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This paper presents a fault detection and isolation (FDI) approach in order to detect and isolate actuators (thrusters and reaction
wheels) faults of an autonomous spacecraft involved in the rendez-vous phase of the Mars Sample Return (MSR) mission. The
principal component analysis (PCA) has been adopted to estimate the relationships between the various variables of the process.
To ensure the feasibility of the proposed FDI approach, a set of data provided by the industrial “high-fidelity” simulator of theMSR
and representing the opening (resp., the rotation) rates of the spacecraft thrusters (resp., reaction wheels) has been considered.The
test results demonstrate that the fault detection and isolation are successfully accomplished.

1. Introduction

In industry, an embedded system can be subjected to various
promptings that may significantly affect the performance and
the security of the system in question. Then, any dysfunction
in the process can lead to serious consequences. It is therefore
essential to establish a rigorous monitoring process assuring
the detection of any failure and the automatic reconfiguration
of the system in many domains (monitoring industrial
facilities, automotive, aerospace, satellite autonomy, . . .) [1–
3].

In this regard, aerospace is considered the most critical
area of applications. Thus, autonomous spacecrafts have
become a key technology for increasing their survival capa-
bility. Various researchers have developed diagnosis systems
to detect and isolate faults that can appear in a spacecraft [4–
6].

The primary purpose of fault protection is to ensure that
anomalies or operational problems encountered during the
operation of the spacecraft do not result in a permanent

reduction in the spacecraft’s capabilities or loss of themission
itself. To avoid these risks and any deviation from the nominal
orbits, it is indispensable to provide a system with a fault
detection and isolation (FDI) functionality and an automatic
reconfiguration onboard a spacecraft.

The hardware redundancy is considered the most adapt-
able method that can provide the FDI functionality on-
board spacecrafts. Nevertheless, such an approach may be
very expensive and complex due to the additional weight
and volume of the redundant elements. Model-based FDI
methods, based on the analytical redundancy, address this
drawback by modeling the monitored system to make a
fault/no-fault decision [7, 8]. In fact, the used models can be,
either, of quantitative, expressed as mathematical, or qual-
itative equations, expressed as the form of logical relations
[9, 10].

The only remaining problem with model-based methods
is that it is difficult or sometimes impossible to find the
right mathematical model for a real system due to numerous
reconfigurations involved in the production process or to
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the complexity of the system. The solution is then to use the
analytical redundancy based on a model-free method that
usually does not require a detailed knowledge of the system
like the Principal Components Analysis (PCA).

Actually, the PCA is a mathematical procedure that uses
an orthogonal transformation to convert a set of observations
of possibly correlated variables into a set of values of linearly
uncorrelated variables called “principal components.”

Monitoring and diagnosis, using the PCA, have been
applied successfully in many complex systems [11–13], for
sensor/actuator fault detection and isolation and also for
operating mode change detection. To diagnose the faults, the
PCA approach includes a PCA model for normal operation
conditions and a PCA model for each faulty situation. By
comparing these models, residual signals may be generated.
These are compared with their threshold minimum, with
and without faults. The only one that does not exceed its
threshold can identify the faults and the actual system situa-
tion.

Historically, the thrusters and reaction wheels’ failures
are considered the most frequently failures that can occur on
orbit. Numerous fault diagnosis systems have been developed
to detect and isolate the thrusters’ failures. Most of these
systems have been based on an analytic method using a
mathematical model [6, 14].

As mentioned before, working in the aerospace domain
demands a certain level of precision and assurance. Then,
with the difficulty of any human intervention in a presence
of anomalies during a spaceflight mission, achieving the
diagnosis of the spacecraft actuators can be seen as one of
the most important goals of this work. So, in this paper,
we will present a diagnosis approach for spacecraft actuators
(thrusters and reaction wheels) based on the PCA technique
analyzing their performance during the rendez-vous phase of
the MSR mission.

The paper is organized as follows. In Section 2, the PCA
technique is briefly summarized. In Section 3, the methods
for fault detection and isolation are introduced. The Mars
Sample Return (MSR) mission is described in Section 4, with
the results of thrusters and reaction wheels’ fault detection
and isolation with the PCA method. Conclusions and future
developments are presented in Section 5.

2. The PCA Principle

The PCA has been frequently used for fault detection and
isolation. Indeed, it is considered a very effective statistical
method in extracting information from the measured data
[12, 15].

Considering the data matrix 𝑋, 𝑋 =

[𝑥(1) 𝑥(2) ⋅ ⋅ ⋅ 𝑥(𝑁)]𝑇 ∈ 𝑅

(𝑁×𝑚) gathering 𝑁 samples
of 𝑚 observed variables recorded on the system under
normal operation.

At an instant time 𝑘 = 1, . . . , 𝑁,

𝑥 (𝑘) = [𝑥1 (𝑘) 𝑥2 (𝑘) ⋅ ⋅ ⋅ 𝑥𝑚 (𝑘)]
𝑇
,

(1)

where 𝑥 ∈ 𝑅𝑚. The linear transformation of the data matrix
𝑋 into a new set of variables 𝑇 is then given by

𝑇 = 𝑋𝑃,

𝑋 = 𝑇𝑃

𝑇
,

(2)

where𝑇 = [𝑡1, 𝑡2, . . . , 𝑡𝑚] ∈ 𝑅
(𝑁×𝑚) and𝑃 = [𝑝1, 𝑝2, . . .,𝑝𝑚] ∈

𝑅

(𝑚×𝑚) is the matrix of the eigenvectors (called also principal
vectors) associated with the eigenvalues of the covariance
matrix Σ:

Σ =

1
𝑁

𝑋

𝑇
𝑋. (3)

The right choice of the number of principal components to
retain is a very important step in the process of developing a
PCA model.

Once 𝑙 is fixed, the number of used data is then reduced
to the first 𝑙 (𝑙 < 𝑚) variables which are the most significant
components. The data and the two matrices 𝑇 and 𝑃 can be
partitioned into a principal part and a residual one:

𝑇 = [

̂

𝑇

[𝑁×𝑙]
̃

𝑇

[𝑁×(𝑚−𝑙)]
] ,

𝑃 = [

̂

𝑃

[𝑚×𝑙]
̃

𝑃

[𝑚×(𝑚−𝑙)]
] .

(4)

The data matrix can be then decomposed in the following
form:

𝑋 =

̂

𝑋+

̃

𝑋. (5)

The matrices ̂𝑋 and ̃𝑋 represent, respectively, the modeled
and the nonmodeled variations of𝑋 from 𝑙 components.The
first 𝑙 eigenvectors forming the matrix ̂𝑃 ∈ 𝑅

𝑚×𝑙 constitute
the representation space whereas the last (𝑚− 𝑙) eigenvectors
forming thematrix ̃𝑃 ∈ 𝑅𝑚×(𝑚−𝑙) constitute the residual space

̂

𝑋 = 𝑋

̂

𝐶;

̃

𝑋 = 𝑋

̃

𝐶

(6)

with ̂𝐶 =

̂

𝑃

̂

𝑃

𝑇 and ̃𝐶 =

̃

𝑃

̃

𝑃

𝑇
= (𝐼

𝑚
−

̂

𝐶), which are the two
matrices that form the PCA model.

In literature, several methods can be adopted to deter-
mine the required number (𝑙) of principal components [16].
In this paper, the adopted approach is based on minimizing
the variance of the reconstruction error (VRE) [17].

The choice of 𝑙 using the VRE approach is based on the
best reconstruction of the variable. In fact, this index shows a
minimum corresponding to the best reconstruction.

According to Qin and Dunia [17], the measurement
vector, presented by (7), is corrupted with a fault along a
direction 𝜉

𝑗
. At an instant time 𝑘 = 1, . . . , 𝑁,

𝑥 = 𝑥

∗
+𝑓𝜉

𝑗
, (7)

where 𝑥∗ is the fault-free measurement vector, 𝑓 is the fault
magnitude, and 𝜉

𝑗
∈ 𝑅

𝑚 is the fault direction. In order to find



Journal of Control Science and Engineering 3

an estimate for 𝑥∗ in the direction of 𝜉
𝑗
to correct the effect

of the fault 𝑓, we try to find 𝑓
𝑗
such that

𝑥

rec
= 𝑥−𝑓

𝑗
𝜉

𝑗
, (8)

where 𝑥rec is the reconstructed measurement vector.

The Reconstruction Principle. Considering that all equations
are in function of 𝑘, with 𝑘 = 1, . . . , 𝑁,

𝑥 =

̂

𝐶𝑥. (9)

More explicitly,

[

[

[

[

[

[

[

[

[

[

[

[

𝑥1

.

.

.

𝑥

𝑖

.

.

.

𝑥

𝑚

]

]

]
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]

]
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]

]

]

]

=
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. (10)

Thus, to reconstruct the 𝑖th variable,𝑥
𝑖
should be replaced

by 𝑥
𝑖
. The measurement vector 𝑥 is then reestimated using

(9). This process is repeated until 𝑥
𝑖
converges to a value

denoted by 𝑥rec
𝑖

and representing the reconstruction of the 𝑖th
variable.

Once the 𝑖th variable has been reconstructed, (10) can be
written as follows:
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. (11)

For row 𝑖, equation can be rewritten as follows:

𝑥

rec
𝑖
= [𝑐𝑖1 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 𝑐

𝑖𝑚] 𝑥 + 𝑐𝑖𝑖
𝑥

rec
𝑖
. (12)

Accordingly,

𝑥

rec
𝑖
=

[𝑐𝑖1 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 𝑐

𝑖𝑚]

1 − 𝑐
𝑖𝑖

𝑥. (13)

The nonreconstructed variance quantifies the informa-
tion lost during the reconstruction process. In fact, there is
always a part of the measurement variation that cannot be
reconstructed. This part is called the reconstruction error
and, in the direction 𝜉

𝑖
, it can be computed using

𝜉

𝑇

𝑖
𝑥−𝑥

rec
𝑖
= (𝜉

𝑇

𝑖
−

[𝑐𝑖1 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 𝑐

𝑖𝑚]

1 − 𝑐
𝑖𝑖

)𝑥 =

̃

𝜉

𝑇

𝑖
𝑥

̃

𝜉

𝑇

𝑖

̃

𝜉

𝑖

, (14)

Inputs:𝑚,𝑁,𝑋.
Outputs: 𝑙, ̂𝐶, ̃𝐶.

(1) Calculate Σ:
(2) Σ =

1
𝑁

𝑋

𝑇
𝑋

(3) for (𝑙 = 1 to𝑚 − 1) do
(4) Calculate VRE(𝑙):

(5) VRE (𝑙) =
𝑚

∑

𝑖=1

𝜌

𝑖
(𝑙)

𝜉

𝑇

𝑖
Σ𝜉

𝑖

(6) end
(7) Select the appropriate number 𝑙:
(8) 𝑙 = argmin(VRE(𝑙))
(9) Calculate ̂𝐶 and ̃𝐶:
(10) ̂𝐶 = ̂𝑃̂𝑃𝑇

(11) ̃𝐶 = 𝐼
𝑚
−

̂

𝐶

Algorithm 1: The PCA algorithm.

where ̃𝜉
𝑖
= (𝐼 −

̂

𝐶)𝜉

𝑖
and ̃𝜉𝑇

𝑖

̃

𝜉

𝑖
= (1 − 𝑐

𝑖𝑖
). The variance of

the reconstruction error, in the direction 𝜉
𝑖
, is then defined as

follows:

𝜌

𝑖 (
𝑙) = var {𝜉𝑇

𝑖
𝑥−𝑥

rec
𝑖
} =

̃

𝜉

𝑇

𝑖
Σ

̃

𝜉

𝑖

(

̃

𝜉

𝑇

𝑖

̃

𝜉

𝑖
)

2 . (15)

The number of PCs to retain is obtained by minimizing the
VRE with respect to the number 𝑙, 𝑙 = 1, . . . , 𝑚 − 1:

VRE (𝑙) =
𝑚

∑

𝑗=1

𝜌

𝑗 (
𝑙)

𝜉

𝑇

𝑗
Σ𝜉

𝑗

. (16)

To equalize the importance of each variable, their contribu-
tions to the criteria have been weighted by their variances
𝜉

𝑇

𝑗
Σ𝜉

𝑗
.

Algorithm 1 summarizes the different steps to perform a
PCA model.

3. Fault Detection and Isolation

3.1. Fault Detection. Once the PCA model identification is
achieved, it is necessary to proceed to the fault detection step.
Several indices are used to represent any variations in the data
and thereby to detect faults either in the principal subspace,
in the residual one, or in both spaces [13, 18, 19].

A general representation of these indices is presented by

𝛾 (𝑘) = 𝑥 (𝑘)

𝑇
Υ𝑥 (𝑘) ,

(17)

where Υ is as follows.

(i) For the Squared Prediction Error (SPE) index,

Υ = 𝐼

𝑚
−

̂

𝐶 =

̃

𝑃

̃

𝑃

𝑇
. (18)

(ii) For the Squared Weighted Error (SWE) index,

Υ =

̃

𝑃

̃

Λ

−1
̃

𝑃

𝑇
. (19)
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(iii) For 𝑇2 index (Hotelling index),

Υ =

̂

𝑃

̂

Λ

−1
̂

𝑃

𝑇
. (20)

(iv) For 𝜑 index (Combined index),

Υ =

̂

𝑃

̂

Λ

−1
̂

𝑃

𝑇

𝑇

2
𝛼

+

̃

𝑃

̃

𝑃

𝑇

𝛿

2
𝛼

. (21)

(v) For𝐷 index (Mahalanobis distance),

Υ = 𝑃Λ

−1
𝑃

𝑇
. (22)

In order to decide whether the system is faulty or not,
the used fault detection index should be compared to its
threshold. Table 1 resumes the expression of each index’s
threshold. where 𝜒2

𝑖,𝛼
is a Chi-square distribution with 𝑖

degrees of freedom, 𝛼 being a given significance level (usually
𝛼 = 99%), these parameters are explained in [20].

(i) For the SPE threshold,

G =

𝜃2
𝜃1
,

ℎ = entier(
𝜃

2
1
𝜃2
) ,

𝜃

𝑖
=

𝑚

∑

𝑗=𝑙+1
𝜆

𝑖

𝑗
.

(23)

(ii) For the 𝜑 threshold,

G
𝜑
=

trace (ΣΥ)2

trace (ΣΥ)
,

ℎ = entier([trace (ΣΥ)]
2

trace (ΣΥ)2
) .

(24)

Only the SPE index that operates in the residual subspace
will be considered in the rest of this paper. To defend this
choice, a comparison between the detection results using
different indices will be presented in Section 4.

The residual vector is defined by the projection of the
measurement vector onto the residual subspace.

At an instant time 𝑘,
̃

𝑡 (𝑘) =

̃

𝑃

𝑇
𝑥 (𝑘) .

(25)

Thematrix ̃𝑃 is constructed by the (𝑚− 𝑙) last eigenvectors of
𝑃. The index SPE is then defined by

SPE (𝑘) = ̃𝑡𝑇 (𝑘)̃𝑡 (𝑘) = 󵄩󵄩󵄩
󵄩

̃

𝑡 (𝑘)

󵄩

󵄩

󵄩

󵄩

2
.

(26)

Once inequality (27) is checked, the system is declared in
failure:

SPE (𝑘) ≥ 𝛿2
𝛼
. (27)

In order to delimit the fault occurrence interval, we have
included a new variable 𝐹

𝑑
as a detected fault. Once (27)

is valid, 1 is assigned to 𝐹
𝑑
indicating that a fault has been

detected.
Algorithm 2 summarizes the different steps of the fault

detection process, noticing that𝑋
𝑑
is the faulty data matrix.

Table 1: Detection index’s threshold.

Index Threshold
SPE 𝛿

2
𝛼
= G𝜒2

ℎ,𝛼

SWE T2
𝐻𝛼
= 𝜒

2
(𝑚−𝑙),𝛼

𝑇

2 T2
𝛼
= 𝜒

2
𝑙,𝛼

𝜑 𝜑

𝛼
= G
𝜑
𝜒

2
ℎ𝜑 ,𝛼

𝐷

𝑚
D
𝛼
= 𝜒

2
𝑚,𝛼

Inputs: ̂𝐶, ̃𝐶,𝑋
𝑑
.

Outputs: SPE, 𝛿2
𝛼
, 𝐹
𝑑

(1) Calculate the detection threshold 𝛿2
𝛼

(2) 𝛿

2
𝛼
= G𝜒2

ℎ,𝛼

(3) for (𝑘 = 1 to𝑁) do
(4) Calculate SPE(𝑘):
(5) SPE(𝑘) = 𝑥(𝑘)𝑇(𝐼

𝑚
−

̂

𝐶)𝑥(𝑘)

(6) if SPE(𝑘) ≥ 𝛿2
𝛼
then

(7) 𝐹

𝑑
(𝑘) = 1.

(8) else
(9) 𝐹

𝑑
(𝑘) = 0.

(10) end
(11) end

Algorithm 2: The fault detection algorithm.

3.2. Fault Isolation. After achieving the fault detection step,
it is necessary to identify and isolate the faulty variables.
Among various strategies of fault localization, the variable
reconstruction approach is adopted in this application [13,
19, 21]. This method assumes that each variable is faulty and
suggests to reconstruct it using the PCA model from the
remaining variables [15, 22].

Let Ξ
𝑅
be the matrix indicating the reconstruction direc-

tion, considering that 𝑅 is a subset containing the indices of
𝑟 reconstructed variables. This matrix is built with 0 and 1
indicating the reconstructed variables denoted by 1 from the
other ones denoted by 0.

For example, for a system of 4 variables (𝑚 = 4), to
reconstruct the first and the third variables simultaneously
𝑅 = {1, 3} among four variables, Ξ

𝑅
is formed as follows:

Ξ

𝑅
= [

1 0 0 0
0 0 1 0

]

𝑇

.
(28)

At an instant 𝑘, a reconstructed variable is given by

𝑥

𝑅 (
𝑘) = 𝐺𝑅

𝑥 (𝑘) (29)

with

𝐺

𝑅
= 𝐼

𝑚
−Ξ

𝑅
(

̃

Ξ

𝑇

𝑅
̃

Ξ

𝑅
)

−1
̃

Ξ

𝑇

𝑅
,

̃

Ξ

𝑅
= (𝐼

𝑚
−

̂

𝐶)Ξ

𝑅
.

(30)

Reconstruction Condition. Let us note that if ̃Ξ
𝑅
has full

column rank, then (̃Ξ𝑇
𝑅
̃

Ξ

𝑅
)

−1 exists and the variables of the
subset 𝑅 are completely reconstructible.
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Figure 1: The MSR mission.

This condition implies that the number of reconstructed
variables 𝑟 must satisfy 𝑟 ≤ 𝑚 − 𝑙 and that the columns of
matrix ̃Ξ

𝑅
are neither null nor collinear.

The residual vector can be defined by

𝑥

𝑅 (
𝑘) = (𝐼𝑚

−

̂

𝐶) 𝑥

𝑅 (
𝑘) = P

𝑅
𝑥 (𝑘) (31)

with

P
𝑅
= (𝐼

𝑚
−

̂

𝐶)−

̃

Ξ

𝑅
(

̃

Ξ

𝑇

𝑅
̃

Ξ

𝑅
)

−1
̃

Ξ

𝑇

𝑅
.

(32)

In order to isolate the faulty variable, the SPE index may be
computed by

spe
𝑅
(𝑘) = 𝑥

𝑇

𝑅
(𝑘)

̃

𝑃

̃

𝑃

𝑇
𝑥

𝑅 (
𝑘) .

(33)

The isolation index is then defined, using the detection index
spe
𝑅
and its threshold 𝛿2

𝛼
, by

Aspe
𝑅
(𝑘) =

spe
𝑅
(𝑘)

(𝛿

2
𝛼
)

, (34)

where 𝑅 = 1, . . . , 𝑚 corresponding to the reconstructed
variable. The variable for which the isolation index is lower
than one is declared faulty.

Algorithm 3 summarizes the different steps of the fault
isolation process. The reconstructed data matrix is given by
𝑥

rec
𝑅
(𝑘) = 𝑥

𝑅
(𝑘).

4. Application

4.1. Mars Sample Return Mission. The Mars Sample Return
(MSR) mission intends to collect several samples from the
Martian surface and return them back to Earth for detailed
analysis.This flagshipmission is included in the ESA’s Aurora
program and envisioned to take place in the time-frame of
2020–2025 [23, 24]. Actually, 9 steps, presented in Figure 1,

Inputs: 𝑅, 𝛿2
𝛼
.

Outputs:Aspe, 𝑥
rec.

(1) for (𝑅 = 1 to𝑚) do
(2) for (𝑘 = 1 to𝑁) do
(3) Calculate 𝑋𝑅rec(𝑘):
(4) 𝑥

rec
𝑅
(𝑘) = 𝑥

𝑅
(𝑘) = 𝐺

𝑅
𝑥(𝑘)

(5) Calculate Aspe𝑅(𝑘):
(6) spe

𝑅
(𝑘) = 𝑥

𝑇

𝑅
(𝑘)

̃

𝑃

̃

𝑃

𝑇
𝑥

𝑅
(𝑘)

(7) Aspe𝑅(𝑘) =
spe
𝑅
(𝑘)

(𝛿

2
𝛼
)

(8) if (Aspe𝑅(𝑘) < 1) then
(9) The Rth variable is faulty.
(10) end
(11) end
(12) end

Algorithm 3: The fault isolation algorithm.

are to be considered in order to ensure the success of this
mission. The diagnosis process developed in this application
concerns only the 5th step called the “rendez-vous.” This
phase consists in capturing the Orbiter Sample (OS) that is
carried by the Mars Ascent Vehicle (MAV). The OS remains
attached to the MAV during the OM rendez-vous effort.
A command from the OM will then release the OS. Once
separated from the MAV, the OS is then captured by the OM
and is placed in the Earth Reentry Capsule (ERC) [25].

Eventually, only the last 100 meters of this rendez-
vous/capture phase is considered the most critical for the
occurrence of failures.

In this phase, in order to control the orientation of the
chaser spacecraft (see Figure 2(a)), a Laser Image Detection
and Ranging (LIDAR) and a Radio Frequency Sensor (RFS)
are used. As the OS must remain in the field of vision of
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Figure 2: (a) The MSR spacecraft. (b) The spacecraft’s thrusters. (c) The spacecraft’s reaction wheels.

the OM sensors, the difficulty will be in controlling the
attitude, the movement, and the two axes describing the
motion relative to the orbital plane.

The thrusters and reaction wheels are the most important
features of the system actuators assuring the attitude control
of the spacecraft.

On the one hand, the thrusters (Figure 2(b)) are con-
sidered the most important features of the propulsion sys-
tem assuring the attitude control of the spacecraft. These
propulsive devices are capable of generating a thrust (force)
to control the attitude and a torque to control the rotation
(about the three axes of the spacecraft: roll, pitch, and yaw). To
provide the system stabilization, the thrusters must be placed
about all three axes with at least two thrusters in each one.

On the other hand, the reaction wheels of a spacecraft
(Figure 2(c)) are powered by the spacecraft’s electrical power
supply through electric motors. They are managed and con-
trolled by the spacecraft’s on-board attitude control computer.
These types of flywheels provide the possibility to rotate a
spacecraft, based on the principle of angular momentum
transfer and Newton’s third law of action-reaction.

Therefore, the failure of one or more reaction wheels
or thrusters can cause a spacecraft to lose its ability to
maintain position and hence potentially causing a mission
failure. So, the objective of this application is to detect and
isolate the thrusters and reaction wheels’ faults of the MSR
chaser spacecraft, considering that the propulsion system is
composed of 8 thrusters and 4 reaction wheels.

The fault diagnosis process of each spacecraft’s actuators
requires two sets of data, one to build the PCA model and
another to test the influence of a fault in the residual and/or
the principal space. In order to represent the measurement
noise, realizations issued from centered normal distributions
with the same standard deviation equal to 0.01 are added to
these sets of data.

4.2. PCA Model. To build the PCA model, the data matrix
𝑋 ∈ 𝑅

(𝑁×𝑚), in the absence of faults in the system, has
been generated using aMATLAB/SIMULINK simulator.The
simulation block describing the opening rates of the thrusters
is presented in Figure 3, while the block describing the
rotation rates of the reaction wheels is presented in Figure 4.

1

1

2

2THR_tau
THR_tau

THR_sts
THR_sts

THR_failure THR_failure
Failure_generator

THR_state
THR_state

THR_tau_f
THR_tau_f

Figure 3: Simulation block measuring the thrusters opening rates.

To test the effectiveness of the fault detection and isolation
method, described previously, two types of faults have been
put forward for each actuator (thrusters and reactionwheels).

For the thrusters’ fault detection,

(1) fault1 in the first thruster between 200 s and 210 s
(𝑧𝑜𝑛𝑒

1
),

(2) fault2 in the second thruster between 400 s and 420 s
(𝑧𝑜𝑛𝑒

2
).

For the reaction wheels’ fault detection,

(1) fault1 in the first reaction wheel between 200 s and
220 s (𝑧𝑜𝑛𝑒

1
),

(2) fault2 in the second reaction wheel between 400 s and
460 s (𝑧𝑜𝑛𝑒

2
).

In this case study we consider 𝑋1,1
∈ 𝑅

(𝑁×𝑚) and 𝑋2,1
∈

𝑅

(𝑁×𝑚), denoting the data matrix in the presence of fault1
and fault2, respectively, where 𝑁 = 13514 is the number
of observations of the 𝑚 = 8 chaser’s thrusters or 𝑚 = 4
chaser’s reaction wheels. The measurement vectors represent
the opening rate at a 𝑘 time of the 8 thrusters and the rotation
rate at a 𝑘 time of the 4 reaction wheels, respectively.

Once the data matrix in the absence of faults is scaled
(using mean and standard deviations of the variables), the
PCA model can be then built using the VRE criterion.

Figures 5 and 6 present the evolution of the VRE accord-
ing to the number of principal components (PCs). The first
figure shows a minimum for 𝑙TH = 4 and the second one
shows a minimum for 𝑙RW = 2. The retained PCA models
of the thrusters and the reaction wheels include, respectively,
4 and 2 components.
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Figure 4: Simulation block measuring the reaction wheels rotation rates.
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Figure 6: Evolution of the variance of reconstruction error (VRE)
(reaction wheels).

4.3. Fault Detection and Isolation. Once the modeling phase
is achieved, we will present the fault detection and isolation
results.

The 3 algorithms (algorithms 1, 2, and 3) summarize the
different steps of the adopted approach for the actuator fault
diagnosis.

As explained previously, two faults in two different time
zones have been injected to each actuator. Figures 7 and 8

represent the simulation results of fault detection using
different indices after the injection of faults, where

(i) the blue curve refers to the results of the 𝑌 detection
index after the fault injection;

(ii) the red line refers to the 𝑌 index’s threshold.

𝑌 = {SPE, SWE, 𝐷
𝑚
, 𝑇

2
}.

According to these results, the 𝑇2 index that operates
in the principal subspace cannot allow the fault detection.
However, the SWE index and the𝐷

𝑚
index provide not only

a fault detection but also some false alarms that can affect the
diagnosis process. Eventually, using the SPE index seems to
be the best solution for accurate fault detection.

The simulation results in the first graphs of both Figures 7
and 8 show two principal peaks exceeding the SPE threshold.
Thus, two failures in the thrusters and reaction wheels may
be considered.

Once a fault is detected, it is then necessary to locate
the faulty actuator. To do so, we have used the variable
reconstruction approach.

Figures 9 and 10 present the evolution of the thrusters’
isolation indicesAspe𝑅 , computed after the reconstruction of
each variable at an instant 𝑘 of 𝑧𝑜𝑛𝑒

1
and 𝑧𝑜𝑛𝑒

2
, respectively.
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Figure 7: Thrusters’ fault detection using different indices SPE, SWE, 𝐷
𝑚
, 𝑇

2.

The evolution of the reaction wheels’ isolation indices
Aspe𝑅 , computed after the reconstruction of each variable in
𝑧𝑜𝑛𝑒

1
and 𝑧𝑜𝑛𝑒

2
, is presented, respectively, in Figures 11 and

12. Aswe can see, for both actuators, the two indicesAspe1 and
Aspe2 are lower than 1.These results confirm that the thrusters
number 1 and 2 and the reaction wheels number 1 and 2 are
the faulty ones.

5. Conclusion

In this paper, we have presented a fault diagnosis process
based on the Principal Components Analysis (PCA) tech-
nique. This approach has been used to perform the fault
detection and isolation of spacecraft actuators (thrusters and
reaction wheels) during the rendez-vous phase of the Mars
Sample Return mission.

In order to estimate the PCA model, a data matrix
consisting of all measurements of the opening/rotation rates
of, respectively, the nominal spacecraft thrusters and the
reaction wheels has been used.

In fact, PCA reduces the data representation space and
enables the determination of the redundancy relationships.

The redundancy relations are then used to detect and isolate
the faults.

Once the PCA model is built, the predefined faults can
be put in evidence using a detection index based on the
reconstruction principle, in residual space with the SPE
index.

After the detection phase, an isolation fault approach,
based on the reconstruction principle, has highlighted the
predefined actuators’ faults.

Detecting and isolating a fault injected in the first and
then in the second thrusters and, respectively, in the reaction
wheels, have been successfully achieved by this application.
The results of the diagnosis process have proved the liability
of our choices since this method has been efficient for fault
detection and isolation.

Succeeding the diagnosis of the spacecraft actuators using
the PCA method was the goal of this work. But still, as
known, the PCA approach has been mainly developed for
the analysis of single valued variables without considering
any uncertainty in the systems that certainly can falsify
the diagnosis results. Developing a new approach extending
the principal component analysis method to interval valued
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Figure 9: Thrusters’ fault localization using the indexAspe𝑅𝑍1
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data is our work in progress and constitutes the heart of a
future article.
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Figure 10: Thrusters’ fault localization using the indexAspe𝑅𝑍2
.

The intended purpose of this research is then to develop
a new optimized approach that generalizes the principal



10 Journal of Control Science and Engineering

1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

(m)

Threshold
A
1

𝒜
sp

e 𝑅
(z

on
e 1
)

Figure 11: Reaction wheels’ fault localization using the index
Aspe𝑅𝑍1
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Figure 12: Reaction wheels’ fault localization using the index
Aspe𝑅𝑍2

.

component analysis to interval valued data. In addition, we
wish to develop accommodation approach in order to safely
conjugate the necessary robustness/stability of the spacecraft
control, trajectory dynamics, and the vehicle nominal perfor-
mance.
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