flue gases, such as CO2, SO2, NO, CO,
and NO2 [21–23].)ese flue gases have the harmful effect on
the environment. For instance, the emission of CO2 from the
burning of fossil fuel is the major issue for climate change
and greenhouse effect [24]. SO2 and NO2 are the main

reason for the induction of acid rain as well as smog [25], and
CO and NO are asphyxiants for humans [26]. )erefore,
there is a need to develop an efficient strategy to limit the
release of these hazardous gases to improve the worsening
environmental quality. MOFs have shown a great potential
to trap CO2 in their porous structure. MOF-74 has the ability
to capture CO2 at room temperature and low pressure. For
more details on the ability of MOFs to capture flue gas
molecules, refer [27–29].

In mathematical chemistry and in chemical graph the-
ory, the structural formula of a chemical compound is
represented by a molecular graph where the vertices are
represented by the atoms, and the edges are represented by
the bonds between the vertices. Let G(V(G), E(G)) be a
molecular graph, where V(G) and E(G) denote the vertex
set and edge set, respectively. Two vertices x and y are
adjacent if they are end vertices of a common edge e � xy.
)e set of neighbors of a vertex x is denoted by Nx and is
defined as Nx � y ∈ V(G): xy ∈ E(G)􏼈 􏼉. )e degree of a
vertex x is symbolized by dx and is the cardinality of the set
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Nx. Let Sx denote the sum of degrees of the neighbor of the
vertex x, that is, Sx � 􏽐 dy: y ∈ Nx􏽮 􏽯. For undefined ter-
minologies related to graph theory, we refer the reader to
[30].

Molecular descriptors play an important role in the
quantitative description of the molecular structure in finding
appropriate predictive models. Molecular descriptors are
terms that characterize a particular aspect of a molecule [31]
and can be categorized into global and local according to the
way the molecular structure is characterized.)e topological
indices (TIs) are among the most useful molecular de-
scriptors known today [32–34]. )ese descriptors are nu-
merical values related to chemical structure to correlate
chemical structure with different physical properties,
chemical reactivity, or biological activity [31]. First, topo-
logical index was introduced byWeiner [35], namedWeiner
index, and is defined as the number of carbon-carbon be-
tween all pairs of carbon atoms in an alkane. After 25 years,
the introduction of connectivity indices and their applica-
tionmotivated the study of such descriptors [31]. Most of the
known topological indices are global molecular descriptors.
It means these indices characterize the molecule as a whole.
For example, it can describe its branching or shape of the
entire structure.)e first degree-based topological index was
introduced by Randic [36] in 1975. It is denoted by R−1/2(G)

and is defined as

R−1/2(G) � 􏽘
xy∈E(G)

1
�����
dxdy

􏽱 . (1)

Randic observed that there is a very good correlation
between Randic index and certain physical/chemical
properties of alkanes: boiling points, enthalpies of forma-
tion, chromatographic retention times, surface areas, and
parameters in the Antoine equation for vapor pressure.
Later, in 1998, Bollobás and Erd s [37] generalized this
index by replacing −1/2 with any real number α, which is
called the general Randic index:

Rα(G) � 􏽘
xy∈E(G)

dxdy􏼐 􏼑
α
. (2)

)e first and second Zagreb indices were introduced by
Gutman et al. [38] and were applied to the branching
problem in 1972. )e first and second Zagreb indices are
denoted and defined as

M1(G) � 􏽘
xy∈E(G)

dx + dy􏼐 􏼑,

M2(G) � 􏽘
xy∈E(G)

dx × dy􏼐 􏼑.
(3)

Recently, Shirdel et al. [39] proposed the hyper-Zagreb
index:

HM(G) � 􏽘
xy∈E(G)

dx + dy􏽨 􏽩
2
. (4)

)e Zagreb indices and their variants have been used to
study molecular complexity [40–44], chirality [45], ZE-

isomerism [46], and heterosystems [47] whilst the overall
Zagreb indices exhibit potential applicability for deriving
multilinear regression models. Various researchers also use
the Zagreb indices in their QSPR and QSAR studies [48–53].

In 2009, Zhou and Trinajstic [54] introduced the sum
connectivity index. It was observed that the sum connec-
tivity index correlates well with the π electron energy of
hydrocarbons. It is denoted and defined as

SCI(G) � 􏽘
xy∈E(G)

1
�������
dx + dy

􏽱 . (5)

Recently, Zhou and Trinajstic [55] extended this concept
to the general sum connectivity index. )e general sum
connectivity index is defined as

χα(G) � 􏽘
xy∈E(G)

dx + dy􏼐 􏼑
α
. (6)

Atom-bond connectivity (ABC) index was introduced by
Estrada et al. [56] in 1998 which is denoted as

ABC(G) � 􏽘
xy∈E(G)

����������
dx + dy − 2

dxdy

􏽳

. (7)

)eABC index provides a good model for the stability of
linear and branched alkanes as well as the strain energy of
cycloalkanes [56, 57].

Recently, the well-known connectivity topological index
is geometric-arithmetic (GA)index which was introduced by
Vukičević and Furtula in [58]. For a graph G, the GA index is
denoted and defined as

GA(G) � 􏽘
xy∈E(G)

2
�����
dxdy

􏽱

dx + dy

. (8)

It has been demonstrated on the example of octane
isomers that GA index is well correlated with a variety of
physicochemical properties.

)e fourth version of the atom-bond connectivity index
(ABC4) was introduced by Ghorbani and Hosseinzadeh [45]
in 2010 and is defined as

ABC4(G) � 􏽘
xy∈E(G)

���������
Sx + Sy − 2

SxSy

􏽳

. (9)

)e fifth version of the topological index GA is proposed
by Graovac et al. [59] in 2011 which is expressed as

GA5(G) � 􏽘
xy∈E(G)

2
����
SxSy

􏽱

Sx + Sy

. (10)

For more details on the computation of topological
indices, we refer the readers to [60–65].

)e main aim of this work is to compute the degree-
based topological indices of two classes of MOFs. )e
computed topological indices can be used in QSPR/QSAR
studies to improve the physical/chemical properties of the
considered MOFs. )e same technique can be used to
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compute the degree-based topological indices of other
classes of MOFs. In the next section, we compute the above-
defined topological indices of M1TPyP − M2 metal-organic
frameworks.

2. Topological Aspects of 2D Structure of
M1TPyP−M2 Metal-Organic Frameworks

Wurster et al. [66] prepared M1TPyP − M2 MOFs and
observed that these MOFs have two metal centers at two
distinguished coordination environments. )ey are bime-
tallic MOFs. Depending on M1 andM2, these MOFs become
either hetero- or homobimetallic. )e performance of these
MOFs was observed in oxygen evolution reactions, which
generate O2 from water. )ey reported that the catalytic
activity of metalloporphyrins was lower than that of het-
erobimetallic MOFs. )e 2D structure of M1TPyP − M2
MOFs is depicted in Figure 1. We denote the graph of
M1TPyP − M2 MOFs by G1(c, d), where c and d represent
the number of unit cell in each row and column, respectively.
)e 2D structure of themolecular graph ofG1(2, 2) is shown
in Figure 1.

A simple calculation shows that G1(c, d) has 74cd

vertices and 88cd − 2c − 2d + 1 edges. First, the general

Randic connectivity and general sum connectivity indices of
G1(c, d) were computed.

Theorem 1. 5e Randic connectivity index and general sum
connectivity indices of the graph G1(c, d) are

Rα G1(c, d)( 􏼁 � (24cd + 1)(3)
α

+(6c + 6d − 6)(6)
α

+(56cd − 4c − 4d + 2)(9)
α

+(8cd − 4c − 4d + 4)(12)
α
,

χα G1(c, d)( 􏼁 � (24cd + 1)(4)
α

+(6c + 6d − 6)(5)
α

+(56cd − 4c − 4d + 2)(6)
α

+(8cd − 4c − 4d + 4)(7)
α
.

(11)

Proof. To compute the general Randic connectivity index
and general sum connectivity index, we need to find the edge
partition of G1(c, d) depending on the degree of end ver-
tices. )is partition is given in Table 1. Now using the values
of the edge partition in the definition of these indices, we get
the result as follows:

Rα G1(c, d)( 􏼁 � 􏽘

xy∈E(1,3) G1(c,d)( )

dxdy􏼐 􏼑
α

+ 􏽘

xy∈E(2,3) G1(c,d)( )

dxdy􏼐 􏼑
α

+ 􏽘

xy∈E(3,3) G1(c,d)( )

dxdy􏼐 􏼑
α

+ 􏽘

xy∈E(3,4) G1(c,d)( )

dxdy􏼐 􏼑
α

� (24cd + 1)(3)
α

+(6c + 6d − 6)(6)
α

+(56cd − 4c − 4d + 2)(9)
α

+(8cd − 4c − 4d + 4)(12)
α
,

χα G1(c, d)( 􏼁 � 􏽘

xy∈E(1,3) G1(c,d)( )

dx + dy􏼐 􏼑
α

+ 􏽘

xy∈E(2,3) G1(c,d)( )

dx + dy􏼐 􏼑
α

+ 􏽘

xy∈E(3,3) G1(c,d)( )

dx + dy􏼐 􏼑
α

+ 􏽘

xy∈E(3,4) G1(c,d)( )

dx + dy􏼐 􏼑
α

� (24cd + 1)(4)
α

+(6c + 6d − 6)(5)
α

+(56cd − 4c − 4d + 2)(6)
α

+(8c d − 4c − 4d + 4)(7)
α
.

(12)

□
Corollary 1. 5e values of Randic connectivity, first and
second Zagreb, hyper-Zagreb, and sum connectivity indices

can be computed from the above theorem by using the value of
α � −1/2, −1, 1, 2.

R−1/2 G1(c, d)( 􏼁 �
28

�
3

√

3
+
56
3

􏼠 􏼡cd +
�
6

√
−
2

�
3

√

3
−
4
3

􏼠 􏼡c +
�
6

√
−
2

�
3

√

3
−
4
3

􏼠 􏼡d +
�
3

√
−

�
6

√
+
2
3
,

M1 G1(c, d)( 􏼁 � 488cd − 22c − 22d + 14,

M2 G1(c, d)( 􏼁 � 672cd − 48c − 48d + 33,

SCI G1(c, d)( 􏼁 �
28

�
6

√

3
+
8

�
7

√

7
􏼠 􏼡cd +

�
6

√
5

5
−
2

�
6

√

3
−
4

�
7

√

7
􏼠 􏼡c +

�
6

√
5

5
−
2

�
6

√

3
−
4

�
7

√

7
􏼠 􏼡d +

�
6

√

3
−
6

�
5

√

5
+
4

�
7

√

7
+
1
2
,

HM G1(c, d)( 􏼁 � 2792cd − 190c − 190d + 134.

(13)
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In the next theorem, the ABC and GA indices ofG1(c, d)

were computed.
Theorem 2. 5e ABC and GA indices of the graph G1(c, d)

are

ABC G1(c, d)( 􏼁 � 8
�
6

√
+
4

��
15

√

3
+
112
3

􏼠 􏼡 + cd + 3
�
2

√
−
2

��
15

√

3
−
8
3

􏼠 􏼡c + 3
�
2

√
−
2

��
15

√

3
−
8
3

􏼠 􏼡d +

�
6

√

3
+
2

��
15

√

3
− 3

�
2

√
+
4
3
,

GA G1(c, d)( 􏼁 �
116

�
3

√

7
+ 56􏼠 􏼡cd +

12
�
6

√

5
−
16

�
3

√

7
− 4􏼠 􏼡c +

12
�
6

√

5
−
16

�
3

√

7
− 4􏼠 􏼡d +

39
�
3

√

14
−
12

�
6

√

5
+ 2.

(14)

Figure 1: (2 × 2) supercell of M1TPyP − M2 MOFs (M1 and M2 � Fe and Co).

Table 1: )e partition of edge set of graph G1(c, d) based on degrees of end vertices of each edge.

(dx, dy) where xy ∈ E(G1(c, d)) Number of edges
(1, 3) 24c d + 1
(2, 3) 6c + 6d − 6
(3, 3) 56c d − 4c − 4d + 2
(3, 4) 8c d − 4c − 4 d + 4
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Proof. By using the values of the edge partition given in
Table 1 in the definition of the ABC index, this index can be
determined as follows:

ABC G1(c, d)( 􏼁 � (24c d + 1)

�
6

√

3
􏼠 􏼡 +(6c + 6d − 6)

�
2

√

2
􏼠 􏼡 +(56cd − 4c − 4d + 2)

2
3

􏼒 􏼓 +(8cd − 4c − 4d + 4)

��
15

√

6
􏼠 􏼡

� 8
�
6

√
+
4

��
15

√

3
+
112
3

􏼠 􏼡cd + 3
�
2

√
−
2

��
15

√

3
−
8
3

􏼠 􏼡c + 3
�
2

√
−
2

��
15

√

3
−
8
3

􏼠 􏼡d +

�
6

√

3
+
2

��
15

√

3
− 3

�
2

√
+
4
3
.

(15)

Similarly, the GA index can be calculated as

GA G1(c, d)( 􏼁 � (24cd + 1)

�
3

√

2
􏼠 􏼡 +(6c + 6d − 6)

2
�
6

√

5
􏼠 􏼡 +(56cd − 4c − 4d + 2)(1) +(8cd − 4c − 4d + 4)

4
�
3

√

7
􏼠 􏼡

�
116

�
3

√

7
+ 56􏼠 􏼡cd +

12
�
6

√

5
−
16

�
3

√

7
− 4􏼠 􏼡c +

12
�
6

√

5
−
16

�
3

√

7
− 4􏼠 􏼡d +

39
�
3

√

14
−
12

�
6

√

5
+ 2.

(16)

Finally, the expression of ABC4 and GA5 indices are
calculated in the next theorem. □

Theorem 3. 5eABC4 and GA5 indices of graphG1(c, d) are

ABC4 G1(c, d)( 􏼁 �
4

��
42

√

7
+
16

��
42

√

7
+
4

���
170

√

15
+
16

�
2

√

3
+
24

�
3

√

7
+
4

�
6

√

3
+
16
3

􏼠 􏼡cd

+
2

��
10

√

3
+
2

��
14

√

3
−
4

��
42

√

7
−
8

��
42

√

7
+

���
182

√

7
+
2

���
462

√

21
−
8

�
3

√

7
−
2

�
6

√

3
+ 1􏼠 􏼡c

+
2

��
10

√

3
+
2

��
14

√

3
−
4

��
42

√

7
−
8

��
42

√

7
+

���
182

√

7
+
2

���
462

√

21
−
8

�
3

√

7
−
2

�
6

√

3
+ 1􏼠 􏼡d

+
4

��
42

√

7
−

��
14

√

3
−

��
10

√

3
+
2

��
42

√

7
−
2

���
182

√

7
−

���
462

√

21
+
8

�
3

√

7
+
2

�
6

√

3
− 2,

GA5 G1(c, d)( 􏼁 � 6
�
7

√
+
48

��
10

√

19
+
24

��
21

√

5
+
16

��
30

√

11
+
16

��
70

√

17
+ 24􏼠 􏼡cd

+
8

�
2

√

3
+
8

�
3

√

7
+
16

��
14

√

15
−
12

��
21

√

5
−
8

��
30

√

11
+
8

��
42

√

13
−
16

��
70

√

17
􏼠 􏼡c

+
8

�
2

√

3
+
8

�
3

√

7
+
16

��
14

√

15
−
12

��
21

√

5
−
8

��
30

√

11
+
8

��
42

√

13
−
16

��
70

√

17
􏼠 􏼡d

+
3

��
21

√

5
−
16

�
3

√

7
−
32

��
14

√

15
−
4

�
2

√

3
+
8

��
30

√

11
−
4

��
42

√

13
+
16

��
70

√

17
+ 2.

(17)

Proof. To compute the values of ABC4 and GA5 indices, we
need to find the partition of the edge set based on the sum of
degrees of the neighbors of the end vertices of each edge.

)is partition is presented in Table 2. Now, using the values
in the definition of ABC4 index, this index can be calculated
as
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ABC4 G1(c, d)( 􏼁 � (4c + 4d − 2)

��
14

√

6
􏼠 􏼡 +(24cd − 12c − 12d + 3)

2
��
42

√

21
􏼠 􏼡 +(4c + 4d − 2)

��
10

√

6
􏼠 􏼡

+(4c + 4d − 2)

���
426

√

42
􏼠 􏼡 +(2c + 2d − 4)

1
2

􏼒 􏼓 +(12cd − 4c − 4d + 4)
2

�
3

√

7
􏼠 􏼡 +(4c + 4d − 8)

���
182

√

28
􏼠 􏼡

+(16cd)

�
2

√

3
􏼠 􏼡 +(8cd − 8c − 8d + 8)

��
42

√

14
􏼠 􏼡 +(12cd)

4
9

􏼒 􏼓 +(8cd)

���
170

√

30
􏼠 􏼡

+(8cd − 4c − 4d + 4)

�
6

√

6
􏼠 􏼡 �

4
��
42

√

7
+
16

��
42

√

7
+
4

���
170

√

15
+
16

�
2

√

3
+
24

�
3

√

7
+
4

�
6

√

3
+
16
3

􏼠 􏼡cd

+
2

��
10

√

3
+
2

��
14

√

3
−
4

��
42

√

7
−
8

��
42

√

7
+

���
182

√

7
+
2

���
462

√

21
−
8

�
3

√

7
−
2

�
6

√

3
+ 1􏼠 􏼡c

+
2

��
10

√

3
+
2

��
14

√

3
−
4

��
42

√

7
−
8

��
42

√

7
+

���
182

√

7
+
2

���
462

√

21
−
8

�
3

√

7
−
2

�
6

√

3
+ 1􏼠 􏼡d

+
4

��
42

√

7
−

��
14

√

3
−

��
10

√

3
+
2

��
42

√

7
−
2

���
182

√

7
−

���
462

√

21
+
8

�
3

√

7
+
2

�
6

√

3
− 2.

(18)
Similarly, the value of GA5 index can be calculated as

GA5 G1(c, d)( 􏼁 � (4c + 4d − 2)
2

�
2

√

3
􏼠 􏼡 +(24cd − 12c − 12d + 3)

��
21

√

5
􏼠 􏼡 +(4c + 4d − 2)(1) +(4c + 4d − 2)

2
��
42

√

13
􏼠 􏼡

+(2c + 2d − 4)
4

�
3

√

7
􏼠 􏼡 +(12cd − 4c − 4d + 4)(1) +(4c + 4d − 8)

4
��
14

√

15
􏼠 􏼡

+(16cd)
3

�
7

√

8
􏼠 􏼡 +(8cd − 8c − 8d + 8)

2
��
70

√

17
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6
��
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√

19
􏼠 􏼡
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2

��
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√
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􏼠 􏼡 � 6

�
7

√
+
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��
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√

19
+
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��
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√

5
+
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��
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√
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+
16

��
70

√

17
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+
8

�
2

√

3
+
8

�
3

√

7
+
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��
14

√

15
−
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��
21

√

5
−
8

��
30

√

11
+
8

��
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√
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−
16

��
70

√
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+
8

�
2

√

3
+
8

�
3

√

7
+
16

��
14

√

15
−
12

��
21

√

5
−
8

��
30

√

11
+
8

��
42

√

13
−
16

��
70

√

17
􏼠 􏼡d

+
3

��
21

√

5
−
16

�
3

√

7
−
32

��
14

√

15
−
4

�
2

√

3
+
8

��
30

√

11
−
4

��
42

√

13
+
16

��
70

√

17
+ 2.

(19)

□
3. Topological Aspects of 2D CoBHT
(CO) Lattice

Clough et al. [67] synthesize the 2D cobalt bis(dithioline)
(CoBHT) metal-organic surface. Chakravarty et al. [10]
investigated the electronic and magnetic properties of a 2D
metal-organic (MBHT) framework. )ey observed that all
these frameworks are planar, perfect Kagome lattices with a
six-fold symmetry.)ere is a possibility that these MOFs can
be used as gas sensors such as CO sensing. )e optimized
structure of these MOFs is shown in Figure 2.

We denote the molecular graph of 2D metalorganic
superlattice by G2(a, b) with b unit cells in each row and a

unit cell in each column. Figure 2 depicts the molecular
graphG2(2, 2). A simple calculation shows thatG2(a, b) has
27ab vertices and 36ab − 2a − 2b edges. First, we compute
the general Randic connectivity and general sum connec-
tivity indices of G2(a, b).

Theorem 4. 5e Randic connectivity index and general sum
connectivity indices of graph G2(a, b) are
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Rα G2(a, b)( 􏼁 � (2a + 2b)(3)
α

+(2a + 2b)(4)
α

+(12ab − 2a − 2b)(6)
α

+(12ab − 2a − 2b)(8)
α

+(12ab)(9)
α
,

χα G2(a, b)( 􏼁 � (2a + 2b)(4)
α

+(2a + 2b)(4)
α

+(12ab − 2a − 2b)(5)
α

+(12ab − 2a − 2b)(6)
α

+(12ab)(6)
α
.

(20)

Proof. To compute the general Randic connectivity index
and general sum connectivity index, we need to find the edge
partition of G2(a, b) depending on the degree of end ver-
tices. )is partition is given in Table 3. Now using the values
of the edge partition in the definition of these indices, we get
the result as follows:

Rα G2(a, b)( 􏼁 � 􏽘

xy∈E(1,3) G2(a,b)( )

dxdy􏼐 􏼑
α

+ 􏽘

xy∈E(2,2) G2(a,b)( )

dxdy􏼐 􏼑
α

+ 􏽘

xy∈E(2,3) G2(a,b)( )

dxdy􏼐 􏼑
α

+ 􏽘

xy∈E(2,4) G2(a,b)( )

dxdy􏼐 􏼑
α

+ 􏽘

xy∈E(3,3) G2(a,b)( )

dxdy􏼐 􏼑
α

� (2a + 2b)(1 × 3)
α

+(2a + 2b)(2 × 2)
α

+(12ab − 2a − 2b)(2 × 3)
α

+(12ab − 2a − 2b)(2 × 4)
α

+(12ab)(3 × 3)
α

� (2a + 2b)(3)
α

+(2a + 2b)(4)
α

+(12ab − 2a − 2b)(6)
α

+(12ab − 2a − 2b)(8)
α

+(12ab)(9)
α
,

χα G2(a, b)( 􏼁 � 􏽘

xy∈E(1,3) G2(a,b)( )

dx + dy􏼐 􏼑
α

+ 􏽘

xy∈E(2,2) G2(a,b)( )

dx + dy􏼐 􏼑
α

+ 􏽘

xy∈E(2,3) G2(a,b)( )

dx + dy􏼐 􏼑
α

+ 􏽘

xy∈E(2,4) G2(a,b)( )

dx + dy􏼐 􏼑
α

+ 􏽘

xy∈E(3,3) G2(a,b)( )

dx + dy􏼐 􏼑
α

� (2a + 2b)(1 + 3)
α

+(2a + 2b)(2 + 2)
α

+(12ab − 2a − 2b)(2 + 3)
α

+(12ab − 2a − 2b)(2 + 4)
α

+(12ab)(3 + 3)
α
. � (2a + 2b)(4)

α
+(2a + 2b)(4)

α
+(12ab − 2a − 2b)(5)

α
+(12ab − 2a − 2b)(6)

α
+(12ab)(6)

α
.

(21)

□
Corollary 2. 5e values of Randic connectivity, first and
second Zagreb, hyper-Zagreb, and sum connectivity indices

can be computed from the above theorem by using the value of
α � −1/2, −1, 1, 2.

Table 2: )e partition of edge set of graph G1(c, d) based on sum of degrees of neighbor vertices of end vertices of each edge.

(Sx, Sy) where xy ∈ E(G1(c, d)) Number of edges
(3, 6) 4c + 4d − 2
(3, 7) 24c d − 12c − 12d + 3
(6, 6) 4c + 4d − 2
(6, 7) 4c + 4d − 2
(6, 8) 2c + 2d − 4
(7, 7) 12c d − 4c − 4 d + 4
(7, 8) 4c + 4d − 8
(7, 9) 16c d

(7, 10) 8c d − 8c − 8 d + 8
(9, 9) 12c d

(9, 10) 8c d

(10, 12) 8c d − 4c − 4 d + 4
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R−1/2 G2(a, b)( 􏼁 � (3
�
2

√
+ 2

�
6

√
+ 4)ab +

2
�
3

√

3
−

�
2

√

2
−
6
3

+ 1􏼠 􏼡a +
2

�
3

√

3
−

�
2

√

2
−
6
3

+ 1􏼠 􏼡b,

M1 G2(a, b)( 􏼁 � 204ab − 6a − 6b,

M2 G2(a, b)( 􏼁 � 276ab − 14a − 14b,

SCI G2(a, b)( 􏼁 �
12

�
5

√

5
+ 4

�
6

√
􏼠 􏼡ab + 2 −

�
6

√

3
−
2

�
5

√

5
􏼠 􏼡a + 2 −

�
6

√

3
−
2

�
5

√

5
􏼠 􏼡b,

HM G2(a, b)( 􏼁 � 1164ab − 58a − 58b.

(22)

In the next theorem, the ABC and GA indices ofG2(a, b)

were computed.

Theorem 5. 5e ABC and GA indices of the graph G2(a, b)

are

ABC G2(a, b)( 􏼁 �
12

�
2

√

8
􏼠 􏼡ab +

2
�
6

√

3
−

�
2

√
􏼠 􏼡a

+
2

�
6

√

3
−

�
2

√
􏼠 􏼡b,

GA G2(a, b)( 􏼁 � 8
�
2

√
+
24

�
6

√

5
+ 12􏼠 􏼡ab

+
�
3

√
−
4

�
2

√

3
−
4

�
6

√

5
+ 2􏼠 􏼡a

+
�
3

√
−
4

�
2

√

3
−
4

�
6

√

5
+ 2􏼠 􏼡b.

(23)

Proof. By using the values of the edge partition given in
Table 3 in the definition of the ABC index, this index can be
determined as follows:

ABC G2(a, b)( 􏼁 � (2a + 2b)

�
6

√

3
􏼠 􏼡 +(2a + 2b)

�
2

√

2
􏼠 􏼡

+(12ab − 2a − 2b)

�
2

√

2
􏼠 􏼡

+(12ab − 2a − 2b)

�
2

√

2
􏼠 􏼡

+(12ab)
2
3

􏼒 􏼓 �
12

�
2

√

8
􏼠 􏼡ab

+
2

�
6

√

3
−

�
2

√
􏼠 􏼡a +

2
�
6

√

3
−

�
2

√
􏼠 􏼡b.

(24)

Similarly, the GA index can be calculated as

C
S
Co, Fe, Mn, Cr

Figure 2: (2 × 2) supercell of planar MBHT framework.
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GA G2(a, b)( 􏼁 � (2a + 2b)

�
3

√

2
􏼠 􏼡 +(2a + 2b)(1)

+(12ab − 2a − 2b)
2

�
6

√

5
􏼠 􏼡

+(12ab − 2a − 2b)
2

�
2

√

3
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+(12ab)(1) � 8
�
2

√
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24

�
6

√

5
+ 12􏼠 􏼡ab

+
�
3

√
−
4

�
2

√

3
−
4

�
6

√

5
+ 2􏼠 􏼡a

+
�
3

√
−
4

�
2

√

3
−
4

�
6

√

5
+ 2􏼠 􏼡b.

(25)

Finally, the expression of ABC4 and GA5 indices are
calculated in the next theorem. □

Theorem 6. 5eABC4 and GA5 indices of the graphG2(a, b)

are

ABC4 G2(a, b)( 􏼁 �
3

��
14

√

3
+
6

���
182

√

7
􏼠 􏼡ab

+

��
35

√

5
−
5

��
14

√

56
+
4

��
42

√

21
−
3

���
182

√

14
+
2

�
3

√

7
􏼠 􏼡a

+
3

��
14

√

3
+
6

���
182

√

7
􏼠 􏼡ab

+

��
35

√

5
−
5

��
14

√

56
+
4

��
42

√

21
−
3

���
182

√

14
+
2

�
3

√

7
􏼠 􏼡b,

GA5 G2(a, b)( 􏼁 �
32

��
14

√

5
+ 12􏼠 􏼡ab

+
8

�
5

√

9
−
8

��
14

√

5
+
2

��
21

√

5
+

��
35

√

3
− 2􏼠 􏼡a

+
8

�
5

√

9
−
8

��
14

√

5
+
2

��
21

√

5
+

��
35

√

3
− 2􏼠 􏼡b.

(26)

Proof. To compute the values of ABC4 and GA5 indices, we
need to find the partition the edge set based on the sum of
degrees of the neighbors of the end vertices of each edge.

)is partition is presented in Table 4. Now, using the values
in the definition of ABC4 index, this index can be calculated
as

Table 3: )e partition of edge set of graph G2(a, b) based on
degrees of end vertices of each edge.

(dx, dy) where xy ∈ E(G2(a, b)) Number of edges
(1, 3) 2a + 2b

(2, 2) 2a + 2b

(2, 3) 12ab − 2a − 2b

(2, 4) 12ab − 2a − 2b

(3, 3) 12ab

Table 4:)e partition of edge set of graphG2(a, b) based on sum of
degrees of neighbor vertices of end vertices of each edge.

(Sx, Sy) where xy ∈ E(G2(a, b)) Number of edges
(3, 7) 2a + 2b

(4, 5) 2a + 2b

(5, 7) 2a + 2b

(7, 7) a + b

(7, 8) 24ab − 6a − 6b

(8, 8) 12ab − 3a − 3b
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ABC4 G2(a, b)( 􏼁 � (2a + 2b)
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��
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√
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��
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√
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8
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√
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√
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√
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��
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√

3
+
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���
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√
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+
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√
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√
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��
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√
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−
3

���
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√
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+
2

�
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√

7
􏼠 􏼡b.

(27)

Similarly, the value of GA5 index can be calculated as

GA5 G2(a, b)( 􏼁 � (2a + 2b)

��
21

√
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4
�
5

√

9
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��
35

√

6
􏼠 􏼡 +(a + b)(1) +(24ab − 6a − 6b)

4
��
14

√

15
􏼠 􏼡

+(12ab − 3a − 3b)(1)

�
32

��
14

√

5
+ 12􏼠 􏼡ab +

8
�
5

√

9
−
8

��
14

√

5
+
2

��
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√

5
+

��
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3
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8
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√
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8

��
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√

5
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2

��
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√

5
+

��
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√

3
− 2􏼠 􏼡b.

(28)

□
4. Conclusion

)e importance of computing the molecular descriptors
can be understood by taking into account the recent
advances in drug discovery technologies. Combinatorial
chemistry, pharmacogenomics, and high-throughput
screening enable us to obtain and evaluate thousands of
compounds in a short period of time. )ese technologies
pose new challenges for computational scientists as they
require new approaches to computer-aided lead dis-
covery and optimization in an accelerated way. )e
traditional quantitative structure-activity relationships
(QSARs) are not only used to improve the biological
activity of leads but also to improve their physico-
chemical, pharmacokinetic, and toxicological properties.
Hence, the computed topological indices can be used in
QSPR/QSAR studies to improve the physical/chemical
properties of the considered MOFs.
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