Robust Adaptive Output Feedback Control Scheme for Chaos Synchronization with Input Nonlinearity

Xiaomeng Li, Zhanshan Zhao, Jing Zhang, and Meixia Zhu

1School of Computer Science & Software Engineering, Tianjin Polytechnic University, Tianjin 300387, China
2School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China
3Tianjin Vocational Institute, Tianjin 300410, China

Correspondence should be addressed to Zhanshan Zhao; zhzhsh127@163.com

Received 22 July 2015; Accepted 10 January 2016

Academic Editor: Hung-Yuan Chung

Copyright © 2016 Xiaomeng Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper proposes a robust adaptive output feedback control strategy which can automatically regulate control gain for chaos synchronization. Chaotic systems with input nonlinearities, delayed nonlinear coupling, and external disturbance can achieve synchronization by applying this strategy. Utilizing Lyapunov method and LMI technique, the conditions ensuring chaos synchronization are obtained. Finally, simulations are given to show the effectiveness of our control strategy.

1. Introduction

Chaos synchronization has attracted a lot of interest due to its wide engineering application in various areas like secure communication [1–4], neural networks [5, 6], electronic engineering [7], and so on [8, 9]. Consider the fact that chaotic system is a class of nonlinear dynamical system which sensitively depends on initial conditions. It is necessary to solve the problem of chaos synchronization.

In the practical physical systems, physical limitations will lead to state nonlinearity and input nonlinearity, such as sector [10–12], saturation [13–15], and dead zones [16–19]. Considering state nonlinearity, [20] proposed an adaptive control strategy for multirate networked nonlinear systems. In [21], fuzzy control method has been applied to a class of nonlinear system. Filter design and H_{∞} performance for nonlinear networked systems have been researched in [22]. A novel sliding mode observer approach has been proposed for a class of stochastic systems in [23]. Moreover, it should not be ignored that effect of nonlinear control inputs can cause serious degradation of synchronization performance even nonsynchronous. Thus, nonlinear control inputs should be considered in synchronization controller design of chaotic systems. Unfortunately, in [24, 25], input nonlinearity has not been considered.

As a source of nonsynchronization, time-varying delay has to be faced in many engineering synchronization systems, such as chemical processes [26, 27] and pneumatic systems [28]. Therefore, designing a controller for time-varying delay systems is necessary [29].

Recently, considering nonlinearly coupled chaotic systems, [30] proposed a state feedback controller to achieve synchronization. However, the input nonlinearity was not considered. To the authors’ knowledge, synchronization for coupled chaotic systems with input nonlinearity and time delays has been rarely mentioned. Furthermore, in real application, only the output state is available. Therefore, it is necessary to design a synchronization controller in output feedback form.

Motivated by the previous discussions, we propose an adaptive output feedback controller to make chaotic systems synchronize. Input nonlinearities, nonlinear coupling, and time-varying delay have been taken into account. By utilizing Lyapunov method and LMI technique, the conditions ensuring synchronization are obtained.

In the rest of this paper, Section 2 provides systems and problem description. Then a robust adaptive output feedback control strategy is proposed for chaos synchronization in Section 3. In Section 4, simulations are given to demonstrate...
effectiveness of this control strategy. Conclusion are collected in Section 5.

2. Problem Formulation

Consider chaotic systems as follows:

\[
\begin{align*}
\dot{x}_m(t) &= Ax_m(t) + A_x x_m(t - d_1(t)) + B f(t, x_m(t)) \\
&\quad + B_g(t, x_m(t)) - B_g(t, x(t) - d_2(t)), \\
y_m(t) &= C x_m(t),
\end{align*}
\]

\[
\begin{align*}
\dot{x}_s(t) &= Ax_s(t) + A_x x_s(t - d_1(t)) + B f(t, x_s(t)) \\
&\quad + B_g(t, x_s(t) - d_1(t)) - B_g(t, x_s(t - d_2(t))) + D \omega(t) \\
&\quad + E \Lambda(u(t)), \\
y_s(t) &= C x_s(t),
\end{align*}
\]

where \(x_m, x_s \in \mathbb{R}^n\), \(y_m, y_s \in \mathbb{R}^m\) and \(u \in \mathbb{R}^m\) are the state vector and output vector for the drive and response system, respectively. \(f(t, x), g(t, x), k(t, x) : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n\) represent nonlinear vectors. \(u = [u_1(t) \cdots u_m(t)]^T \in \mathbb{R}^m\) is the control input vector; \(\omega(t)\) denotes the external disturbance; time-varying delay \(d_1(t)\) and \(d_2(t)\) satisfy

\[
\begin{align*}
d_{11} &\leq d_1(t) \leq d_{12}, \\
d_{21} &\leq d_2(t) \leq d_{22}.
\end{align*}
\]

\(\Lambda(u(t)) = [\lambda_1(u_1(t)) \cdots \lambda_m(u_m(t))]^T\) is representing the nonlinear control input vector which satisfies the following inequality:

\[
\nu_1(t) \lambda_i(\nu_i(t)) \geq \chi_i(\nu_i(t))^2.
\]

\(\chi_i\) is an unknown positive constant satisfying \(\chi^* = \min_{i} \chi_i\). Constant matrices \(A, A_x, B, B_g, B_d, C, D, E\) have appropriate dimensions. Synchronization error can be defined as \(e(t) = x_s(t) - x_m(t)\). Using (1) and (2), synchronization error can be obtained:

\[
\begin{align*}
\dot{e}(t) &= Ae(t) + A_x e(t - d_1(t)) + B \Psi(t) + B_Y(t, d_1) \\
&\quad + B_d \Xi(t, d_2) + D \omega(t) + E \Lambda(u(t)), \\
y_e(t) &= C e(t),
\end{align*}
\]

where

\[
\begin{align*}
\Psi(t) &= f(t, x_s(t)) - f(t, x_m(t)), \\
Y(t, d_1) &= g(t, x_s(t - d_1(t))) - g(t, x_m(t - d_1(t))), \\
\Xi(t, d_2) &= k(t, x_s(t - d_2(t))) - k(t, x_m(t - d_2(t))).
\end{align*}
\]

The objective is to make drive and response systems synchronize. Obviously, if \(e(t) \rightarrow 0\), then \(x_s(t) - x_m(t) \rightarrow 0\) and it means that system (1) and (2) is synchronized.

To obtain the synchronization conditions, the following lemma and assumptions will be used during the proof.

Lemma 1. If matrix \(H = [H_{11}, H_{12}]\), where \(H_{11}\) and \(H_{22}\) are square matrices, then the following inequalities are equivalent:

\[
\begin{align*}
(1) &\quad H < 0; \\
(2) &\quad H_{11} < 0, H_{22} - H_{11}^T H_{11}^{-1} H_{12} < 0; \\
(3) &\quad H_{22} < 0, H_{11} - H_{12} H_{22}^{-1} H_{12} < 0.
\end{align*}
\]

Assumption 2. The nonlinear function \(\Psi(t), Y(t, d_1), \Xi(t, d_2)\) satisfy the global Lipschitz condition:

\[
\begin{align*}
\|\Psi(t)\| &\leq L_1 \|x_s(t) - x_m(t)\|, \\
\|Y(t, d_1)\| &\leq L_2 \|x_s(t - d_1(t)) - x_m(t - d_1(t))\|, \\
\|\Xi(t, d_2)\| &\leq L_3 \|x_s(t - d_2(t)) - x_m(t - d_2(t))\|.
\end{align*}
\]

Assumption 3. Matrix \(P > 0\) and satisfies the following equation:

\[
E^T P = C.
\]

3. Robust Adaptive Controller

Design Based on LMI

In order to make drive and response systems synchronize, the following adaptive controller is considered:

\[
u(t) = -\gamma \frac{e(t)}{\|e(t)\|^2}, \quad \gamma > 0,
\]

where \(\gamma\) is an adaptive control gain and is adjusted by the following adaptation law:

\[
\dot{\gamma} = \chi^* \rho \|e(t)\|^2, \quad \gamma(0) > 0,
\]

where \(\rho\) is a positive parameter.

By applying of the adaptive controller, synchronization errors will converge to zero asymptotically. In Theorems 4 and 5 the main results will be presented.
Theorem 4. Consider the drive and response system (1) and (2) under \(\omega(t) = 0 \). By application of the adaptive control law (10) and (11), if existing symmetric and positive definite matrices \(P, W_1, W_2 \), and a scalar \(\alpha > 0 \), satisfying the following LMI:

\[
\begin{bmatrix}
\Delta & PA & 0 \\
* & -(1 - d_{12})W_1 & 0 \\
* & * & -(1 - d_{22})W_2 \\
\end{bmatrix}
\begin{bmatrix}
P \
B \\
B_2 \
PB_d \\
L_1^T \
L_2^T \\
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\end{bmatrix}
\leq 0,
\]

where

\[
\begin{align*}
\Delta &= PA + A^T P - \alpha PEE^T P + W_1 + W_2, \\
\end{align*}
\]

the system (1) and (2) is synchronized.

Proof. We consider the following Lyapunov-Krasovskii functional:

\[
\begin{align*}
\dot{V} &= e^T (t) Pe(t) + \int_{t-d_1(t)}^t e^T (v) W_1 e(v) dv \\
&\quad + \int_{t-d_2(t)}^t e^T (v) W_2 e(v) dv + \frac{1}{2}\rho^{-1}\bar{\gamma}^2,
\end{align*}
\]

where \(\bar{\gamma} = \gamma' - \gamma, \gamma' \) and \(\rho \) are positive constants.

The derivative of \(V \) can be calculated as follows:

\[
\begin{align*}
\dot{V} &= 2e^T (t) Pe(t) + e^T (t) W_1 e(t) - (1 - d_1(t))e^T (t) \\
&\quad - d_1(t) W_1 e(t - d_1(t)) + e^T (t) W_2 e(t) - (1 - d_2(t))e^T (t) \\
&\quad - d_2(t) W_2 e(t - d_2(t)) - \rho^{-1}\bar{\gamma}\bar{\gamma} \\
&= 2e^T (t) P \left[A e(t) + B_1 \gamma (t, d_1) + B_2 \gamma (t, d_2) + E \Lambda (u(t)) \right] + e^T (t) \\
&\quad \cdot W_1 e(t) - (1 - d_1(t))e^T (t - d_1(t)) W_1 e(t) \\
&\quad - d_1(t) W_1 e(t - d_1(t)) + e^T (t) W_2 e(t) - (1 - d_2(t))e^T (t) \\
&\quad - d_2(t) W_2 e(t - d_2(t)) - \rho^{-1}\bar{\gamma}\bar{\gamma}.
\end{align*}
\]

Incorporating (3) and (4), we get

\[
\begin{align*}
\dot{V} &\leq e^T (t) \left(PA + A^T P - \alpha PEE^T P + W_1 + W_2 \right) e(t) \\
&\quad + \alpha \| E^T Pe(t) \|^2 + 2e^T (t) PA e(t - d_1(t)) \\
&\quad + 2e^T (t) P B_1 \gamma (t, d_1) \\
&\quad + 2e^T (t) P B_2 \gamma (t, d_2) + 2e^T (t) P E \Lambda (u(t)) \\
&\quad - (1 - d_{12})e^T (t - d_1(t)) W_1 e(t - d_1(t)) \\
&\quad - (1 - d_{22})e^T (t - d_2(t)) W_2 e(t - d_2(t)) \\
&\quad - \rho^{-1}\bar{\gamma}\bar{\gamma}.
\end{align*}
\]

Using (8) leads to

\[
\begin{align*}
\dot{V} &\leq e^T (t) \left(PA + A^T P - \alpha PEE^T P + W_1 + W_2 \right) e(t) \\
&\quad + \alpha \| E^T Pe(t) \|^2 + 2e^T (t) PA e(t - d_1(t)) \\
&\quad + 2e^T (t) P B_1 \gamma (t, d_1) \\
&\quad + 2e^T (t) P B_2 \gamma (t, d_2) + 2e^T (t) P E \Lambda (u(t)) \\
&\quad - (1 - d_{12})e^T (t - d_1(t)) W_1 e(t - d_1(t)) \\
&\quad - (1 - d_{22})e^T (t - d_2(t)) W_2 e(t - d_2(t)) \\
&\quad - \rho^{-1}\bar{\gamma}\bar{\gamma} + e^T (t) L_1^T L_1 e(t) \\
&\quad + e^T (t - d_1(t)) L_1^T L_2 e(t - d_1(t)) \\
&\quad + e^T (t - d_2(t)) L_2^T L_3 e(t - d_2(t)) - \Psi^T (t) \Psi (t) \\
&\quad - Y^T (t, d_1) Y (t, d_1) - \Xi^T (t, d_2) \Xi (t, d_2).
\end{align*}
\]
Assume \(C(t) = Z(t)_{m \times 1} \); \(Z_n(t) \) is the \(n \)th element of \(Z(t) \). By using (11), it is easy to prove that \(\nu > 0 \). Based on (5), we need to consider the following two cases:

1. When \(Z_n(t) > 0 \), we have \(u_n(t) < 0 \). Multiplying \(Z_n(t) > 0 \) and dividing \(u_n(t) < 0 \) by both sides of (5), we can obtain that \(Z_n(t) \lambda_n(\nu_n(t)) \leq \chi N Z_n(t) \nu_n(t) \).

2. When \(Z_n(t) < 0 \), we have \(u_n(t) > 0 \). Multiplying \(Z_n(t) < 0 \) and dividing \(u_n(t) > 0 \) by both sides of (5), we can obtain that \(Z_n(t) \lambda_n(\nu_n(t)) \leq \chi N Z_n(t) \nu_n(t) \).

Form the previous discussion, we can prove that the following relation always holds:

\[
Z_n(t) \lambda_n(\nu_n(t)) \leq \chi N Z_n(t) \nu_n(t).
\] (18)

Using Assumption 3 and \(\chi^* = \min \chi_n \) we have

\[
2 \chi^* t P E A (\nu(t)) = 2 \sum_{n=1}^{m} Z_n(t) \lambda_n(\nu_n(t))
\leq 2 \sum_{n=1}^{m} \chi N Z_n(t) \nu_n(t)
\leq -\chi^* t \| C(t) \|^2.
\] (19)

Let \(\alpha = \chi^* t \); incorporating the previous result (19), we can obtain

\[
\dot{V} \leq \chi^* t (PA + A^T P - \alpha P E E^T P + W_1 + W_2 + L_1^T L_1) e(t)
\]

which further can be written as \(\dot{V} \leq \xi^T \Gamma_1 \xi \), where

\[
\xi^T = \begin{bmatrix} e^T(t) & \psi^T(t) & \chi^* t (t - d_1(t)) & \psi^T(t) & \chi^* t (t - d_2(t)) \end{bmatrix},
\] (21)

\[
\Gamma_1 = \begin{bmatrix}
\Delta_1 & PA_c & 0 & PB_1 & PB_2 \\
* & \Delta_2 & 0 & 0 & 0 \\
* & * & \Delta_3 & 0 & 0 \\
* & * & * & -I & 0 \\
* & * & * & * & -I
\end{bmatrix}
\] (22)

where

\[
\Delta_1 = PA + A^T P - \alpha P E E^T P + L_1^T L_1 + W_1 + W_2,
\] (23)

\[
\Delta_2 = L_1^T L_2 - (1 - d_{12}) W_1,
\]

\[
\Delta_3 = L_1^T L_3 - (1 - d_{22}) W_2.
\]

Using Lemma 1, (22) can be transformed to (12), which completed the proof of Theorem 4.
\[\Pi = PA + A^TP - \alpha PEE^TP + W_1 + W_2 + C^TC, \]

(25)

where the attention rate \(\gamma \) for \(H_\infty \) synchronization in the disturbance situation can be achieved.

Proof. With zero initial condition, let us introduce

\[J = \int_0^\infty [y_c^T(t) y_c(t) - y^2 \omega^T(t) \omega(t)] \, dt \leq 0. \]

(26)

For \(\omega(t) \neq 0 \), the following function can be obtained:

\[J \leq \int_0^\infty [\dot{V}_d + y_c^T(t) y_c(t) - y^2 \omega^T(t) \omega(t)] \, dt \leq 0. \]

(27)

Equation (28) can be written as

\[J \leq \xi_d^T \Gamma_2 \xi_d^T, \]

(30)

where

\[\Pi_1 = \begin{bmatrix} \Pi_1 & PA_c & 0 & PB & PB_c & PB_d & PD & L_1^T & 0 & 0 \end{bmatrix}, \]

(32)

\[\Pi_2 = \begin{bmatrix} \Pi_2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \]

(33)

\[\Pi_3 = \begin{bmatrix} \Pi_3 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \]

(34)

\[\Gamma_2 = \begin{bmatrix} \Pi_1 & PA_c & 0 & PB & PB_c & PB_d & PD & L_1^T & 0 & 0 \end{bmatrix}, \]

(35)

Using Lemma 1, (31) can be transformed to (24), which completed the proof of Theorem 5.

\[\square \]
4. Simulation Results

Consider the drive and response system (1) and (2) with parameters:

\[
A = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix},
\]

\[
A_c = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix},
\]

\[
B = \begin{bmatrix} 2 & -0.1 \\ -5 & 4.5 \end{bmatrix},
\]

\[
B_c = \begin{bmatrix} -1.5 & -0.1 \\ -0.2 & -4 \end{bmatrix},
\]

\[
B_d = \begin{bmatrix} 0.001 & 0 \\ 0 & 0.001 \end{bmatrix},
\]

\[
C = \begin{bmatrix} 1.5 & 0 \\ 0 & 0.5 \end{bmatrix},
\]

\[
E = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix},
\]

\[
D = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.
\]

\[
f(t, x(t)) = \tanh(x(t)),
\]

\[
g(t, x(t - d_1(t))) = \tanh(x(t - d_1(t))),
\]

\[
h(t, x(t - d_2(t))) = x(t - d_2(t)) \sin(t),
\]
Figure 2: Behavior of the drive and response systems with controller: (a) phase trajectory of drive system, (b) phase trajectory of response system, and (c) synchronization errors.

\[d_1(t) = 1 + 0.3 \sin(t), \]
\[d_2(t) = 1 - 0.02 \sin(10t), \]
\[\begin{bmatrix} \lambda(u_1(t)) \\ \lambda(u_2(t)) \end{bmatrix} = \begin{bmatrix} 1 + 0.4 \sin(u_1(t))u_1(t) \\ 1.2 + 0.2 \cos(u_2(t))u_2(t) \end{bmatrix}, \]
\[\omega(t) = [0.3 \sin(100t) \ 0.5 \sin(110t)]^T. \]

When \(\omega(t) = 0 \), using the LMI given in Theorem 4 (12), we can obtain

\[W_1 = \begin{bmatrix} 29.1148 & 0.2902 \\ 0.2902 & 3.7117 \end{bmatrix}, \]
\[W_2 = \begin{bmatrix} 27.6971 & 0.2399 \\ 0.2399 & 2.9992 \end{bmatrix}, \]
\[P = \begin{bmatrix} 0.7500 & 0 \\ 0 & 0.2500 \end{bmatrix}, \]
\[\alpha = 46.6242. \]
When \(\omega(t) \neq 0 \), using the LMI given in Theorem 5 (24), we can obtain
\[
W_1 = \begin{bmatrix} 48.1311 & 0.2457 \\ 0.2457 & 6.9022 \end{bmatrix}, \\
W_2 = \begin{bmatrix} 32.2655 & 0.2254 \\ 0.2254 & 6.8700 \end{bmatrix}, \\
P = \begin{bmatrix} 0.7500 & 0 \\ 0 & 0.2500 \end{bmatrix}, \\
\alpha = 77.6427.
\]

The phase trajectory of system (1) and (2) without any control is shown in Figures 1(a) and 1(b). The error between them is shown in Figure 1(c). It is obvious in Figure 1 that the systems are nonsynchronous. After application of the proposed controller, the phase trajectory of system (1) and (2) with nonlinear control inputs is shown in Figures 2(a) and 2(b). The error between them is shown in Figure 2(c). It is obvious in Figure 2 that the systems are synchronous. Figure 3(a) illustrates the phase trajectory of response system with nonlinear control inputs and disturbances after applying the proposed controller. Figure 3(b) illustrates that the error signal tends to zero in a short time, in spite of the disturbances.

5. Conclusion

We investigate the synchronization problem of chaotic systems with nonlinear control inputs. A robust adaptive controller has been established. By applying this controller, control gain can be regulated automatically and the synchronization of chaotic systems can be achieved. Then, considering external disturbances, we propose a new \(H_\infty \) synchronization method for chaotic systems. From the above simulation results, we can find that the error signal tends to zero in a short time. Therefore, our control strategy is effective in synchronizing chaotic systems.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

The project is supported by the National Natural Science Foundation of China (Grant nos. 61503280, 61403278, and 61272006).

References

Submit your manuscripts at http://www.hindawi.com