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Objective. Gut microbiota and their metabolites play an important role in the development of type 2 diabetes mellitus (T2DM). This
research was designed to study the relationship between gut microbiota and faecal metabolites of Uyghur newly onset T2DM and
impaired glucose regulation (IGR) patients.Materials and Methods. A total of 60 different glycemic Uyghur subjects were enrolled
and divided into T2DM, IGR, and normal glucose tolerance (NGT) groups. Metagenomics and LC-MS-based untargeted faecal
metabolomics were employed. Correlations between bacterial composition and faecal metabolomics were evaluated. Results. We
discovered that the composition and diversity of gut microbiota in newly onset T2DM and IGR were different from those in
NGT. The α-diversity was higher in NGT than in T2DM and IGR; β-diversity analysis revealed apparent differences in the
bacterial community structures between patients with T2DM, IGR, and NGT. LC-MS faecal metabolomics analysis discovered
different metabolomics features in the three groups. Alchornoic acid, PE (14 : 0/20 : 3), PI, L-tyrosine, LysoPC (15 : 0),
protorifamycin I, pimelic acid, epothilone A, 7-dehydro-desmosterol, L-lysine, LysoPC (14 : 1), and teasterone are the most
significant differential enriched metabolites. Most of the differential enriched metabolites were involved in metabolic processes,
including carbohydrate metabolism, starch and sucrose metabolism, phenylpropanoid biosynthesis, and biosynthesis of amino
acids. Procrustes analysis and correlation analysis identified correlations between gut microbiota and faecal metabolites.
Matricin was positively correlated with Bacteroides and negatively correlated with Actinobacteria; protorifamycin I was
negatively correlated with Actinobacteria; epothilone A was negatively correlated with Actinobacteria and positively correlated
with Firmicutes; PA was positively correlated with Bacteroides and negatively correlated with Firmicutes; and cristacarpin was
positively correlated with Actinobacteria; however, this correlation relationship does not imply causality. Conclusions. This study
used joint metagenomics and metabolomics analyses to elucidate the relationship between gut microbiota and faecal metabolites
in different glycemic groups, and the result suggested that metabolic disorders and gut microbiota dysbiosis occurred in Uyghur
T2DM and IGR. The results provide a theoretical basis for studying the pathological mechanism for further research.

1. Introduction

Diabetes mellitus (DM) is a globally prevalent chronic meta-
bolic disease. The International Diabetes Federation (IDF)
estimated that there were 451 million people with diabetes
worldwide in 2017 [1]. Type 2 diabetes mellitus (T2DM)

accounts for about 90% of diabetic cases. Impaired glucose
regulation (IGR) is a prediabetic state, including impaired
fasting glucose (IFG) and impaired glucose tolerance (IGT).
Moreover, there was an estimated 374 million people with
IGT in 2017 [1]. T2DM is the most important health prob-
lem in China [2, 3]. In the last few years, the prevalence rate
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of IGR patients in China has increased to 35.7% [4]. Xinjiang
is the largest province located in the northwest of China with
a diverse ethnic population. The crude prevalence of diabetes
in the Chinese Uyghur population is 12.2% as well as the
prevalence of prediabetes is 39.4% [4].

Researches on T2DM reported that the reduced gut
microbiota diversity is one of the important environmental
risk factors for metabolic disease [5] and is associated with
biological metabolic markers [6]. However, the gut micro-
biome of Chinese Uyghur has not been well explored. Some
studies have shown that compositional variations of the
human microbiome from populations who have different
geographic regions and dietary patterns were significant
compared to the microbiomes from other previously studied
populations [7].

A lot of numbers of bacterial metabolites are likely to
have a significant impact on human physiology and disease
development. Short-chain fatty acids (SCFAs) are currently
the most studied bacterial products that have a beneficial
effect on host health [8]. By integrating metagenomics and
metabolomics information, we would better understand the
interplay between gut microbiota and host metabolism.
Therefore, metabolomics is the better tool to understand
the complex metabolic interactions between gut microbes
and their host [9].

To explore the potential characteristic metabolites that
are associated with newly onset T2DM and IGR in sufferers,
a nontargeted metabolomics technique is performed to dis-
cover potential faecal metabolites, and correlation analyses
are applied to find relationship between the specific metabo-
lites and gut microbiota composition. Metabolomics and
metagenomics offer an effective approach for identifying
metabolites, gut microbiota, and associated pathways that
are crucial for understanding the mechanisms underlying
metabolite changes during different glycemic stages. This
study undergone in newly onset T2DM and IGR patients
reduced the interaction effect of nationality, dietary habit,
and antidiabetic drug on the gut microbiota. This study was
also aimed at exploring possible pathways and gut microbi-
ota metabolites which may play roles in regulating the mech-
anism of T2DM and IGR.

2. Materials and Methods

2.1. Subjects. A total of 60 different glycemic subjects
(without specific diet preference) aged from 30 to 60 years
were recruited from the First and Fifth Affiliated Hospital
of Xinjiang Medical University. Among them, twenty sub-
jects were newly diagnosed with T2DM according to the
American Diabetes Association (ADA) 2014 criteria. Twenty
subjects were grouped in newly diagnosed IGR. The control
group comprised 20 normal glucose tolerance (NGT)
subjects who were matched for age and gender to cases.
The following exclusion criteria were applied in patients
and control subjects: receipt of antidiabetic medicine
(metformin, etc.), having antibiotic or drugs used to regulate
intestinal flora (i.e., prebiotic, symbiotic, or probiotics), car-
diovascular disease, kidney disease, cancer, pregnant women,
lactating women, neurological impairments, and/or severe

mental illness. Subjects who had pets at home were excluded.
This study was approved by the First Affiliated Hospital of
Xinjiang Medical University ethics committee. Informed
consent was obtained from all participants.

2.2. Metagenomics Analysis. Midstream faecal samples were
collected from all subjects in the morning and transported
to the lab in dry ice and frozen at -80°C. Microbial DNA
was extracted from a total of 60 frozen faecal samples
using the QIAamp DNA Stool Mini Kit (Qiagen, Germany).
The V3-V4 hypervariable region of the 16S rRNA was ampli-
fied with primers 338F (5′-ACTCCTACGGGAGGCA
GCAG-3′) and 806R (5′-GGACTACHVGGGTWTCTA
AT-3′) by the thermocycler PCR system (GeneAmp 9700,
ABI, USA). The PCR reactions were conducted using the fol-
lowing program: 3min of denaturation at 95°C, 27 cycles of
30 s at 95°C, 30 s for annealing at 55°C, 45 s for elongation
at 72°C, and a final extension at 72°C for 10min. PCR reac-
tions were performed in triplicate 20μL mixture containing
4μL of 5×FastPfu buffer, 2μL of 2.5mM dNTPs, 0.8μL of
each primer (5μM), 0.4μL of FastPfu polymerase, and
10ng of template DNA. The resulting PCR products were
extracted from a 2% agarose gel and further purified using
the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences,
Union City, CA, USA) and quantified using QuantiFluor™-
ST (Promega, USA) according to the manufacturer’s proto-
col. Purified amplicons were pooled in equimolar amounts
and paired-end sequenced (2 × 300) on an Illumina MiSeq
platform (Illumina, San Diego, USA) according to stan-
dard protocols by Major Bio-Pharm Technology Co. Ltd.
(Shanghai, China) [10]. The abundance of bacteria at the
phylum and genus levels was analyzed by using the JSD
distance algorithm, and the optimal cluster K value was 2
(the highest CH index).

2.3. Untargeted Faecal Metabolomics Analysis. Frozen stool
samples were thawed at 4°C. The weight of each sample from
each group was approximately 60mg. Metabolites were
extracted by adding 600μL of methanol : water (2 : 1, v/v)
and adding 20μL of internal standard (L-2-chlorophenylala-
nine, 0.3mg/mL, methanol configuration), followed by
homogenate.Ultrasonic crushingwas performedat a low tem-
perature for 10min, followed by -20°C for 30min. The sam-
ples were then centrifuged at 13,000 rpm, 4°C for 15min,
and 200μL supernatant was dried in a LC-MS vacuum centri-
fuge and analyzed by using liquid chromatograph-mass spec-
trometer (LC-MS) platform.

The platform for LC-MS analysis was Waters’ UPLC-Q-
TOF/MS. LC-MS was performed on an Ultimate 3000-
Velos Pro system equipped with a binary solvent delivery
manager and a sample manager, coupled with a LTQ Orbi-
trap Mass Spectrometer equipped with an electrospray inter-
face (Thermo Fisher Scientific, USA). LC conditions were set
as follows: ACQUITY BEH C18 column (100mm × 2:1mm
i.d., 1.7μm; Waters, Milford, USA). The column was main-
tained at 45°C and separation was achieved using the follow-
ing gradient: 5%B-20%B over 0-2min, 20%B-60%B over 2-
8min, 60%B-100%B over 8-12min, 100%B 2min, and 14-
14.5min holding at 5%B at a flow rate of 0.40mL/min, where
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B is acetonitrile (0.1% (v/v) formic acid) and A is aqueous
formic acid (0.1% (v/v) formic acid) in the positive mode
and B is acetonitrile (containing 5mM ammonium formate)
and A is water (containing 5mM ammonium formate) in the
negative mode. Injection volume was 3.00μL and column
temperature was set at 45.0°C.

The mass spectrometric data were collected using a LTQ
Orbitrap Mass Spectrometer equipped with an electrospray
ionization (ESI) source operating in either the positive or
negative ion mode. The capillary and source temperature
was set at 500°C, with a desolvation gas flow of 90L/h.
Centroid data were collected from 50 to 1,000m/z with a
30,000 resolution. The scan time and interval are 0.1 s and
0.02 s, respectively.

The quality control (QC) sample was prepared by mixing
the extracts of all the samples in equal volume. Each QC has
the same volume as the sample and was processed and
detected in the same way as the analysis sample. In the
process of instrument analysis, the QC sample was
inserted into every eight samples to examine the stability
and reproducibility of the entire analysis process. Raw data
were normalized by the metabolomics processing software
Progenesis QI (Waters Corporation, Milford, USA) to
obtain the data matrix of retention time (RT), m/z data,
and peak intensity.

2.4. Data Processing and Statistical Data Analysis. Baseline
information analysis and metagenomics analyses were per-
formed as described in our previous report [10]. Metabolo-
mics analysis of normalized data by Excel 2007 (Microsoft,
USA) processing, importing the normalized data matrix into
the SIMCA-P+14.0 software package (Umetrics, Umea, Swe-
den), using unsupervised principal component analysis
(PCA), and orthogonal partial least squares discriminant
analyses (OPLS-DA) were performed to distinguish the over-
all differences in metabolic profiles between groups and to
find differential metabolites between groups. OPLS-DA was
performed, and 7-fold crossvalidation and response permu-
tation testing were used to evaluate the robustness of the
model. Multidimensional analyses of OPLS-DA and Student
t-test were used to screen differential metabolites (variable
important in projection ðVIPÞ > 1, P value < 0.05, fold
change < 0:8 or >1.2). The raw data was searched and identi-
fied by using the metabolomics processing software Progen-
esis QI (Waters Corporation, Milford, USA). The HMDB
and KEGG databases were used to analyze the differential
metabolites. In addition, all differentially abundant metabo-
lites were queried against the online Kyoto Encyclopedia of
Genes and Genomes (KEGG, http://www.kegg.jp/) and
mapped to KEGG pathways. Enrichment analysis was per-
formed to further explore the impact of differentially
expressed metabolites and to analyze the internal relation-
ships between differentially expressed metabolites. Only
functional categories and pathways with P < 0:05 were con-
sidered to have significant enrichment. Procrustes analysis
and Spearman correlation analysis were used to analyze
the relationship between gut microbiota and changed
faecal metabolites with the R vegan package. The correla-
tion matrix between metabolites and the gut microbiota

phylum and genus was generated by using the Pearson
correlation coefficient.

3. Results

3.1. Patient Characteristics. No statistic differences were
observed in age, sex, BMI, and blood lipid levels among the
groups. Baseline characteristics of the study participants were
shown in our previous study [10].

3.2. Metagenomics Findings. Based on the results of the OTU
analysis, the Shannon-Wiener curve and rarefaction curve
indicate that the sequencing depth was sufficient to explore
the gut microbiota in three groups (Figures 1(a) and 1(b)).

At the phylum level, Firmicutes, Bacteroidetes, Proteobac-
teria, and Actinobacteria were dominant bacterial phyla in
the three groups (Figure 2(a)). Among them, Firmicutes
and Bacteroidetes had the highest abundance (Figure 2(b)).
The α-diversity was highest in NGT, followed by T2DM
and IGR.

To view the similarities in gut bacterial community struc-
tures among patients with T2DM, IGR, and NGT, PLS-DA of
β-diversity were performed according to the unweighted
UniFrac distances. The results revealed apparent differences
in the bacterial community structures among patients with
T2DM, IGR, and NGT (Figure 3).

By mapping sequences to the Greengenes database, the
functional gene contents of the gut microbiota were pre-
dicted by PICRUSt and were mapped on COG. The gut
microbiota of the three groups showed 13 enriched COG
functional orthologues, which were related to carbohydrate
transport and metabolism; general function prediction
only; amino acid transport and metabolism; replication,
recombination, and repair; transcription; cell wall/mem-
brane/envelope biogenesis; translation, ribosomal structure,
and biogenesis; inorganic ion transport and metabolism;
energy production and conversion; signal transduction mech-
anisms; coenzyme transport andmetabolism; nucleotide trans-
port and metabolism; defense mechanisms; and lipid transport
and metabolism (Supplementary Figure S1). The analysis of
microbial community structure and functions from the
three groups revealed significant insights. Thus, to gain
deeper insights into the metabolic activity of microbiomes
from different glycemic groups, faecal metabolites were
analyzed using a LC-MS-based metabolomics approach.

3.3. Metabolic Findings in Stool Samples. LC-MS faecal meta-
bolomics analysis discovered the different metabolomics fea-
tures in the three groups. Both PCA and OPLS-DA score
plots showed that there were significant differences between
the T2DM and IGR groups, the T2DM and NGT groups,
and the IGR and NGT groups, indicating that different glyce-
mic statuses have different faecal metabolomics profiles
(Figures 4(a)–4(c)). Permutation testing shows no overfitting
data and validates the model of PLS-DA.

The significantly differential metabolites were selected
based on the criteria of an OPLS-DA model VIP > 1 and a
P value < 0.05. LC-MS metabolomics analysis discovered
seventy-seven differentially enriched metabolites between

3Journal of Diabetes Research

http://www.kegg.jp/


T2DM and IGR; thirty-four of the metabolites were elevated
in T2DM (fold change > 1:2) while forty-three of them were
decreased (fold change < 0:8). The following metabolites

were characterized: sterol lipid (n = 8), sphingolipids (n = 6),
prenol lipids (n = 4), polyketides (n = 11), organooxygen
compounds (n = 1), lactones (n = 1), glycerophospholipids
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Figure 1: (a) Shannon-Wiener curves of the OTUs derived from the three groups. (b) Rarefaction curves of the OTUs derived from the three
groups. OTU: operational taxonomic unit.
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(n = 10), glycerolipids (n = 5), flavonoids (n = 1), fatty acyls
(n = 22), coumarins and derivatives (n = 1), and carboxylic
acids and derivatives (n = 2) (Figure 5(a)). The levels of
alchornoic acid, PI (13 : 0/22 : 1), 15-oxo-18Z-tetracosenoic
acid, 2-oxo-docosanoic acid, and anhydrorhodovibrin were
decreased in the newly diagnosed T2DM group with fold
changes of 9.74, 5.97, 4.07, 3.51, and 3.27, respectively. It
can be seen that the five characteristic metabolites with
the highest fold change belong to the fatty acyl group (fatty
acyls), glycerophospholipids, and anhydrorhodovibrin.

Sixteen significant variations in metabolites were
detected between T2DM and NGT; six of them were
increased and ten were decreased. The sixteen varying
metabolites involved were stilbenes (n = 1), sterol lipids
(n = 2), steroids and steroid derivatives (n = 1), sphingolipids
(n = 1), prenol lipids (n = 1), polyketides (n = 2), isoflavo-
noids (n = 1), glycerophospholipids (n = 2), fatty acyls
(n = 3), and carboxylic acids and derivatives (n = 2)
(Figure 5(b)). PE (P-16 : 0/14 : 0) and 12,13-dihydroxy-11-
methoxy-9-octadecenoic acid were all downregulated in the
newly diagnosed T2DM group with fold changes at 3.88
and 2.65, respectively. It can be seen that the two characteris-
tic metabolites with the highest change ratio belong to fatty
acyls and glycerophospholipids.

In total, ninety-seven differentially presented metabo-
lites that distinguished IGR from NGT were identified.
Fifty-three metabolites were significantly upregulated and
forty-four were significantly downregulated. The following
ninety-seven metabolites were characterized: sterol lipids
(n = 19), steroids and steroid derivatives (n = 2), sphingoli-
pids (n = 6), prenol lipids (n = 6), polyketides (n = 11), lac-
tones (n = 2), glycerophospholipids (n = 14), glycerolipids
(n = 6), flavonoids (n = 1), fatty acyls (n = 20), coumarins
and derivatives (n = 1), and carboxylic acids and deriva-
tives (n = 4) (Figure 5(c)). The levels of PI (12 : 0/19 : 0),
PA (20 : 5/22 : 0), and PI (12 : 0/22 : 4) were upregulated in
the IGR group with fold changes at 5.38, 4.68, and 3.19,
respectively. It can be seen that the three characteristic
metabolites with the highest change ratio belong to
glycerophospholipids.

Differentially expressed metabolites were annotated by
online databases HMDB, KEGG, and LIPID MAPS. And a
total of eleven significant metabolites (L-tyrosine; LysoPC
(15 : 0); protorifamycin I; pimelic acid; anhydrorhodovibrin;
epothilone A; matricin; bacteriohopane-32,33,34,35-tetrol; 5
alpha,6 beta-dihydroxycholestanol; cytochalasin A; and
(6S)-dehydrovomifoliol) from these 77 differentially enriched
metabolites between T2DM and IGR could be annotated
(Supplementary Table S1). A total of five significant metabo-
lites (PE (14 : 0/20 : 3), 7-dehydro-desmosterol, cristacarpin,
piceid, and gamma-glutamylglutamine) from these 16 differ-
ent metabolites between T2DM and NGT could be annotated
while nineteen metabolites were annotated from the IGR and
NGT groups (Supplementary Tables S2 and S3).

The KEGG database was used to analyze the differential
metabolites. L-Tyrosine, LysoPC (15 : 0), protorifamycin I,
pimelic acid, epothilone A, L-lysine, LysoPC (14 : 1), teaster-
one, PE (14 : 0/20 : 3), and 7-dehydro-desmosterol are
involved in significant pathways. Most of them were involved

in metabolism and human disease. We submitted the
differential metabolites to the KEGG website for the analysis
of relevant pathways. Analysis of metabolite pathways
suggested that the following pathways were significantly
changed in T2DM and IGR patients compared with NGT:
phenylalanine, tyrosine, and tryptophan biosynthesis path-
ways, puromycin biosynthesis, vancomycin antibiotic biosyn-
thesis, amino acid biosynthesis, glycosylphosphatidylinositol-
(GPI-) anchored biosynthesis, steroidal biosynthesis, and
glycerophospholipid metabolism (Figures 6(a)–6(c)).

To explore gut flora species significantly associated with
the identified potential metabolites, integrated analysis of
metabolomics and metagenomics was performed for the
three groups.

3.4. Integrated Analysis of Gut Microbiota and Faecal
Metabolomics. Firstly, a Procrustes analysis was performed
to assess the consistency of the data from the gut microbiome
and faecal metabolomics profiling; the results showed that
the similarity between the two datasets was low although
significance was found between the T2DM and NGT groups
(P < 0:01, Figure 7).

Next, we analyzed possible correlations between altered
faecal metabolites and microbial genera based on Spearman’s
correlation.

3.4.1. Correlation Study of Gut Microbiota and Faecal
Metabolomics between T2DM and IGR Groups. Data indi-
cated that faecal decreased metabolites such as matricin, pro-
torifamycin I, and epothilone A were negatively correlated
with Actinobacteria, matricin and PA were positively corre-
lated with Bacteroides, epothilone A was positively correlated
with Firmicutes, and PA was negatively correlated with
Firmicutes (Supplementary Figure S2a).

On the genus level, Coprococcus_3, Blautia, Subdoligra-
nulum, Faecalibacterium, and Ruminococcus_torques_group
were closely associated with the accumulation of 6 faecal
metabolites (Supplementary Figure S3a).

3.4.2. Correlation Study of Gut Microbiota and Faecal
Metabolomics between T2DM and NGT Groups. The faecal
decreased metabolite cristacarpin was positively correlated
with Actinobacteria (r = 0:38, P < 0:05) (Supplementary
Figure S4a).

Ruminococcaceae_UCG–005, Lachnospiraceae_NK4A136_
group, Bifidobacterium, Parabacteroides, Bacteroides, Intesti-
nibacter, and Subdoligranulum were correlated with 4 faecal
metabolites (Supplementary Figure S4b).

3.4.3. Correlation Study of Gut Microbiota and Faecal
Metabolomics between IGR and NGT Groups. The faecal
increased metabolite epothilone A was positively correlated
with Firmicutes (r = 0:37, P < 0:05); the level of faecal
decreased metabolite 3-O-(beta-D-glucopyranosyl-(1->6)-
beta-D-glucopyranosyl) was positively correlated with
Bacteroides and negatively correlated with Firmicutes
(Supplementary Figure S2b).

On the genus level, Subdoligranulum, Eubacterium_
coprostanoligenes_group, Lachnospiraceae_NK4A136_group,
Eubacterium_rectale_group, Ruminococcus_torques_group,
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Butyricicoccus, Lachnospiraceae_ND3007_group, Fusicateni-
bacter, Coprococcus_1, Eubacterium_hallii_group, Lachnos-
piraceae_NC2004_group, Bacteroides, Eubacterium_rectale_
group, Lachnoclostridium, Lachnospiraceae_NK4A136_
group, Fusicatenibacter, Eubacterium_hallii_group, Faecali-
bacterium, Fusicatenibacter, and Bacteroides were correlated
with 14 faecal metabolites (Supplementary Figure S3b).

In summary, by combining the association of gut micro-
biota phylum and genus with faecal metabolites, this study
discovered that Firmicutes and their associated metabolites
L-tyrosine, protorifamycin I, epothilone A, and L-lysine were
involved in the development of IGR and T2DM in this
population.

4. Discussions

This is the first integrative study report that applied high-
throughput sequencing of microbial diversity and LC-MS-
based metabolomics approach to study the gut microbiota
diversity and faecal metabolic variations in Chinese Uyghur
newly diagnosed T2DM and IGR patients. In our previous
study, we reported that gut microbiota diversity of T2DM
and IGR is different from that of a normal healthy group
[10]. Moreover, these gut microbiota were associated with
changes in several metabolomics profiles [10]. Different

faecal metabolic profiles were discovered among the three
groups, and some of them correlated with some bacteria,
indicating that T2DM not only disturbed the gut microbiota
at the abundance level but also substantially altered the faecal
metabolomics profile related to the gut microbiome, resulting
in disturbances in host metabolite homeostasis. Strict inclu-
sion criteria were used; all of the Chinese Uyghur subjects
in this study were Urumqi citizens. T2DM patients were
newly diagnosed, without using any kind of antidiabetes
medicine. Since antibiotics had influence on the gut microbi-
ota diversity [11], subjects who used antibiotics in the
previous month were excluded. Meanwhile, subjects under
medication for hypertension, patients prescribed lipid-
lowering drugs, and patients with cardiovascular disease
history, special diet, dietary supplement use, and mental
problems were all excluded. The main regulator of the gut
microbiota includes age, ethnicity, diet, and immunity [12].
Compound factors were controlled in these 60 subjects. This
study tried to achieve a balance within groups and tried to
reduce the impact of other confounding factors on the gut
microbiota and faecal metabolites.

It was reported that a stable and diverse gut microbiome
is vital for human health; changes in the composition of gut
microbial flora were associated with T2DM [13]. Gut micro-
biota composition and abundance were altered in different
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glycemic stages. The dominant phyla (Firmicutes, Bacteroi-
detes, Proteobacteria, and Actinobacteria) in this study were
highly similar to those described previously [14, 15]. It was
reported that two main bacterial phyla, Firmicutes and
Bacteroidetes, are involved in the host metabolism and
fat accumulation in T2DM patients [16]. Previous studies
identified a higher amount of Firmicutes and lower
amounts of Bacteroidetes and Proteobacteria phyla in T2DM
patients [17].

Gut microbiota can directly participate in the metabolism
of protein, fat, and carbohydrate and also take part in the
metabolism of energy and biochemical metabolism of bile
acid and bilirubin. The diversity and dynamic equilibrium
of gut microbiota are very important for pathogen invasion
and multiplication. Altered gut microbiota of IGR and
T2DM affects the process of host metabolism and leads to
the change of microbial metabolites. Both of gut microbiota
and their metabolites have an effect on the host metabolism.
In recent years, faecal metabolomics has increasingly gained
attention and has shown remarkable results in characterizing
microbial metabolic functions. The faecal samples are easy to
access and provide a noninvasive sample matrix to study the
metabolic activity of the host, the microbes, and their come-
tabolism [18]. Faecal can reflect the pathogenic change of the
digestive system. So, studying the change of faecal metabo-
lites in diabetic patients is useful to understand the patho-
genic mechanism of the unbalanced gut microbiota in the
development of IGR and T2DM.

There is a clear separation of faecal metabolomics profile
in different glycemic stages. It was identified that several
significantly abundant metabolites are associated with
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Figure 6: Metabolic pathway enrichment study of differentially presented metabolites between (a) the T2DM and IGR groups, (b) the T2DM
and NGT groups, and (c) the IGR and NGT groups.
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phenylalanine, tyrosine, tryptophan biosynthesis pathways,
puromycin biosynthesis, vancomycin antibiotic biosynthesis,
amino acid biosynthesis, glycosylphosphatidylinositol- (GPI-
) anchored biosynthesis, steroidal biosynthesis, and glycero-
phospholipid metabolism.

In this study, significantly changed metabolites
L-tyrosine, LysoPC, protorifamycin I, pimelic acid, epothi-
lone A, PE, 7-dehydro-desmosterol, L-lysine, and teasterone
were involved in the significant pathways. L-Tyrosine is one
of the standard amino acids that are useful by cells to synthe-
size proteins. This study disclosed that in Chinese adults,
tyrosine > 46 μmol/L in plasma was associated with increased
odds of T2DM, which was contingent upon low HDL-C [19].
Previous studies indicated that insulin resistance was con-
nected with metabolism of tyrosine; insulin signalling path-
ways might be inhibited by elevated tyrosine levels, which is
related to the development of T2DM; and it is suggested that
the altered level of tyrosine might reflect the degree of inflam-
mation in diabetes or prediabetes [20–23]. The tyrosine level
is associated with the risk of T2DM in different ethnic peo-
ples, and the relationship was robust by ethnicity and study
designs [24, 25]. In this research, L-tyrosine in stool was
upregulated in T2DM patients compared to IGR and was
downregulated in IGR compared to NGT.

LysoPC (15 : 0) and LysoPC (14 : 1 (9Z)) are two kinds
of lysophosphatidylcholines (LPC) which belong to glycer-
ophospholipids, involved in choline metabolism in cancer
and the glycerophospholipid metabolism pathway. LysoPC
resulted from the partial hydrolysis of phosphatidylcho-
lines, which removes one of the fatty acid groups; LysoPC
can activate endothelial cells during early atherosclerosis
and can stimulate phagocyte recruitment when they were
released by apoptotic cells [26–28]. LPCs are the major
components of ox-LDL which play dual functions in the
cardiovascular disease.

This study indicated that protorifamycin I (which
belongs to phenylpropanoids and polyketides) is enriched
in the biosynthesis of ansamycins and biosynthesis of
antibiotics.

Pimelic acid belongs to fatty acid, enriched in metabolic
pathways in this study. Derivatives of pimelic acid are
involved in the biosynthesis of the amino acid called lysine.
It was reported that pimelic acid originating from the fatty
acid synthesis pathway is a bona fide precursor of biotin in
Bacillus subtilis [29].

PE (14 : 0/20 : 3) is one kind of glycerophosphoethanola-
mines. Phosphatidylethanolamine (PE) is class of phospho-
lipids found in biological membranes; it can be found in all
living organism. Together with phosphatidylcholine (PC),
phosphatidylserine (PS), and phosphatidylinositol (PI), PE
represents the backbone of most biological membranes. PE
is the second-most abundant phospholipid in mammalian
membranes ranging from 20 to 50% that positively regulate
autophagy and longevity [30]. Phosphatidylethanolamines
in food break down to form phosphatidylethanolamine-
linked Amadori products as a part of the Maillard reac-
tion [31]. These products accelerate membrane lipid per-
oxidation, causing oxidative stress to cells that come in
contact with them [32]. Oxidative stress is known to

cause several diseases. Significant levels of Amadori-
phosphatidylethanolamine products have been found in
a wide variety of food such as chocolate, soybean milk, infant
formula, and other processed food. The level of Amadori-
phosphatidylethanolamine products is higher in foods with
high lipid and sugar concentrations that have high tempera-
tures in processing [31]. Additional studies indicated that
Amadori-phosphatidylethanolamine may play a role in
vascular disease. It acts as the mechanism by which diabe-
tes can increase the incidence of cancer and potentially
play a role in other diseases as well [32, 33]. Amadori-
phosphatidylethanolamine has shared a higher plasma
concentration in diabetic patients than healthy people, indi-
cating it may play a role in the development of the disease or
be a product of the disease [34]. In this study, PE was upregu-
lated in the stool of the newly diagnosed T2DM group.

7-Dehydro-desmosterol belongs to sterols, which are
enriched in steroid biosynthesis pathways and metabolic
pathways. Sterols are a subgroup of the steroids and an
important class of organic molecules. They occur naturally
in plants, animals, and fungi, and can also be produced by
some bacteria. Bacterial sterol structure genomes were found
from five phyla (Bacteroides, Cyanobacteria, Planctomycetes,
Proteobacteria, and Verrucomicrobia) and also from uncul-
tured bacteria [35].

L-Lysine is one of the nine essential amino acids in
humans. L-Lysine was downregulated in IGR compare to
that in NGT. Lysine frequently plays an important role in
protein structure. Lysine has also been implicated to play a
key role in other biological processes including structural
proteins of connective tissues, calcium homeostasis, and fatty
acid metabolism. Since lysine is essential for humans, and
the human body cannot synthesize, it must be obtained
from the diet. Most commonly, lysine deficiency is seen
in non-Western societies and manifests as protein-energy
malnutrition, which has profound and systemic effects on
the health of the individual [36]. Due to its importance
in several biological processes, a lack of lysine can lead
to several disease states including defective connective tis-
sues, impaired fatty acid metabolism, anemia, and systemic
protein-energy deficiency. In contrast, an overabundance
of lysine, caused by ineffective catabolism, can cause severe
neurological issues [37]. Chen et al. reported lysine modi-
fications as molecular markers in the diagnosis and treat-
ment of cancer [38]. The study showed 12 differentiated
microbes at the genus level in response to dietary lysine
restriction in a pig model; at the phylum level, lysine
restriction could enhance abundances of Actinobacteria,
Saccharibacteria, and Synergistetes, suggesting that long-
term lysine restriction from piglets to finishing pigs
affected the amino acid metabolism, which might be asso-
ciated with gut microbiota [39, 40].

This study concluded that differentially presented
metabolites were mainly linked with the glycerophospholi-
pid and sphingolipid metabolism pathway. Sphingolipid
metabolism is important in the regulation of inflammatory
signalling pathways, and dietary sphingolipids appear to
influence inflammation-related chronic diseases by altering
gut microbiota [41].
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A previous study suggested that around 30% of metabo-
lites detected in the human body originated from microbiota.
In this study, it was showed a corelationship between the gut
microbiota and faecal metabolites; however, the relationship
between faecal metabolites and gut microbiota is purely
correlative without further controlled experiments; large-
sample, prospective studies should be performed to address
any causal relationships.

In conclusion, this work had demonstrated altered gut
microbiota and faecal metabolites in the Uyghur T2DM
and IGR patients compared with healthy normal controls
through a LC-MS-based metabolomics and metagenomics
study. The sample size of this study was limited, so a larger
number of samples are needed for population-based valida-
tion. The underlying mechanism regulating correlation
between gut microbiota and metabolites like L-tyrosine, pro-
torifamycin I, epothilone A, and L-lysine in IGR and T2DM
incidents could be further investigated. However, there is no
reliable way for early diagnosis and prevention of T2DM and
IGR; so far, the development of novel microbial markers for
early diagnosis of T2DM and IGR is urgently needed.
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Additional Points

Highlights. This study integrated the metagenomics and fae-
cal metabolomics study in Chinese Uyghur newly diagnosed
T2DM and IGR patients, in order to provide a theoretical
basis for the study of the pathological mechanism of gut
microbiota on T2DM.
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