Research Article

Reachable Set Estimation for Discrete-Time Systems with Interval Time-Varying Delays and Bounded Disturbances

Jiemei Zhao¹ and Yin Sheng²

¹School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan 430023, China
²School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China

Correspondence should be addressed to Jiemei Zhao; jiemeizhao@163.com

Received 1 October 2016; Accepted 23 October 2016

© 2016 J. Zhao and Y. Sheng. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The reachable set estimation problem for discrete-time systems with delay-range-dependent and bounded disturbances is investigated. A triple-summation term, the upper bound, and the lower bound of time-varying delay are introduced into the Lyapunov function. In this case, an improved delay-range-dependent criterion is established for the addressed problem by constructing the appropriate Lyapunov functional, which guarantees that the reachable set of discrete-time systems with time-varying delay and bounded peak inputs is contained in the ellipsoid. It is worth mentioning that the initial value of the system does not need to be zero. Then, the reachable set estimation problem for time-delay systems with polytopic uncertainties is investigated. The effectiveness and the reduced conservatism of the derived results are demonstrated by an illustrative example.

1. Introduction

The problem of reachable set estimation has been an important research area in control theory and has extensive applications in many areas, such as safety inspection of system [1], peak-to-peak gain minimization [2], control systems with actuator saturation [3, 4], parameter estimation [5], and other areas. Because time delays cannot be avoided in practical control systems and they cause undesirable dynamic behaviors such as oscillation and instability [6–10], in this context, it is natural to ask what about the reachable set of systems with time delays.

The reachable set estimation problem for time-delay systems has received considerable attention in recent years, such as linear systems with state delays [11–19], linear systems in the presence of both discrete and distributed delays [20, 21], and time-varying delay singular systems [22]. However, the considered systems in literatures [11–22] are all continuous. Discrete-time time-delay systems are an important class of dynamic systems because most control engineering application systems are digital implementation. Hence, control design for discrete-time model directly is more convenient. To the best of our knowledge, few efforts have been taken to the reachable set estimation problem of discrete-time systems. Very recently, the paper [23] addresses the problem of reachable set bounding for linear discrete-time systems that are subject to state delay and bounded disturbances. A new idea of minimizing the projection distances of the ellipsoids on each axis was proposed. The reachable set estimation problem for discrete-time polytopic systems with bounded disturbances and multiple constant delays has been studied in [24]. It provides a new method to investigate the problem of reachable set estimation. However, in [23, 24], some useful terms were ignored in the Lyapunov function and the derivation process. The ignorance terms may lead to considerable conservativeness. In addition, the literatures above [11–24] all suppose that the initial value of the system is zero. This condition brings some constraints in the process of estimating the bound of reachable set. Therefore, the reachable set estimation problem for discrete-time time-varying delays systems without restrictions on initial value still remains open, which motivates the present study.

In this paper, we aim to study the reachable set bounding for discrete-time linear systems with interval time-varying delays and bounded disturbances. The main contributions
of this paper lie in three aspects. Firstly, a new delay-range-
dependent analysis result is established for discrete-time
time-delay systems by retaining some useful terms and the
triple-summation term in the difference of the Lyapunov
function. The relationship among the time-varying delay, its
upper bound, and lower bound is considered. Secondly, the
initial value of the system does not need to be zero. Finally, the
reachable set estimation problem for polytopic time-varying
systems is investigated. A numerical example is given to
illustrate the effectiveness of the obtained results.

2. System Description and Preliminaries

Consider the following discrete-time singular systems with
interval time-varying delay and disturbances:

\[x(k+1) = Ax(k) + A_d x(k-d(k)) + B \omega(k), \]
\[x(k) = \phi(k), \quad k \in [-d_2, 0], \]

(1)

where \(x(k) \) is the state vector and \(\phi(k) \) is the initial condition;
\(d(k) \) is a time-varying delay satisfying \(0 \leq d_1 \leq d(k) \leq d_2 \),
where \(d_1 \) and \(d_2 \) are prescribed nonnegative integers
representing the lower and upper bounds of the time delay,
respectively. \(A, A_d, \) and \(B \) are known real constant matrices
of appropriate dimensions; \(\omega(k) \) is the disturbance which satisfies

\[\omega^T(k) \omega(k) \leq \omega^2, \]

(2)

where \(\omega \) is a real constant.

A reachable set for system (1) subject to bounded disturbance
(2) is defined as

\[\mathcal{R}_x := \{ x(k) \in \mathbb{R}^n \mid x(k), \omega(k) \ \text{satisfy} \ (1) \ \text{and} \ (2), \ k \geq 0 \}. \]

(3)

For a matrix \(P > 0 \), we define an ellipsoid \(\varepsilon(P, 1) \) bounding the reachable set (3) as follows:

\[\varepsilon(P, 1) := \{ x \in \mathbb{R}^n \mid x^T P x \leq 1 \}. \]

(4)

Before moving on, we give some definitions and lemmas
which will be used in the proof of the main results.

Lemma 1. Let \(V(x(k)) \) be a positive-definite function:
\(V(x(k_0)) \leq \beta \omega^2/(1-\alpha), k_0 > 0, \alpha \in (0, 1), \) and \(\beta > 0. \) If

\[\Delta V (k) + (1-\alpha) V(k) - \beta \omega^T(k) \omega(k) \leq 0, \]

then \(V(k) \leq \beta \omega^2/(1-\alpha), k \geq k_0. \)

Proof. By (2) and (5), we have

\[\Delta V (k) + (1-\alpha) V(k) \leq \beta \omega^2; \]

that is

\[\Delta \left(V(k) - \frac{\beta \omega^2}{1-\alpha} \right) \leq -(1-\alpha) \left(V(k) - \frac{\beta \omega^2}{1-\alpha} \right). \]

(6)

Let \(U(k) = V(k) - \beta \omega^2/(1-\alpha). \) Then, (7) is equivalent to

\[\Delta U(k) \leq - (1-\alpha) U(k). \]

Furthermore,

\[U(k) \leq \alpha U(k-1) \leq \cdots \leq \alpha^{k-k_0} U(k_0). \]

(8)

Since \(\alpha \in (0, 1), U(k_0) \leq 0, \) and \(U(k) = V(k) - \beta \omega^2/(1-\alpha), \)
\(V(k) \leq \beta \omega^2/(1-\alpha), k \geq k_0. \)

In order to use Lemma 1 conveniently, Lemma 1 can be rewritten as the following form by \(\beta = (1-\alpha)/\omega^2. \)

Lemma 2. Let \(V(x(k)) \) be a positive-definite function:
\(V(x(k_0)) \leq 1, k_0 > 0. \) If there exists a scalar \(\alpha \in (0, 1) \) such that

\[V(k+1) - \alpha V(k) - \frac{1-\alpha}{\omega^2} \omega^T(k) \omega(k) \leq 0, \]

then \(V(k) \leq 1, \forall k \geq k_0. \)

Remark 3. The reachable set estimation problem is investigat-
gated in [11–23] under the condition that the initial values of
the system states are zero. However, the condition is removed
in Lemma 1. The reachable sets defined in (3) of system (1)
can be bounded if \(V(x(k_0)) \leq \beta \omega^2/(1-\alpha), k_0 > 0. \) Let \(\beta = (1-\alpha)/\omega^2. \) Lemmas 1 and 2 reduce to (Lemma 2, [23])
and (Lemma 2, [24]), respectively. Therefore, Lemmas 1 and
2 provide more general results for the problem of reachable
set estimation.

Lemma 4 (see [24]). Give a positive integer \(h \in \mathbb{Z}_+ \), a scalar \(\alpha \in (0, 1), \) a vector function \(v(k), k \in \mathbb{Z}, \) and a matrix \(Z > 0. \) Then, the following inequalities hold:

(i) \[-\sum_{j=h}^{1} \alpha^{-j} v^T(k+j) Z v(k+j) \leq -\tilde{\alpha} \sum_{j=h}^{1} v^T(k+j), \]

where \(\tilde{\alpha} = \alpha^h/(1-\alpha^h). \)

(ii) \[-\sum_{j=-d}^{1} \alpha^{-j} v^T(k+j) Z v(k+j) \leq -\tilde{\alpha} \sum_{j=-d}^{1} \sum_{j=h}^{1} v^T(k+j), \]

where \(\tilde{\alpha} = \alpha^d(1-\alpha^d)/(1-\alpha^d). \)

The aim in this paper is to find the intersection of ellipsoids
\(\varepsilon(P, 1) \) to bound the reachable set defined as (3). Throughout
in this paper, \(\alpha \in (0, 1), d_1 = d_2 - d_1, \tilde{\alpha}_1 = \alpha^d(1-\alpha)/(1-\alpha^d), \)
\(\tilde{\alpha}_2 = \alpha^{d+1}(1-\alpha)/(1-\alpha^{d+1}), \tilde{\alpha}_1 = \alpha^{d+1}(1-\alpha^d)/(1-(d_1+1)\alpha^d), \)
\(d_1, \alpha^{d+1}, \) and \(\tilde{\alpha}_2 = \alpha^{d+2}(1-\alpha)/((1-(d_1+1)\alpha^{d+1})), \)

Then, the main results are given.

3. Reachable Set Estimation for Nominal Systems

Theorem 5. Consider system (1) with the input satisfying (2).
If there exist matrices \(P > 0, Q_1 > 0, Q_2 > 0, Q_3 > 0, Z_1 > 0, Z_2 > 0, R_1, \) and \(R_2 \) and a scalar \(\alpha \in (0, 1) \) such that the
following LMI holds,

\[\Phi_{11} \Phi_{12} P \Phi_{13} W < 0, \]

(10)

where
then the reachable set of system (1) is contained in the ellipsoid $\varepsilon(P, 1)$.

Proof. Define $\eta(k) = x(k+1) - x(k)$. Then, we construct the following Lyapunov functional:

$$V(k) = x^T(k)Px(k) + \sum_{s=k-d_1}^{k-1} \alpha^{k-s-1} x^T(s) Q_1 x(s) + \sum_{s=k-d_2}^{k-1} \alpha^{k-s-1} x^T(s) Q_2 x(s) + \sum_{s=k-d_3}^{k-1} \alpha^{k-s-1} x^T(s) Q_3 x(s) + d_{12} \sum_{j=-d_1}^{k-d_1} \sum_{s=kr+j}^{kr+j} \alpha^{k-s-1} \eta^T(s) Z_1 \eta(s) + d_{12} \sum_{j=-d_2}^{k-d_2} \sum_{s=kr+j}^{kr+j} \alpha^{k-s-1} \eta^T(s) Z_2 \eta(s) + d_{12} \sum_{j=-d_3}^{k-d_3} \sum_{s=kr+j}^{kr+j} \alpha^{k-s-1} \eta^T(s) R_1 \eta(s) + d_{12} \sum_{j=-d_4}^{k-d_4} \sum_{s=kr+j}^{kr+j} \alpha^{k-s-1} \eta^T(s) R_2 \eta(s).$$

In the following, we will prove that $V(x(k)) \leq 1$ under the condition in (10).

It is not difficult to obtain that

$$J = V(k+1) - \alpha V(k) - \frac{1 - \alpha}{\omega^2} \omega^T(k) \omega(k)$$

$$= x^T(k+1)Px(k+1) - \alpha x^T(k)Px(k) - \frac{1 - \alpha}{\omega^2} \omega^T(k) \omega(k)$$

$$- \sum_{s=k+1-d_1}^{k} \alpha^{k-s} x^T(s) Q_1 x(s)$$

$$- \sum_{s=k+1-d_2}^{k} \alpha^{k-s} x^T(s) Q_2 x(s)$$

$$- \sum_{s=k+1-d_3}^{k} \alpha^{k-s} x^T(s) Q_3 x(s)$$

$$+ \sum_{s=kr+j}^{kr+j} \alpha^{k-s} x^T(s) Z_1 \eta(s) + \sum_{s=kr+j}^{kr+j} \alpha^{k-s} x^T(s) Z_2 \eta(s) + \sum_{s=kr+j}^{kr+j} \alpha^{k-s} x^T(s) R_1 \eta(s) + \sum_{s=kr+j}^{kr+j} \alpha^{k-s} x^T(s) R_2 \eta(s) + \sum_{s=kr+j}^{kr+j} \alpha^{k-s} x^T(s) Z_1 \eta(s).$$
\begin{equation}
\begin{align*}
&-\sum_{j=-d_1}^{-d_1-1} \sum_{s=k+1+j}^{k} \alpha^{s-j} \eta^T(s) Z_1 \eta(s) \\
&+ \sum_{j=-d_1}^{-d_1-1} \sum_{s=k+1+j}^{k} \alpha^{s-j} \eta^T(s) Z_2 \eta(s) \\
&-\sum_{j=-d_1}^{-d_1-1} \sum_{s=k+1+j}^{k} \alpha^{s-j} \eta^T(s) Z_2 \eta(s) \\
&+ \sum_{l=-d_1}^{-1} \sum_{j=1+k+l}^{k} \alpha^{l-j} \eta^T(s) R_1 \eta(s) \\
&-\sum_{l=-d_1}^{-1} \sum_{j=1+k+l}^{k} \alpha^{l-j} \eta^T(s) R_1 \eta(s) \\
&-\sum_{j=-d_1}^{-d_1-1} \sum_{s=k+1+j}^{k} \alpha^{s-j} \eta^T(s) R_2 \eta(s) \\
&+ \sum_{l=-d_1}^{-1} \sum_{j=1+k+l}^{k} \alpha^{l-j} \eta^T(s) R_2 \eta(s) \\
&= x^T(k + 1) E^T P E x(k + 1) + \eta^T(k) W \eta(k) + \frac{1 - \alpha}{\omega} \omega^T(\omega(k) \\
&+ x^T(k) (-\alpha P + Q_1 + Q_2 + Q_3) x(k) \\
&- \alpha^d x^T(k - d_1) Q_1 x(k - d_1) \\
&- \alpha^d x^T(k - d_2) Q_2 x(k - d_2) \\
&- \alpha^{d(k)} x^T(k - d(k)) Q_3 x(k - d(k)) \\
&- \sum_{j=-d_1}^{-1} \alpha^{-j} \eta^T(k + j) Z_1 \eta(k + j) \\
&-\sum_{j=-d_1}^{-d_1-1} \alpha^{-j} \eta^T(k + j) Z_2 \eta(k + j) \\
&- \sum_{l=-d_1}^{-1} \sum_{j=1+k+l}^{k} \alpha^{-l} \eta^T(s) R_1 \eta(s) \\
&-\sum_{l=-d_1}^{-d_1-1} \sum_{j=1+k+l}^{k} \alpha^{-l} \eta^T(s) R_2 \eta(s) \\
&\leq x^T(k + 1) P x(k + 1) + \eta^T(k) W \eta(k) - \frac{1 - \alpha}{\omega} \omega^T(\omega(k) \\
&+ x^T(k) (-\alpha P + Q_1 + Q_2 + Q_3) x(k) \\
&- \alpha^d x^T(k - d_1) Q_1 x(k - d_1) - \alpha^d x^T(k - d_2) \\
&\cdot Q_2 x(k - d_2) - \alpha^d x^T(k - d(k)) Q_3 x(k - d(k)) \\
&- \alpha_1 [x(k) - x(k - d_1)]^T Z_1 [x(k) - x(k - d_1)] \\
&- \alpha_2 [x(k - d_1) - x(k - d_2)]^T \\
&\cdot Z_2 [x(k - d_1) - x(k - d_2)] \\
&\cdot R_1 \left[d_1 x(k) - \sum_{l=-d_1}^{-1} x(k + l) \right]^T \\
&\cdot R_2 \left[d_2 x(k) - \sum_{l=-d_1}^{-d_1-1} x(k + l) \right]^T = \xi^T(k) \\
&\cdot (\Phi_{11} + \Phi_{12} P \Phi_{12}^T + \Phi_{13} W \Phi_{13}^T) \xi(k),
\end{align*}
\end{equation}

where \(\xi(k) = [x^T(k) \ x^T(k - d(k)) \ x^T(k - d_1) \ x^T(k - d_2) \ \sum_{i=1}^{d_1} x^T(k - s) \ \sum_{i=d_1+1}^{d_2} x^T(k - s) \ \omega^T(k)]^T. \)

Applying the Schur complement, (10) is equivalent to

\[\Phi_{11} + \Phi_{12} P \Phi_{12}^T + \Phi_{13} W \Phi_{13}^T < 0. \]

This, together with (14), ensures that \(J \leq \xi^T(k) W \xi(k) < 0. \) Then, by using Lemma 2, we have that \(V(x(t)) \leq 1. \) Based on (19), we obtain \(x^T(k) P x(k) \leq 1. \) This means that the state trajectories of system (1) starting from the origin are bounded within the ellipsoid \(e(P, 1). \)

Remark 6. Under the assumptions that the initial conditions of the systems are zero and state trajectories start from the origin, the reachable set bounding problems are investigated in [23, 24]. The assumptions are removed in Theorem 5. In this case, the methods in [23, 24] are invalid when the initial conditions \(\phi(k) \neq 0. \) Therefore, our results are more general.

By using Theorem 5, a corollary can be obtained directly.

Corollary 7. Consider the system in (1) with \(d(k) = d. \) If there exist matrices \(P > 0, Q_1 > 0, Q_2 > 0, Q_3 > 0, Z > 0, \) and \(R \) and a scalar \(\alpha \in (0, 1) \) such that the following LMI holds,

\[\Psi = \begin{bmatrix} \Phi_{11} & \Phi_{12} & \Phi_{13} \\ \Phi_{12}^T & 0 & 0 \\ \Phi_{13}^T & -P & -W \end{bmatrix} < 0, \]

Applying Lemma 4, then

\begin{align*}
J & \leq x^T(k + 1) P x(k + 1) + \eta^T(k) W \eta(k) - \frac{1 - \alpha}{\omega} \\
&\cdot \omega^T(k) \omega(k) + x^T(k) (-\alpha P + Q_1 + Q_2 + Q_3) x(k)
\end{align*}
where

\[
\Phi_{11} = \begin{bmatrix}
\Delta_{11} & 0 & -\tilde{\alpha}_1 Z & \tilde{\alpha}_1 dR & 0 \\
* & \alpha^d_i Q_3 & 0 & 0 & 0 \\
* & * & \Delta_{33} & 0 & 0 \\
* & * & * & -\tilde{\alpha}_1 R & 0 \\
* & * & * & * & -\frac{1-\alpha}{\omega} I
\end{bmatrix},
\]

\[
\Delta_{11} = -\alpha P + Q_3 - \tilde{\alpha}_1 Z - d_1^2 \tilde{\alpha}_1 R,
\]

\[
\Delta_{33} = -\alpha^d_i Q_1 - \tilde{\alpha}_1 Z,
\]

\[
\Phi_{12} = [A_i A_{di} 0 0 0 B_i]^T,
\]

\[
\Phi_{13} = [A_i -I A_{di} 0 0 0 B_i]^T,
\]

\[
W = d Z + \frac{d (1+d_1)}{2} R_1 + \frac{d_1 (1+d_2) + 1}{2} R_2,
\]

then the reachable set of system (1) with \(d(k) = d\) is contained in the ellipsoid \(\varepsilon(P,1)\).

4. Reachable Set Estimation for Uncertain Systems

If there exist polytopic uncertainties in system matrices \(A, A_d,\) and \(B,\) that is,

\[
\Lambda = [A \ A_d \ B],
\]

\[
\Lambda = \sum_{i=1}^{N} \lambda_i \Lambda_i, \quad \lambda_i > 0,
\]

\[
\sum_{i=1}^{N} \lambda_i = 1,
\]

where \(N\) is the number of polytope vertices and the \(N\) vertices of the polytopic are described by \(\Lambda_i = [A_i \ A_{di} \ B_i] (i = 1, 2, \ldots, N),\) it is easy to extend Theorem 5 in such a case.

Theorem 8. Consider the system in (1) with polytopic uncertainties (17) and (18). If there exist matrices \(P > 0, Q_1 > 0, Q_2 > 0, Q_3 > 0, Z_1 > 0, Z_2 > 0, R_1,\) and \(R_2\) and a scalar \(\alpha \in (0,1)\) such that the following LMI holds,

\[
\Psi = \begin{bmatrix}
\Phi_{11} & \Phi_{12} P & \Phi_{13} W \\
* & -P & 0 \\
* & * & -W
\end{bmatrix} < 0,
\]

where

\[
\Phi_{11} = \begin{bmatrix}
\Delta_{11} & 0 & \tilde{\alpha}_1 Z_1 & 0 & \tilde{\alpha}_1 d_1 R_1 & \tilde{\alpha}_2 d_2 R_2 & 0 \\
* & \alpha^d_i Q_3 & 0 & 0 & 0 & 0 & 0 \\
* & * & \Delta_{33} & 0 & 0 & 0 & 0 \\
* & * & * & -\alpha d_i Q_2 - \tilde{\alpha}_2 Z_2 & 0 & 0 & 0 \\
* & * & * & * & -\tilde{\alpha}_1 R_1 & 0 & 0 \\
* & * & * & * & * & -\tilde{\alpha}_2 R_2 & 0 \\
* & * & * & * & * & * & -\frac{1-\alpha}{\omega} I
\end{bmatrix},
\]

\[
\Delta_{11} = -\alpha P + Q_1 + Q_2 + Q_3 - \tilde{\alpha}_1 Z_1 - d_1^2 \tilde{\alpha}_1 R_1 - d_2^2 \tilde{\alpha}_2 R_2,
\]

\[
\Delta_{33} = -\alpha d_i Q_1 - \tilde{\alpha}_1 Z_1 - \tilde{\alpha}_2 Z_2,
\]

\[
\Phi_{12} = [A_i A_{di} 0 0 0 0 B_i]^T,
\]

\[
\Phi_{13} = [A_i -I A_{di} 0 0 0 0 B_i]^T,
\]

\[
W = d_1 Z_1 + d_2 Z_2 + \frac{d_1 (1+d_1)}{2} R_1 + \frac{d_2 (d_1 + d_2 + 1)}{2} R_2,
\]
then, for any time-varying delay \(d(k)\) satisfying (2), the reachable sets of system (1) with polytopic uncertainties (17) can be bounded by the ellipsoid \(\mathcal{E}(P,1)\).

Corollary 9. Consider the system in (1) with polytopic uncertainties (17) and \(d(k) = d\). If there exist matrices \(P > 0, Q_1 > 0, Q_2 > 0, Q_3 > 0, Z > 0, R\) and a scalar \(\alpha \in (0, 1)\) such that the following LMI holds,

\[
\Psi = \begin{bmatrix}
\Delta_{11} & 0 & -\tilde{a}_1 Z & 0 & A_i P & (A_i - I) W \\
* & \alpha^d Q_1 & 0 & 0 & 0 & A_d P & A_d W \\
* & * & \Delta_{33} & 0 & 0 & 0 \\
* & * & * & -\tilde{a} R & 0 & 0 \\
* & * & * & * & -\frac{1 - \alpha}{\alpha} I & B_i P & B_i W \\
* & * & * & * & * & -P & 0 \\
* & * & * & * & * & -W
\end{bmatrix} < 0,
\]

(21)

where

\[
\Delta_{11} = -P + Q_3 - \tilde{a}_1 Z - d_2^2 \tilde{a}_1 R,
\]

\[
\Delta_{33} = -\alpha^d Q_1 - \tilde{a}_1 Z,
\]

\[
W = d_1 Z + \frac{d_1 (1 + d_1)}{2} R,
\]

then the reachable sets of system (1) can be bounded by the ellipsoid \(\mathcal{E}(P,1)\).

Remark 10. To find the “smallest” bound for the reachable set, one may propose a simple optimisation problem. That is, maximise \(\delta\) subject to \(\delta I \leq \bar{P}\), which can be transformed to the following optimisation problem:

\[
\text{minimize} \quad \bar{\delta} \left(\bar{\delta} = \delta^{-1} \right)
\]

subject to

(a) \[
\begin{bmatrix}
\tilde{\delta} I & I \\
I & \bar{P}
\end{bmatrix} \geq 0
\]

(b) Equations: (10) or (19).

5. Numerical Example

Example 1. Consider discrete-time time-varying delay system (1) with

\[
A = \begin{bmatrix}
0.21 & -0.01 \\
-0.9 & 0.1
\end{bmatrix},
\]

\[
A_d = \begin{bmatrix}
-0.02 & 0.01 \\
-0.2 & -0.01
\end{bmatrix},
\]

\[
B = \begin{bmatrix}
0.1 \\
0.15
\end{bmatrix}
\]

5. Numerical Example

Table 1: Different values of \(\bar{\delta}\) and \(P\) by choosing different \(\alpha\).

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(\bar{\delta}) in Theorem 5</th>
<th>(P)</th>
<th>(\bar{\delta}) in [23, 24]</th>
</tr>
</thead>
</table>
| 0.4 | 0.4014 | \begin{bmatrix}
27.5819 & -1.1019 \\
-1.1019 & 1.4983
\end{bmatrix} | |
| | | \begin{bmatrix}
-1.1019 & 1.4983 \\
27.5819 & -1.1019
\end{bmatrix} | |
| 0.6 | 0.1560 | \begin{bmatrix}
35.1870 & -4.3501 \\
-4.3501 & 4.5431
\end{bmatrix} | |
| | | \begin{bmatrix}
-4.3501 & 4.5431 \\
35.1870 & -4.3501
\end{bmatrix} | |
| 0.8 | 0.2206 | \begin{bmatrix}
20.3993 & -3.7143 \\
-3.7143 & 3.4333
\end{bmatrix} | |
| | | \begin{bmatrix}
-3.7143 & 3.4333 \\
20.3993 & -3.7143
\end{bmatrix} | |

6. Conclusions

In this paper, the problem of reachable set estimation for discrete-time systems with interval time-varying delays and bounded disturbances has been investigated. By introducing triple-summation terms, a novel Lyapunov function is constructed. Then, a delay-range-dependent criterion is established and the initial condition of discrete-time time-varying delay system is not required to be zero. Based on this result, the reachable set estimation problem for polytopic time-varying systems is investigated. The effectiveness of the obtained results has been verified through a numerical example.
Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This work is supported by the Natural Science Foundation of Hubei Province of China (2016CFB273), the Research and Innovation Initiatives of WHPU (2015d9), and the Scientific Research Foundation of Wuhan Polytechnic University Introduction (cultivate) Talents (2014RZ04).

References
