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Generalization of Szász-Mirakyan operators has been considered by Jain, 1972. Using these generalized operators, we introduce new
sequences of positive linear operators which are the integralmodification of the Jain operators havingweight functions of some Beta
basis function. Approximation properties, the rate of convergence, weighted approximation theorem, and better approximation are
investigated for these new operators. At the end, we generalize Jain-Beta operator with three parameters 𝛼, 𝛽, and 𝛾 and discuss
Voronovskaja asymptotic formula.

1. Introduction

For 0 < 𝜗 < ∞, |𝜅| < 1, let

𝑤
𝜅
(𝑖, 𝜗) = 𝜗(𝜗 + 𝑖𝜅)

𝑖−1
𝑒
−(𝜗+𝑖𝜅)

𝑖!

𝑖 = 0, 1, 2, . . . ; (1)

then
∞

∑

𝑖=0

𝑤
𝜅
(𝑖, 𝜗) = 1. (2)

Equation (1) is a Poisson-type distribution which has been
considered by Consul and Jain [1].

In 1970, Jain [2] introduced and studied the following
class of positive linear operators:

𝑃
𝜅

𝑛
(𝑓, 𝑥) =

∞

∑

𝑖=0

𝑤
𝜅
(𝑖, 𝑛𝑥) 𝑓 (

𝑖

𝑛

) , (3)

where 0 ≤ 𝜅 < 1 and 𝑤
𝜅
(𝑖, 𝑛𝑥) has been defined in (1).

The parameter 𝜅 may depend on the natural number 𝑛.
It is easy to see that 𝜅 = 0; (3) reduces to the well-known

Szász-Mirakyan operators [3]. Different generalization of
Szász-Mirakyan operator and its approximation properties
is studied in [4, 5]. Kantorovich-type extension of 𝑃𝜅

𝑛
was

given in [6]. Integral version of Jain operators using Beta basis
function is introduced by Tarabie [7], which is as follows:

𝑃
𝜅

𝑛
(𝑓, 𝑥) =

∞

∑

𝑖=1

1

𝐵 (𝑛 + 1, 𝑖)

𝑤
𝜅
(𝑖, 𝑛𝑥)

× ∫

∞

0

𝑡
𝑖−1

(1 + 𝑡)
𝑛+𝑖+1

𝑓 (𝑡) 𝑑𝑡 + 𝑒
−𝑛𝑥

𝑓 (0) .

(4)

In Gupta et al. [8] they considered integral modification
of the Szász-Mirakyan operators by considering the weight
function of Beta basis functions. Recently, Dubey and Jain [9]
considered a parameter 𝛾 in the definition of [8]. Motivated
by such types of operators we introduce new sequence of
linear operators as follows:

For 𝑥 ∈ [0,∞) and 𝛾 > 0,

𝑃
𝜅

𝑛,𝛾
(𝑓, 𝑥) =

∞

∑

𝑖=1

𝑤
𝜅
(𝑖, 𝑛𝑥) ∫

∞

0

𝑏
𝑛,𝑖,𝛾

(𝑡) 𝑓 (𝑡) 𝑑𝑡 + 𝑒
−𝑛𝑥

𝑓 (0) ,

(5)
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where 𝑤
𝜅
(𝑖, 𝑛𝑥) is defined in (1) and

𝑏
𝑛,𝑖,𝛾

(𝑡) =

𝛾Γ (𝑛/𝛾 + 𝑖 + 1)

Γ (𝑖) Γ (𝑛/𝛾 + 1)

(𝛾𝑡)
𝑖−1

(1 + 𝛾𝑡)
(𝑛/𝛾)+𝑖+1

. (6)

The operators defined by (5) are the integral modification of
the Jain operators having weight function of some Beta basis
function. As special case, 𝛾 = 1 the operators (5) reduced to
the operators recently studied in [7]. Also, if 𝜅 = 0 and 𝛾 = 1,
then the operators (5) turn into the operators studied in [8].

In the present paper, we introduce the operators (5)
and estimate moments for these operators. Also, we study
local approximation theorem, rate of convergence, weighted
approximation theorem, and better approximation for the
operators 𝑃𝜅

𝑛,𝛾
. At the end, we propose Stancu-type general-

ization of (5) and discuss some local approximation proper-
ties and asymptotic formula for Stancu-type generalization of
Jain-Beta operators.

2. Basic Results

Lemma 1 (see [2]). For 𝑃𝜅
𝑛
(𝑡
𝑚

, 𝑥), 𝑚 = 0, 1, 2, one has

𝑃
𝜅

𝑛
(1, 𝑥) = 1, 𝑃

𝜅

𝑛
(𝑡, 𝑥) =

𝑥

1 − 𝜅

,

𝑃
𝜅

𝑛
(𝑡
2

, 𝑥) =

𝑥
2

(1 − 𝜅)
2
+

𝑥

𝑛(1 − 𝜅)
3
.

(7)

Lemma 2. The operators 𝑃𝜅
𝑛,𝛾
, 𝑛 > 𝛾 defined by (5) satisfy the

following relations:

𝑃
𝜅

𝑛,𝛾
(1, 𝑥) = 1, 𝑃

𝜅

𝑛,𝛾
(𝑡, 𝑥) =

𝑥

1 − 𝜅

,

𝑃
𝜅

𝑛,𝛾
(𝑡
2

, 𝑥) =

𝑛𝑥
2

(1 − 𝜅)
2

(𝑛 − 𝛾)

+

𝑥 (1 + (1 − 𝜅)
2

)

(1 − 𝜅)
3

(𝑛 − 𝛾)

.

(8)

Proof. By simple computation, we get

𝑃
𝜅

𝑛,𝛾
(1, 𝑥) =

∞

∑

𝑖=1

𝑤
𝜅
(𝑖, 𝑛𝑥) + 𝑒

−𝑛𝑥

= 𝑃
𝜅

𝑛
(1, 𝑥) = 1, (9)

𝑃
𝜅

𝑛,𝛾
(𝑡, 𝑥) =

∞

∑

𝑖=1

𝑤
𝜅
(𝑖, 𝑛𝑥)

× ∫

∞

0

𝛾Γ (𝑛/𝛾 + 𝑖 + 1)

Γ (𝑖) Γ (𝑛/𝛾 + 1)

⋅

(𝛾𝑡)
𝑖−1

(1 + 𝛾𝑡)
(𝑛/𝛾)+𝑖+1

⋅ 𝑡𝑑𝑡

=

∞

∑

𝑖=1

𝑤
𝜅
(𝑖, 𝑛𝑥)

𝛾Γ (𝑛/𝛾 + 𝑖 + 1)

Γ (𝑖) Γ (𝑛/𝛾 + 1)

⋅

Γ (𝑖 + 1) Γ (𝑛/𝛾)

𝛾
2
Γ (𝑛/𝛾 + 𝑖 + 1)

=

∞

∑

𝑖=1

𝑤
𝜅
(𝑖, 𝑛𝑥)

𝑖

𝑛

= 𝑃
𝜅

𝑛
(𝑡, 𝑥) =

𝑥

1 − 𝜅

;

(10)

𝑃
𝜅

𝑛,𝛾
(𝑡
2

, 𝑥) =

∞

∑

𝑖=1

𝑤
𝜅
(𝑖, 𝑛𝑥)

× ∫

∞

0

𝛾Γ (𝑛/𝛾 + 𝑖 + 1)

Γ (𝑖) Γ (𝑛/𝛾 + 1)

⋅

(𝛾𝑡)
𝑖−1

(1 + 𝛾𝑡)
(𝑛/𝛾)+𝑖+1

⋅ 𝑡
2

𝑑𝑡

=

∞

∑

𝑖=1

𝑤
𝜅
(𝑖, 𝑛𝑥)

𝛾Γ (𝑛/𝛾 + 𝑖 + 1)

Γ (𝑖) Γ (𝑛/𝛾 + 1)

⋅

Γ (𝑖 + 2) Γ ((𝑛/𝛾) − 1)

𝛾
3
Γ (𝑛/𝛾 + 𝑖 + 1)

=

∞

∑

𝑖=1

𝑤
𝜅
(𝑖, 𝑛𝑥)

𝑖
2

+ 𝑖

𝑛 (𝑛 − 𝛾)

=

∞

∑

𝑖=1

𝑤
𝜅
(𝑖, 𝑛𝑥) (

𝑖
2

𝑛 (𝑛 − 𝛾)

+

𝑖

𝑛 (𝑛 − 𝛾)

)

=

𝑛

𝑛 − 𝛾

∞

∑

𝑖=1

𝑤
𝜅
(𝑖, 𝑛𝑥)

𝑖
2

𝑛
2
+

1

𝑛 − 𝛾

∞

∑

𝑖=1

𝑤
𝜅
(𝑖, 𝑛𝑥)

𝑖

𝑛

=

𝑛

𝑛 − 𝛾

(

𝑥
2

(1 − 𝜅)
2
+

𝑥

𝑛(1 − 𝜅)
3
)

+

1

(𝑛 − 𝛾)

𝑥

(1 − 𝜅)

=

𝑛𝑥
2

(1 − 𝜅)
2

(𝑛 − 𝛾)

+

𝑥 (1 + (1 − 𝜅)
2

)

(1 − 𝜅)
3

(𝑛 − 𝛾)

.

(11)

Lemma 3. For 𝑥 ∈ [0,∞), 𝑛 > 𝛾, and with 𝜑
𝑥
= 𝑡 − 𝑥, one

has

(i) 𝑃𝜅
𝑛,𝛾
(𝜑
𝑥
, 𝑥) = 𝜅𝑥/(1 − 𝜅),

(ii) 𝑃𝜅
𝑛,𝛾
(𝜑
2

𝑥
, 𝑥) = ((𝜅

2

(𝑛 − 𝛾) + 𝛾)/((1 − 𝜅)
2

(𝑛 − 𝛾)))𝑥
2

+

((1 + (1 − 𝜅)
2

)/((1 − 𝜅)
3

(𝑛 − 𝛾)))𝑥.

Lemma 4. For 𝑥 ∈ [0,∞), 𝑛 > 𝛾, one has

𝑃
𝜅

𝑛,𝛾
(𝜑
2

𝑥
, 𝑥) ≤

𝑛 + 2

(1 − 𝜅)
3

(𝑛 − 𝛾)

(𝑥
2

+ 𝑥) = 𝛿
𝜅,𝑛,𝛾

(𝑥) (𝑠𝑎𝑦) .

(12)

Proof. Since max{𝑥, 𝑥2} ≤ 𝑥+𝑥2, (1−𝜅)2 ≤ 1, and (1−𝜅)−2 ≤
(1 − 𝜅)

−3, we have

𝑃
𝜅

𝑛,𝛾
(𝜑
2

𝑥
, 𝑥) ≤ [

𝜅
2

(𝑛 − 𝛾) + 𝛾 + 2

(1 − 𝜅)
3

(𝑛 − 𝛾)

] (𝑥 + 𝑥
2

)

≤ [

𝑛 + 2

(1 − 𝜅)
3

(𝑛 − 𝛾)

] (𝑥 + 𝑥
2

) (as |𝜅| < 1) ,

(13)

which is required.



Journal of Calculus of Variations 3

3. Some Local Approximation

Let 𝐵
𝑥
2[0,∞) = {𝑓:for every 𝑥 ∈ [0,∞), |𝑓(𝑥)| ≤ 𝑀

𝑓
(1 +

𝑥
2

), 𝑀
𝑓
being a constant depending on 𝑓}. By 𝐶

𝑥
2[0,∞), we

denote the subspace of all continuous functions belonging
to 𝐵
𝑥
2[0,∞). Also, 𝐶∗

𝑥
2[0,∞) is subspace of all the function

𝑓 ∈ 𝐶
𝑥
2[0,∞) for which lim

𝑥→∞
(𝑓(𝑥)/(1+𝑥

2

)) is finite.The
norm on 𝐶∗

𝑥
2[0,∞) is ‖𝑓‖

𝑥
2 = sup

𝑥∈[0,∞)
(|𝑓(𝑥)|/(1 + 𝑥

2

)).
If we look at Lemma 2 and based on the famous Korovkin

theorem [10], it is clear that {𝑃𝜅
𝑛,𝛾
}
𝑛>𝛾

does not form an
approximation process. To do this approximation process, we
replace constant 𝜅 by a number 𝜅

𝑛
∈ [0, 1). If

lim
𝑛→∞

𝜅
𝑛
= 0, (14)

then Lemma 2 gives

lim
𝑛→∞

𝑃
𝜅
𝑛

𝑛,𝛾
(𝑡
𝑗

, 𝑥) = 𝑥
𝑗

, 𝑗 = 0, 1, 2, (15)

uniformly on any compact interval 𝐾 ⊂ [0,∞). Based on
Korovkin’s criteria we state the following.

Theorem 5. Let 𝑃𝜅𝑛
𝑛,𝛾

with 𝑛 > 𝛾 be defined in (5), where
lim
𝑛→∞

𝜅
𝑛
= 0. For any compact 𝐾 ⊂ [0,∞) and for each

𝑓 ∈ 𝐶
∗

𝑥
2[0,∞) one has

lim
𝑛→∞

𝑃
𝜅
𝑛

𝑛,𝛾
(𝑓, 𝑥) = 𝑓 (𝑥) , 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑖𝑛 𝑥 ∈ 𝐾. (16)

Now, we establish a direct local approximation theorem
for the modified operators 𝑃𝜅

𝑛,𝛾
in ordinary approximation.

Let the space 𝐶
𝐵
[0,∞) of all continuous and bounded

functions be endowed with the norm ‖𝑓‖ = sup{|𝑓(𝑥)| : 𝑥 ∈
[0,∞)}. Further let us consider the following 𝐾-functional:

𝐾
2
(𝑓, 𝛿) = inf

𝑔∈𝑊
2

{
󵄩
󵄩
󵄩
󵄩
𝑓 − 𝑔

󵄩
󵄩
󵄩
󵄩
+ 𝛿

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
󸀠󸀠
󵄩
󵄩
󵄩
󵄩
󵄩
} , (17)

where 𝛿 > 0 and𝑊2 = {𝑔 ∈ 𝐶
𝐵
[0,∞) : 𝑔

󸀠

, 𝑔
󸀠󸀠

∈ 𝐶
𝐵
[0,∞)}.

By themethods given in [11], there exists an absolute constant
𝐶 > 0 such that

𝐾
2
(𝑓, 𝛿) ≤ 𝐶𝜔

2
(𝑓,√𝛿) , (18)

where

𝜔
2
(𝑓,√𝛿) = sup

0<ℎ≤√𝛿

sup
𝑥∈[0,∞)

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥 + 2ℎ) − 2𝑓 (𝑥 + ℎ) + 𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨

(19)

is the second order modulus of smoothness of 𝑓 ∈ 𝐶
𝐵
[0,∞).

Theorem 6. For 𝑓 ∈ 𝐶
𝐵
[0,∞) and 𝑛 > 𝛾, one has

󵄨
󵄨
󵄨
󵄨
󵄨
𝑃
𝜅

𝑛,𝛾
(𝑓, 𝑥) − 𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝜔 (𝑓,

𝜅𝑥

1 − 𝜅

)

+ 𝐶𝜔
2
(𝑓,√𝛿

𝜅,𝑛,𝛾
(𝑥) +

𝜅𝑥

1 − 𝜅

) ,

(20)

where 𝐶 is a positive constant.

Proof. We introduce the auxiliary operators as follows:

𝑃̂
𝜅

𝑛,𝛾
(𝑓, 𝑥) = 𝑃

𝜅

𝑛,𝛾
(𝑓, 𝑥) − 𝑓(𝑥 +

𝜅𝑥

1 − 𝜅

) + 𝑓 (𝑥) . (21)

Let 𝑔 ∈ 𝑊2
∞

and 𝑥, 𝑡 ∈ [0,∞). By Taylor’s expansion we have

𝑔 (𝑡) = 𝑔 (𝑥) + (𝑡 − 𝑥) 𝑔
󸀠

(𝑥) + ∫

𝑡

𝑥

(𝑡 − 𝑢) 𝑔
󸀠󸀠

(𝑢) 𝑑𝑢. (22)

Applying 𝑃̂𝜅
𝑛,𝛾
, we get

𝑃̂
𝜅

𝑛,𝛾
(𝑔, 𝑥) − 𝑔 (𝑥) = 𝑔

󸀠

(𝑥) 𝑃̂
𝜅

𝑛,𝛾
((𝑡 − 𝑥) , 𝑥)

+ 𝑃̂
𝜅

𝑛,𝛾
(∫

𝑡

𝑥

(𝑡 − 𝑢) 𝑔
󸀠󸀠

(𝑢) 𝑑𝑢, 𝑥) .

(23)

Applying Lemma 2, we get
󵄨
󵄨
󵄨
󵄨
󵄨
𝑃̂
𝜅

𝑛,𝛾
(𝑔, 𝑥) − 𝑔 (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑃̂
𝜅

𝑛,𝛾
(

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡

𝑥

(𝑡 − 𝑢) 𝑔
󸀠󸀠

(𝑢) 𝑑𝑢

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

, 𝑥)

≤ 𝑃
𝜅

𝑛,𝛾
((𝑡 − 𝑢)

2

, 𝑥)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
󸀠󸀠
󵄩
󵄩
󵄩
󵄩
󵄩

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑥+𝜅𝑥/(1−𝜅)

𝑥

(𝑥 +

𝜅𝑥

1 − 𝜅

− 𝑢)𝑔
󸀠󸀠

(𝑢) 𝑑𝑢

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ [𝛿
𝜅,𝑛,𝛾

(𝑥) +

𝜅𝑥

1 − 𝜅

]

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
󸀠󸀠
󵄩
󵄩
󵄩
󵄩
󵄩
.

(24)

Since

󵄨
󵄨
󵄨
󵄨
󵄨
𝑃
𝜅

𝑛,𝛾
(𝑓, 𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

∞

∑

𝑖=1

𝑤
𝜅
(𝑖, 𝑛𝑥)

× ∫

∞

0

𝑏
𝑛,𝑖,𝛾

(𝑡)
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡)

󵄨
󵄨
󵄨
󵄨
𝑑𝑡 + 𝑒

−𝑛𝑥 󵄨
󵄨
󵄨
󵄨
𝑓 (0)

󵄨
󵄨
󵄨
󵄨
≤
󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩
,

(25)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑃
𝜅

𝑛,𝛾
(𝑓, 𝑥) − 𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
𝑃̂
𝜅

𝑛,𝛾
(𝑓 − 𝑔, 𝑥) − (𝑓 − 𝑔) (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑃̂
𝜅

𝑛,𝛾
(𝑔, 𝑥) − 𝑔 (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(𝑥 +

𝜅𝑥

1 − 𝜅

) − 𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 2
󵄩
󵄩
󵄩
󵄩
𝑓 − 𝑔

󵄩
󵄩
󵄩
󵄩
+ [𝛿
𝜅,𝑛,𝛾

(𝑥) +

𝜅𝑥

1 − 𝜅

]

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
󸀠󸀠
󵄩
󵄩
󵄩
󵄩
󵄩

+ 𝜔(𝑓,

𝜅𝑥

1 − 𝜅

) .

(26)

Taking infimum overall 𝑔 ∈ 𝑊2, we get

󵄨
󵄨
󵄨
󵄨
󵄨
𝑃
𝜅

𝑛,𝛾
(𝑓, 𝑥) − 𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐾(𝑓, 𝛿

𝜅,𝑛,𝛾
(𝑥) +

𝜅𝑥

1 − 𝜅

)

+ 𝜔(𝑓,

𝜅𝑥

1 − 𝜅

) .

(27)
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In view of (18)
󵄨
󵄨
󵄨
󵄨
󵄨
𝑃
𝜅

𝑛,𝛾
(𝑓, 𝑥) − 𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶𝜔
2
(𝑓,√𝛿

𝜅,𝑛,𝛾
(𝑥) +

𝜅𝑥

1 − 𝜅

) + 𝜔(𝑓,

𝜅𝑥

1 − 𝜅

) ,

(28)

which proves the theorem.

4. Rate of Convergence and
Weighted Approximation

For any positive 𝑎, by

𝜔
𝑎
(𝑓, 𝛿) = sup

|𝑡−𝑥|≤𝛿

sup
𝑥,𝑡∈[0,𝑎]

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡) − 𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨
, (29)

we denote the usual modulus of continuity of 𝑓 on the closed
interval [0, 𝑎]. We know that, for a function 𝑓 ∈ 𝐶

𝑥
2[0,∞),

the modulus of the continuity 𝜔
𝑎
(𝑓, 𝛿) tends to zero.

Now we give a rate of convergence theorem for the
operator 𝑃𝜅

𝑛,𝛾
.

Theorem 7. Let 𝑓 ∈ 𝐶
𝑥
2[0,∞) and 𝜔

𝑎+1
(𝑓, 𝛿) be its modulus

of continuity on the finite interval [0, 𝑎 + 1] ⊂ [0,∞), where
𝑎 > 0. Then, for 𝑛 > 𝛾,

󵄩
󵄩
󵄩
󵄩
󵄩
𝑃
𝜅

𝑛,𝛾
(𝑓, ⋅) − 𝑓

󵄩
󵄩
󵄩
󵄩
󵄩𝐶[0,𝑎]

≤ 6𝑀
𝑓
(1 + 𝑎

2

) 𝛿
𝜅,𝑛,𝛾

(𝑥)

+ 𝜔
𝑎+1
(𝑓,√𝛿

𝜅,𝑛,𝛾
(𝑥)) .

(30)

Proof. For 𝑥 ∈ [0, 𝑎] and 𝑡 > 𝑎 + 1, since 𝑡 − 𝑥 > 1, we have
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡) − 𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨
≤ 𝑀
𝑓
(2 + 𝑥

2

+ 𝑡
2

)

≤ 𝑀
𝑓
(2 + 3𝑥

2

+ 2(𝑡 − 𝑥)
2

)

≤ 6𝑀
𝑓
(1 + 𝑎

2

) (𝑡 − 𝑥)
2

.

(31)

For 𝑥 ∈ [0, 𝑎] and 𝑡 ≤ 𝑎 + 1, we have
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥) − 𝑓 (𝑡)

󵄨
󵄨
󵄨
󵄨
≤ 𝜔
𝑎+1
(𝑓, |𝑡 − 𝑥|)

≤ (1 +

|𝑡 − 𝑥|

𝛿

)𝜔
𝑎+1
(𝑓, 𝛿) ,

(32)

with 𝛿 > 0.
From (31) and (32) we can write

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡) − 𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨
≤ 6𝑀

𝑓
(1 + 𝑎

2

) (𝑡 − 𝑥)
2

+ (1 +

|𝑡 − 𝑥|

𝛿

)𝜔
𝑎+1
(𝑓, 𝛿) ,

(33)

for 𝑥 ∈ [0, 𝑎] and 𝑡 ≥ 0. Thus,
󵄨
󵄨
󵄨
󵄨
󵄨
𝑃
𝜅

𝑛,𝛾
(𝑓, 𝑥) − 𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑃
𝜅

𝑛,𝛾
(
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡) − 𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨
, 𝑥)

≤ 6𝑀
𝑓
(1 + 𝑎

2

) 𝑃
𝜅

𝑛,𝛾
((𝑡 − 𝑥)

2

, 𝑥)

+ 𝜔
𝑎+1
(𝑓, 𝛿) (1 +

1

𝛿

𝑃
𝜅

𝑛,𝛾
((𝑡 − 𝑥)

2

, 𝑥)

1/2

) .

(34)

Hence, by Schwarz’s inequality and Lemma 3, for 𝑥 ∈ [0, 𝑎],
󵄨
󵄨
󵄨
󵄨
󵄨
𝑃
𝜅

𝑛,𝛾
(𝑓, 𝑥) − 𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 6𝑀
𝑓
(1 + 𝑎

2

) 𝛿
𝜅,𝑛,𝛾

(𝑥)

+ 𝜔
𝑎+1
(𝑓, 𝛿) (1 +

1

𝛿

√𝛿
𝜅,𝑛,𝛾

(𝑥)) .

(35)

By taking 𝛿 = √𝛿
𝜅,𝑛,𝛾

(𝑥), we get

󵄩
󵄩
󵄩
󵄩
󵄩
𝑃
𝜅

𝑛,𝛾
(𝑓, ⋅) − 𝑓

󵄩
󵄩
󵄩
󵄩
󵄩𝐶[0,𝑎]

≤ 6𝑀
𝑓
(1 + 𝑎

2

) 𝛿
𝜅,𝑛,𝛾

(𝑥)

+ 𝜔
𝑎+1
(𝑓,√𝛿

𝜅,𝑛,𝛾
(𝑥)) ,

(36)

which proves the theorem.

Now we will discuss the weighted approximation the-
orem, where the approximation formula holds true on the
interval [0,∞).

Theorem 8. If 𝑓 ∈ 𝐶
∗

𝑥
2[0,∞), lim

𝑛→∞
𝜅
𝑛
= 0, and 𝑛 > 𝛾,

then,

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝑃
𝜅
𝑛

𝑛,𝛾
(𝑓, ⋅) − 𝑓

󵄩
󵄩
󵄩
󵄩
󵄩𝑥
2
= 0. (37)

Proof. Using the theorem in [12] we see that it is sufficient to
verify the following three conditions:

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝑃
𝜅
𝑛

𝑛,𝛾
(𝑡
𝑟

, 𝑥) − 𝑥
𝑟
󵄩
󵄩
󵄩
󵄩
󵄩𝑥
2
= 0, 𝑟 = 0, 1, 2. (38)

Since 𝑃𝜅𝑛
𝑛,𝛾
(1, 𝑥) = 1, the first condition of (38) is fulfilled for

𝑟 = 0. By Lemma 2 we have

󵄩
󵄩
󵄩
󵄩
󵄩
𝑃
𝜅
𝑛

𝑛,𝛾
(𝑡, 𝑥) − 𝑥

󵄩
󵄩
󵄩
󵄩
󵄩𝑥
2
= sup
𝑥∈[0,∞)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑃
𝜅
𝑛

𝑛,𝛾
(𝑡, 𝑥) − 𝑥

󵄨
󵄨
󵄨
󵄨
󵄨

1 + 𝑥
2

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥

1 − 𝜅
𝑛

− 𝑥

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sup
𝑥∈[0,∞)

𝑥

1 + 𝑥
2
≤

𝜅
𝑛
𝑥

1 − 𝜅
𝑛

,

(39)

and the second condition of (38) holds for 𝑟 = 1 as 𝑛 → ∞

with 𝜅
𝑛
→ 0.

Similarly, we can write, for 𝑛 > 𝛾,
󵄩
󵄩
󵄩
󵄩
󵄩
𝑃
𝜅
𝑛

𝑛,𝛾
(𝑡
2

, 𝑥) − 𝑥
2
󵄩
󵄩
󵄩
󵄩
󵄩𝑥
2

= sup
𝑥∈[0,∞)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑃
𝜅
𝑛

𝑛,𝛾
(𝑡
2

, 𝑥) − 𝑥
2
󵄨
󵄨
󵄨
󵄨
󵄨

1 + 𝑥
2

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛

(1 − 𝜅
𝑛
)
2

(𝑛 − 𝛾)

− 1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sup
𝑥∈[0,∞)

𝑥
2

1 + 𝑥
2

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(1 + (1 − 𝜅
𝑛
)
2

)

(1 − 𝜅)
3

(𝑛 − 𝛾)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sup
𝑥∈[0,∞)

𝑥

1 + 𝑥
2

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜅
2

𝑛
(𝑛 − 𝛾) + 𝛾

(1 − 𝜅
𝑛
)
2

(𝑛 − 𝛾)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(1 + (1 − 𝜅
𝑛
)
2

)

(1 − 𝜅
𝑛
)
3

(𝑛 − 𝛾)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

,

(40)
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which implies that

lim
𝑛→∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝑃
𝜅
𝑛

𝑛,𝛾
(𝑡
2

, 𝑥) − 𝑥
2
󵄩
󵄩
󵄩
󵄩
󵄩𝑥
2
= 0 with 𝜅

𝑛
󳨀→ 0. (41)

Thus, the proof is completed.

5. Better Error Approximation

In this section, wemodified operator (5), in such way that the
linear functions are preserved.The technique, which replaced
𝑥 by appropriate function, was studied for many operators,
for example, Bernstein, Szász, Szász-Beta operators, and so
on [13–20].

We start by defining

𝑟
𝜅
(𝑥) = (1 − 𝜅) 𝑥. (42)

We note that 𝑟
𝜅
(𝑥) ∈ [0,∞), for any 0 ≤ 𝜅 < 1. By replacing 𝑥

by 𝑟
𝜅
(𝑥) we give the following modification of the operators

𝑃
𝜅
𝑛

𝑛,𝛾
:

𝑃
∗𝜅

𝑛,𝛾
(𝑓, 𝑥) =

∞

∑

𝑖=1

𝑤
𝜅
(𝑖, 𝑛𝑟
𝜅
(𝑥))

× ∫

∞

0

𝑏
𝑛,𝑖,𝛾

(𝑡) 𝑓 (𝑡) 𝑑𝑡 + 𝑒
−𝑛𝑟
𝜅
(𝑥)

𝑓 (0) ,

(43)

where

𝑤
𝜅
(𝑖, 𝑛𝑟
𝜅
(𝑥)) = 𝑛𝑟

𝜅
(𝑥) (𝑛𝑟

𝜅
(𝑥) + 𝑖𝜅)

𝑖−1 𝑒
−(𝑛𝑟
𝜅
(𝑥)+𝑖𝜅)

𝑖!

(44)

and 𝑥 ∈ [0,∞), 𝑛 > 𝛾; the term 𝑏
𝑛,𝑖,𝛾
(𝑡) is given in (5).

Lemma 9. For 𝑥 ∈ [0,∞) and 𝑛 > 𝛾, one has

(i) 𝑃∗𝜅
𝑛,𝛾
(1, 𝑥) = 1,

(ii) 𝑃∗𝜅
𝑛,𝛾
(𝑡, 𝑥) = 𝑥,

(iii) 𝑃∗𝜅
𝑛,𝛾
(𝑡
2

, 𝑥) = 𝑛𝑥
2

/(𝑛−𝛾)+((2−2𝜅+𝜅
2

)𝑥)/((1−𝜅)
2

(𝑛−

𝛾)).

Lemma 10. For 𝑥 ∈ [0,∞), 𝑛 > 𝛾, and with 𝜑
𝑥
= 𝑡 − 𝑥, one

has

(i) 𝑃∗𝜅
𝑛,𝛾
(𝜑
𝑥
, 𝑥) = 0,

(ii) 𝑃∗𝜅
𝑛,𝛾
(𝜑
2

𝑥
, 𝑥) = 𝑥

2

𝛾/(𝑛−𝛾)+((2−2𝜅+𝜅
2

)𝑥)/((1−𝜅)
2

(𝑛−

𝛾)).

Lemma 11. For 𝑥 ∈ [0,∞), 𝑛 > 𝛾, one has

𝑃
∗𝜅

𝑛,𝛾
(𝜑
2

𝑥
, 𝑥)

≤

2 + 𝛾

(1 − 𝜅)
2

(𝑛 − 𝛾)

(𝑥 + 𝑥
2

) = 𝜏
𝜅,𝑛,𝛾

(𝑥) (𝑠𝑎𝑦) .

(45)

Proof. Since max{𝑥, 𝑥2} ≤ 𝑥 + 𝑥2 and (1 − 𝜅)2 ≤ 1, we have

𝑃
∗𝜅

𝑛,𝛾
(𝜑
2

𝑥
, 𝑥) ≤

(2 − 2𝜅 + 𝜅
2

) + 𝛾(1 − 𝜅)
2

(1 − 𝜅)
2

(𝑛 − 𝛾)

(𝑥 + 𝑥
2

)

=

((1 − 𝜅)
2

+ 1) + 𝛾(1 − 𝜅)
2

(1 − 𝜅)
2

(𝑛 − 𝛾)

(𝑥 + 𝑥
2

)

≤

2 + 𝛾

(1 − 𝜅)
2

(𝑛 − 𝛾)

(𝑥 + 𝑥
2

) ,

(46)

which is required.

Theorem 12. Let 𝑓 ∈ 𝐶
𝐵
[0,∞). Then for 𝑥 ∈ [0,∞) and

𝑛 > 𝛾, one has
󵄨
󵄨
󵄨
󵄨
󵄨
𝑃
∗𝜅

𝑛,𝛾
(𝑓, 𝑥) − 𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝑀𝜔

2
(𝑓,√𝜏

𝜅,𝑛,𝛾
(𝑥)) . (47)

Proof. Let 𝑔 ∈ 𝑊2
∞

and 𝑥 ∈ [0,∞). Using Taylor’s expansion

𝑔 (𝑡) = 𝑔 (𝑥) + 𝑔
󸀠

(𝑥) (𝑡 − 𝑥)

+ ∫

𝑡

𝑥

(𝑡 − 𝑢) 𝑔
󸀠󸀠

(𝑢) 𝑑𝑢, 𝑡 ∈ [0,∞)

(48)

and Lemma 10, we have

𝑃
∗𝜅

𝑛,𝛾
(𝑔, 𝑥) − 𝑔 (𝑥) = 𝑃

∗𝜅

𝑛,𝛾
(∫

𝑡

𝑥

(𝑡 − 𝑢) 𝑔
󸀠󸀠

(𝑢) 𝑑𝑢) . (49)

Also, | ∫𝑡
𝑥

(𝑡 − 𝑢)𝑔
󸀠󸀠

(𝑢)𝑑𝑢| ≤ (𝑡 − 𝑥)
2

‖𝑔
󸀠󸀠

‖. Thus,
󵄨
󵄨
󵄨
󵄨
󵄨
𝑃
∗𝜅

𝑛,𝛾
(𝑔, 𝑥) − 𝑔 (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝑃
∗𝜅

𝑛,𝛾
((𝑡 − 𝑥)

2

, 𝑥)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
󸀠󸀠

(𝑥)

󵄩
󵄩
󵄩
󵄩
󵄩

=

(2 − 2𝜅 + 𝜅
2

) 𝑥 + 𝑥
2

𝛾(1 − 𝜅)
2

(1 − 𝜅)
2

(𝑛 − 𝛾)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
󸀠󸀠
󵄩
󵄩
󵄩
󵄩
󵄩
.

(50)

Since |𝑃∗𝜅
𝑛,𝛾
(𝑓, 𝑥)| ≤ ‖𝑓‖,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑃
∗𝜅

𝑛,𝛾
(𝑓, 𝑥) − 𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
𝑃
∗𝜅

𝑛,𝛾
(𝑓 − 𝑔, 𝑥) − (𝑓 − 𝑔) (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑃
∗𝜅

𝑛,𝛾
(𝑔, 𝑥) − 𝑔 (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨

≤ 2
󵄩
󵄩
󵄩
󵄩
𝑓 − 𝑔

󵄩
󵄩
󵄩
󵄩
+

(2 − 2𝜅 + 𝜅
2

) 𝑥 + 𝑥
2

𝛾(1 − 𝜅)
2

(1 − 𝜅)
2

(𝑛 − 𝛾)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
󸀠󸀠
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 2
󵄩
󵄩
󵄩
󵄩
𝑓 − 𝑔

󵄩
󵄩
󵄩
󵄩
+ 𝜏
𝜅,𝑛,𝛾

(𝑥)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑔
󸀠󸀠
󵄩
󵄩
󵄩
󵄩
󵄩
.

(51)

Finally taking the infimum on right side over all 𝑔 ∈ 𝑊2
∞
, we

get
󵄨
󵄨
󵄨
󵄨
󵄨
𝑃
∗𝜅

𝑛,𝛾
(𝑓, 𝑥) − 𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐾
2
(𝑓, 𝜏
𝑘,𝑛,𝛾

) . (52)

In view of (18), we obtain
󵄨
󵄨
󵄨
󵄨
󵄨
𝑃
∗𝜅

𝑛,𝛾
(𝑓, 𝑥) − 𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝐶𝜔
2
(𝑓,√𝜏𝑘,𝑛,𝛾

) , (53)

which proves the theorem.
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Remark 13. We claim that the error estimation inTheorem 12
is better than that of (20), provided 𝑓 ∈ 𝐶[0,∞) and 𝑥 > 0.
Indeed, in order to get this better estimation we must show
that 𝜏
𝜅,𝑛,𝛾

(𝑥) ≤ 𝛿
𝜅,𝑛,𝛾

(𝑥) + 𝜅𝑥/(1 − 𝜅). One can obtain that

𝛿
𝜅,𝑛,𝛾

(𝑥) +

𝜅𝑥

1 − 𝜅

≤ (

𝑛 + 2 + 𝜅(1 − 𝜅)
2

(𝑛 − 𝛾)

(1 − 𝜅)
3

(𝑛 − 𝛾)

) (𝑥 + 𝑥
2

)

≤ (

2𝑛 + 2 − 𝛾

(1 − 𝜅)
3

(𝑛 − 𝛾)

) (𝑥 + 𝑥
2

) .

(54)

Also,

𝜏
𝜅,𝑛,𝛾

(𝑥) ≤ 𝛿
𝜅,𝑛,𝛾

(𝑥) +

𝜅𝑥

1 − 𝜅

⇐⇒

2 + 𝛾

(1 − 𝜅)
2

(𝑛 − 𝛾)

(𝑥 + 𝑥
2

)

≤

2𝑛 + 2 − 𝛾

(1 − 𝜅)
3

(𝑛 − 𝛾)

(𝑥 + 𝑥
2

)

⇐⇒ (2 + 𝛾) ≤

2𝑛 + 2 − 𝛾

(1 − 𝜅)

⇐⇒ 2 − 2𝜅 + 𝛾 − 𝛾𝜅 ≤ (2𝑛 + 2 − 𝛾)

⇐⇒ 2 (𝑛 − 𝛾) + (2 + 𝛾) 𝜅 ≥ 0,

(55)

which holds true, with 𝑛 > 𝛾 > 0 and 𝜅 > 0. Thus, 𝜏
𝜅,𝑛,𝛾

(𝑥) ≤

𝛿
𝜅,𝑛,𝛾

(𝑥) + 𝜅𝑥/(1 − 𝜅).

6. Stancu Approach

In 1968, Stancu introduced Bernstein-Stancu operator, which
is a linear positive operator with two parameters 𝛼 and 𝛽
satisfying the condition 0 ≤ 𝛼 ≤ 𝛽. Inspired by the Stancu-
type generalization of Bernstein operator and the recent
important work on several other operators are discuss in [21–
27], we propose following modification of the operator 𝑃𝜅

𝑛,𝛾

as

𝑃̃
𝜅,𝛼,𝛽

𝑛,𝛾
(𝑓, 𝑥) =

∞

∑

𝑖=1

𝑤
𝜅
(𝑖, 𝑛𝑥) ∫

∞

0

𝑏
𝑛,𝑖,𝛾

(𝑡) 𝑓(

𝑛𝑡 + 𝛼

𝑛 + 𝛽

)𝑑𝑡

+ 𝑒
−𝑛𝑥

𝑓(

𝛼

𝑛 + 𝛽

) ,

(56)

where 𝑤
𝜅
(𝑖, 𝑛𝑥) and 𝑏

𝑛,𝑖,𝛾
(𝑡) are defined in (5).

Lemma 14. For 𝑃̃𝜅,𝛼,𝛽
𝑛,𝛾

(𝑡
𝑠

, 𝑥), 𝑠 = 0, 1, 2, the following inequal-
ities holds:

(i) 𝑃̃𝜅,𝛼,𝛽
𝑛,𝛾

(1, 𝑥) = 1,

(ii) 𝑃̃𝜅,𝛼,𝛽
𝑛,𝛾

(𝑡, 𝑥) = (𝑛𝑥 + 𝛼(1 − 𝜅))/((𝑛 + 𝛽)(1 − 𝜅)),

(iii) 𝑃̃𝜅,𝛼,𝛽
𝑛,𝛾

(𝑡
2

, 𝑥) = 𝑛
3

𝑥
2

/((𝑛+𝛽)
2

(𝑛−𝛾)(1−𝜅)
2

)+ (𝑛𝑥(2𝑛+
2(−𝑛 + 2𝛼(𝑛 − 𝛾))𝜅 + (𝑛 − 4𝛼(𝑛 − 𝛾))𝜅

2

+ 2𝛼(𝑛 −

𝛾)𝜅
3

)) / ((𝑛 + 𝛽)
2

(𝑛 − 𝛾)(1 − 𝜅)
3

)+𝛼2/(𝑛 + 𝛽)2.

The proof of the above lemma can be obtained by using
linearity of operators and Lemma 2.

Lemma 15. If one denotes central moments by Φ𝜅,𝛼,𝛽
𝑛,𝑚,𝛾

(𝑥) =

𝑃̃
𝜅,𝛼,𝛽

𝑛,𝛾
((𝑡 − 𝑥)

𝑚

, 𝑥), 𝑚 = 1, 2, then one has

Φ
𝜅,𝛼,𝛽

𝑛,1,𝛾
(𝑥) =

𝑥 (𝑛𝜅 + 𝛽𝜅 − 𝛽)

(𝑛 + 𝛽) (1 − 𝜅)

+

𝛼

(𝑛 + 𝛽)

,

Φ
𝜅,𝛼,𝛽

𝑛,2,𝛾
(𝑥)

= ( (𝑛
3

𝜅
2

+ 𝑛
2

(−2𝛽𝜅 + 2𝛽𝜅
2

+ 𝛾 (1 − 𝜅
2

))

+ 𝑛𝛽 (𝛽(1 − 𝜅)
2

+ 2𝛾𝜅 (1 − 𝜅))

− 𝛽
2

𝛾(1 − 𝜅)
2

)

× ((𝑛 + 𝛽)
2

(𝑛 − 𝛾) (1 − 𝜅)
2

)

−1

)𝑥
2

+ ( (𝑛
2

((1 − 𝜅)
2

+ 1 + 2𝛼 (2𝜅
3

− 5𝜅
2

+ 4𝜅 − 1)))

× ((𝑛 + 𝛽)
2

(𝑛 − 𝛾) (1 − 𝜅)
3

)

−1

+ (𝑛𝛼 (2𝛽 − 2𝛾 + (−6𝛽 + 8𝛾) 𝜅

+ (6𝛽 − 10𝛾) 𝜅
2

+ (−2𝛽 + 4𝛾) 𝜅
3

)

+2𝛼𝛽𝛾(1 − 𝜅)
3

)

× ((𝑛 + 𝛽)
2

(𝑛 − 𝛾) (1 − 𝜅)
3

)

−1

)𝑥

+

𝛼
2

(𝑛 + 𝛽)
2
.

(57)

Theorem 16. Let 𝑃̃𝜅𝑛,𝛼,𝛽
𝑛,𝛾

with 𝑛 > 𝛾 be defined in (56), where
lim
𝑛→∞

𝜅
𝑛
= 0. For any compact 𝐴 ⊂ [0,∞) and for each

𝑓 ∈ 𝐶
∗

𝑥
2[0,∞), one has

lim
𝑛→∞

𝑃̃
𝜅
𝑛
,𝛼,𝛽

𝑛,𝛾
(𝑓, 𝑥) = 𝑓 (𝑥) , 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑖𝑛 𝑥 ∈ 𝐴. (58)

The proof is based on Korovkin’s criterion and Lemma 14.

Theorem 17. Let 𝑓 ∈ 𝐶
𝐵
[0,∞) and 𝑛 > 𝛾, one has

󵄨
󵄨
󵄨
󵄨
󵄨
𝑃̃
𝜅,𝛼,𝛽

𝑛,𝛾
(𝑓, 𝑥) − 𝑓 (𝑥)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 𝜔 (𝑓,Φ

𝜅,𝛼,𝛽

𝑛,1,𝛾
(𝑥))

+ 𝐵𝜔
2
(𝑓,√Φ

𝜅,𝛼,𝛽

𝑛,1,𝛾
(𝑥) + Φ

𝜅,𝛼,𝛽

𝑛,2,𝛾
(𝑥)) ,

(59)

for every 0 ≤ 𝛼 ≤ 𝛽 and 𝑥 ∈ [0,∞), where 𝐵 is a positive
constant.

The proof of Theorem 17 is just similar to Theorem 6.
Now, we establish the Voronovskaja-type asymptotic

formula for the operators 𝑃̃𝜅,𝛼,𝛽
𝑛,𝛾

(𝑓, 𝑥).



Journal of Calculus of Variations 7

Theorem 18. Let 𝑓 be bounded and integrable on [0,∞), first
and second derivatives of 𝑓 exist at a fixed point 𝑥 ∈ [0,∞),
and 𝜅
𝑛
∈ (0, 1) such that 𝜅

𝑛
→ 0 as 𝑛 → ∞; then

lim
𝑛→∞

𝑛 (𝑃̃
𝜅
𝑛
,𝛼,𝛽

𝑛,𝛾
(𝑓, 𝑥) − 𝑓 (𝑥))

= (𝛼 − 𝛽𝑥) 𝑓
󸀠

(𝑥) +

1

2

(𝛾𝑥
2

+ 2 (1 − 𝛼) 𝑥)𝑓
󸀠󸀠

(𝑥) .

(60)

Proof. Let 𝑓, 𝑓󸀠, 𝑓󸀠󸀠 ∈ 𝐶∗
𝑥
2[0,∞) and 𝑥 ∈ [0,∞) be fixed. By

Taylor’s expansion we can write

𝑓 (𝑡) = 𝑓 (𝑥) + 𝑓
󸀠

(𝑥) (𝑡 − 𝑥)

+

1

2

𝑓
󸀠󸀠

(𝑥) (𝑡 − 𝑥)
2

+ 𝑟 (𝑥, 𝑡) (𝑡 − 𝑥)
2

,

(61)

where 𝑟(𝑡, 𝑥) is Peano form of the remainder, 𝑟(⋅, 𝑥) ∈

𝐶
∗

𝑥
2[0,∞), and lim

𝑡→𝑥
𝑟(𝑡, 𝑥) = 0.

Applying 𝑃̃𝜅𝑛,𝛼,𝛽
𝑛,𝛾

to the previous, we obtain

𝑛 [𝑃̃
𝜅
𝑛
,𝛼,𝛽

𝑛,𝛾
(𝑓, 𝑥) − 𝑓 (𝑥)] = 𝑛𝑓

󸀠

(𝑥) 𝑃̃
𝜅
𝑛
,𝛼,𝛽

𝑛,𝛾
(𝑡 − 𝑥, 𝑥)

+

1

2

𝑛𝑓
󸀠󸀠

(𝑥) 𝑃̃
𝜅
𝑛
,𝛼,𝛽

𝑛,𝛾
((𝑡 − 𝑥)

2

, 𝑥)

+ 𝑛𝑃̃
𝜅
𝑛
,𝛼,𝛽

𝑛,𝛾
(𝑟 (𝑡, 𝑥) (𝑡 − 𝑥)

2

, 𝑥) .

(62)

By Cauchy-Schwarz’s inequality, we have

𝑃̃
𝜅
𝑛
,𝛼,𝛽

𝑛,𝛾
(𝑟 (𝑡, 𝑥) (𝑡 − 𝑥)

2

, 𝑥)

≤ √𝑃̃
𝜅
𝑛
,𝛼,𝛽

𝑛,𝛾
(𝑟(𝑡, 𝑥)

2

, 𝑥)√𝑃̃
𝜅
𝑛
,𝛼,𝛽

𝑛,𝛾
((𝑡 − 𝑥)

4

, 𝑥).

(63)

Observe that 𝑟2(𝑥, 𝑥) = 0 and 𝑟2(⋅, 𝑥) ∈ 𝐶∗
𝑥
2[0,∞). Then it

follows that
lim
𝑛→∞

𝑛𝑃̃
𝜅
𝑛
,𝛼,𝛽

𝑛,𝛾
(𝑟(𝑡, 𝑥)

2

, 𝑥) = 𝑟
2

(𝑥, 𝑥) = 0, (64)

uniformly with respect to 𝑥 ∈ [0, 𝐴].
Now, from (63) and (64), we obtain lim

𝑛→∞
𝑛𝑃̃
𝜅
𝑛
,𝛼,𝛽

𝑛,𝛾
(𝑟(𝑡,

𝑥)(𝑡 − 𝑥)
2

, 𝑥) = 0.
Using 𝜅

𝑛
→ 0 as 𝑛 → ∞, we obtain

lim
𝑛→∞

𝑛 (Φ
𝜅
𝑛
,𝛼,𝛽

𝑛,1,𝛾
(𝑥)) = 𝛼 − 𝛽𝑥,

lim
𝑛→∞

𝑛 (Φ
𝜅
𝑛
,𝛼,𝛽

𝑛,2,𝛾
(𝑥)) = 𝛾𝑥

2

+ 2 (1 − 𝛼) 𝑥.

(65)

Using above limits, we have

lim
𝑛→∞

𝑛 [𝑃̃
𝜅
𝑛
,𝛼,𝛽

𝑛,𝛾
(𝑓, 𝑥) − 𝑓 (𝑥)]

= lim
𝑛→∞

𝑛 [𝑓
󸀠

(𝑥) 𝑃̃
𝜅
𝑛
,𝛼,𝛽

𝑛,𝛾
(𝑡 − 𝑥, 𝑥)

+

1

2

𝑓
󸀠󸀠

(𝑥) 𝑃̃
𝜅
𝑛
,𝛼,𝛽

𝑛,𝛾
((𝑡 − 𝑥)

2

, 𝑥)]

+ lim
𝑛→∞

𝑛 [𝑃̃
𝜅
𝑛
,𝛼,𝛽

𝑛,𝛾
(𝑟 (𝑡, 𝑥) (𝑡 − 𝑥)

2

, 𝑥)]

= (𝛼 − 𝛽𝑥)𝑓
󸀠

(𝑥) +

1

2

(𝛾𝑥
2

+ 2 (1 − 𝛼) 𝑥)𝑓
󸀠󸀠

(𝑥) ,

(66)

which proves the theorem.

Remark 19. In particular, if 𝛼 = 𝛽 = 0 and 𝛾 = 1, then the
operators 𝑃̃𝜅𝑛,𝛼,𝛽

𝑛,𝛾
(𝑓, 𝑥), 𝜅

𝑛
∈ (0, 1) such that 𝜅

𝑛
→ 0 as 𝑛 →

∞, reduce to the Jain-Beta operators recently introduced by
Tarabie [7]. We obtain the following conclusion of the above
asymptotic formula for the Jain-Beta operator in the ordinary
approximation as follows:

lim
𝑛→∞

𝑛 [𝑃̃
𝜅
𝑛
,0,0

𝑛,1
(𝑓, 𝑥) − 𝑓 (𝑥)] =

1

2

(𝑥
2

+ 2𝑥)𝑓
󸀠󸀠

(𝑥) . (67)
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