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Diabetic retinopathy (DR) is one of the most common causes of blindness globally. Proliferative DR (PDR), an advanced stage of
DR, is characterized by the formation of fibrotic membranes at the vitreoretinal interface. The proliferation, migration, and
secretion of extracellular matrix molecules in retinal pigment epithelial (RPE) cells contribute to the formation of fibrotic
membranes in PDR. Gremlin has been reported to be upregulated in response to elevated glucose levels in the retina of diabetic
rat and bovine pericytes. However, the role of gremlin in PDR remains unclear. In the present study, the vitreous concentrations
of gremlin were significantly higher in the PDR (67:79 ± 33:96) group than in the control (45:31 ± 12:31) group, and high
glucose levels induced the expression of gremlin in RPE cells. The elevated expression of extracellular matrix molecules, such as
fibronectin and collagen IV, was significantly reduced by gremlin siRNA in human RPE cells under high-glucose conditions.
Thus, gremlin may play a vital role in the development of PDR.

1. Introduction

Diabetic retinopathy (DR) is the major cause of adult blind-
ness globally [1]. Sustained high glucose levels play a vital role
in the development of DR. Proliferative DR (PDR), an
advanced stage of DR, is characterized by the formation of
fibrotic membranes at the vitreoretinal interface. Retinal
pigment epithelial (RPE) cells, which lie between Bruch’s
membrane and the retina, create the outer blood-retinal
barrier (OBRB) and play a vital role in the pathological
processes that lead to the vision loss. Extracellular matrix
molecules, in combination with RPE cells and other cell types,
are the major components of fibrotic membranes [2–4].

Gremlin is a secretory protein composed of highly con-
served 184 amino acids [5–8]. This protein is a member of
the structural cysteine knot superfamily and is present in both
soluble and cell-associated forms [9–12]. Gremlin belongs to a
new family of bone morphogenetic protein (BMP) antago-

nists that is involved in a number of physiological processes,
such as growth, differentiation, survival, and development of
cells [5, 9–13]. It has been reported that gremlin contributes
to a number of diabetic fibrotic diseases [5, 9–14]. Gremlin
has also been reported to be localised to the retina of diabetic
rats, and the high levels of its expression have been demon-
strated in bovine retinal pericytes under high-glucose
conditions, compared with the control group [15].

Despite the demonstrated association between gremlin
and diabetic diseases, information about the potential role
of gremlin in PDR remains limited. The present study
illustrated that the vitreous concentrations of gremlin were
significantly elevated in the PDR group compared to the con-
trol group. The expression of fibronectin, collagen IV, and
gremlin was upregulated in RPE cells under high-glucose
conditions. In addition, the high expression of fibronectin
and collagen IV was blocked by gremlin siRNA in RPE cells
under high-glucose conditions.
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2. Materials and Methods

2.1. Collection of Vitreous. We assayed gremlin levels in the
vitreous from 48 eyes (48 individuals) with either proliferative
vitreoretinopathy (PDR group, 26 eyes) or idiopathic epima-
cular membrane (control group, 22 eyes) all of whom had
undergone pars plana vitrectomy. This part of the study was
conducted in accordance with the Declaration of Helsinki.
We received institutional approval from the review commit-
tee of Henan Provincial Eye Hospital. Informed consent was
obtained from each subject for all examinations and proce-
dures. At the beginning of the removal of the vitreous, approx-
imately 0.8mL of undiluted vitreous was aspirated through
the vitreous cutter. The vitreous samples were centrifuged
for 10 minutes (4°C, 3000 rpm) and immediately stored at
-80°C. The concentrations of gremlin were determined using
enzyme-linked immunosorbent assay (ELISA).

2.2. Reagents. Gremlin antibody was obtained from Abcam
(Danvers, MA). Gremlin, fibronectin, and collagen IV ELISA
kits were purchased from Elabscience Biotechnology Co., Ltd
(Wuhan, China). β-Actin antibody, human gremlin siRNA,
and siRNA control were obtained from Guangzhou RiboBio
Co., Ltd (Guangzhou, China).

2.3. Cell Culture. Human RPE cell line (ARPE-19; CRL-
2302) was obtained from the American Type Culture
Collection (Manassas, VA, USA), and the cells were
cultured in Dulbecco’s modified Eagle medium (DMEM)
(Gibco, Grand Island, NY, USA). The medium was supple-
mented with 10% foetal bovine serum (FBS), 100 ng/mL
streptomycin, and 100U/mL penicillin. The cells were main-
tained in a humidified incubator (37°C, 5% CO2).

2.4. Real-Time Polymerase Chain Reaction (PCR) Analysis. A
TRIzol reagent kit was used to extract total RNAs from
human RPE cells. The cDNA synthesis was performed using
a RevertAid First Strand cDNA Synthesis Kit (Fermentas, St.
Leon-Rot, Germany). Real-time PCR was determined with
the ABI Sequence Detector System 7500 (Applied Biosys-
tems, Carlsbad, CA). The primers were as follows: for human

fibronectin, forward 5′-GAT AAA TCA ACA GTG GGA
GC-3′ and reverse 5′-CCCAGA TCA TGG AGT CTT TA-
3′; for human collagen IV, forward 5′-AGA GTC AGC
ATC GGC TAC CT-3′ and reverse 5′-AGG AAG GGC
ATG GTG CTG AA-3′; for human GAPDH, forward 5′
-TGT TCG ACA GTC AGC CGC AT-3′ and reverse 5′
-ACT CCG ACC TTC ACC TTC CC-3′; and for human
gremlin, forward 5′-AAG CGA GAC TGG TGC AAA AC-
3′ and reverse 5′-CTT GCA GAA GGA GCA GGA CT-3′.
The reaction conditions are as follows: initial denaturation
at 95°C for 10min, followed by 39 cycles of 95°C for 15 s
and 60°C for 30 s. The mRNA expression was calculated to
the level of GAPDH mRNA.

2.5. Western Blot Analysis. Western blot analysis was
performed as described previously [16, 17]. In brief, 20μg
of protein was analysed by electrophoresis on 10% sodium
dodecyl sulfate polyacrylamide electrophoresis (SDS-PAGE)
gels and transferred to polyvinylidene fluoride (PVDF)
membranes (Millipore, Billerica, MA). Specific bands were
visualized using an enhanced chemiluminescence detection
system (Amersham, Arlington Heights, IL). The primary
antibodies of gremlin were used at a dilution of 1 : 250.

2.6. ELISA Analysis. After the samples were collected, the
levels of gremlin in the vitreous were measured using a grem-
lin ELISA kit. In addition, the protein levels of fibronectin
and collagen IV in the culture supernatants of the RPE cells
were measured using fibronectin and collagen IV ELISA kits
according to the manufacturer’s instructions.

2.7. RNA Interference. The RPE cells were transfected with
control siRNA or gremlin siRNA (50nM each). The cells
were transfected with riboFECT™ CP reagent, according to
the manufacturer’s protocol.

The cells were transfected with siRNA for 24 h and then
incubated in the presence of high glucose for an additional
24 h. The gremlin siRNA sequence is CCA CCT ACC AAG
AAG AAG A.

Table 1: Clinical characteristics of the study population.

Clinical characteristics PDR (n = 26) Control (n = 22) p value

Age (Y)

Median (range) 55 (41-72) 66 (54-74) p = 0:001
Gender

Male 14 (54%) 12 (55%) p = 0:401
Female 9 (41%) 13 (59%)

Duration of diabetes (Y)

Median (range) 9.6 (5-15) —

Fasting blood glucose (mmol/L)

Median (range) 7.04 (4.13-8.98) 5.10 (4.16-6.0) p < 0:001
Glycosylated hemoglobin (%) 6.8 (4.8-9.5) —

Received photocoagulation treatment 24 (92%) —

Received insulin treatment 23 (88.5%) —

p value was calculated by Mann–Whitney U test and chi-squared test between control and PDR cases.
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2.8. Statistical Analysis. Statistical analysis was completed
using a one-way analysis of variance followed by Tukey’s test,
the Mann–Whitney U test, and the chi-squared test. SPSS
17.0 (SPSS, Chicago, IL, USA) was used for analysis. All the
data are expressed as mean ± standard deviation (SD), and a
p value < 0.05 was considered statistically significant.

3. Results

3.1. Vitreous Concentration of Gremlin in Individuals with
PDR and Idiopathic Epimacular Membrane. The study
included 48 individuals, with 26 individuals in the PDR
group and 22 individuals in the control group (Table 1).
Individuals in the PDR group were significantly younger
than the individuals in the control group, and there was no
significance in the individuals’ sex (Table 1). Fasting blood
glucose levels in the PDR group were significantly higher
than in the control group (Table 1). An ELISA kit was used
to detect the concentration of gremlin in individuals with
PDR and in those with idiopathic epimacular membrane.
The vitreous concentration of gremlin was significantly
higher in the PDR (67:79 ± 33:96) group than in the control
(45:31 ± 12:31) group (Figures 1 and 2).

3.2. Induction of Fibronectin and Collagen IV under High-
Glucose Conditions in RPE Cells. To examine the expression
of fibronectin and collagen IV under high-glucose condi-
tions, the cells were cultured in a medium containing normal
glucose (5.5mM) and high glucose (15mM or 30mM) and
were exposed for 24 h. Real-time PCR and ELISA kit data
revealed an elevated mRNA and protein level of fibronectin
and collagen IV in the cells under high-glucose conditions
(Figures 3(a)–3(d)).

3.3. High Glucose Induced the Expression of Gremlin in FPE
Cells. To examine the expression of gremlin under high-
glucose conditions, the cells were cultured in a medium
containing normal glucose (5.5mM) and high glucose
(15mM or 30mM) and were exposed for 24 h. Real-time
PCR and western blot data revealed an elevated mRNA and
protein level of gremlin in the cells under high-glucose
conditions (Figures 4(a) and 4(b)). In addition, using real-
time PCR, we found that gremlin siRNA significantly down-
regulated gremlin expression in RPE cells under normal
glucose conditions (Figure 5).

3.4. Effect of Gremlin siRNA on High Glucose-Induced
Fibronectin and Collagen IV in Human RPE Cells. Having
found elevated gremlin levels in the vitreous of patients with
PDR and in RPE cells under high-glucose conditions, we
examined the effect of gremlin siRNA on fibronectin and
collagen IV in RPE cells under high-glucose conditions.
The cells were transfected with siRNA for 24h and then
incubated in the presence of high glucose (30mM) for an
additional 24 h. Real-time PCR and an ELISA kit analysis
showed that gremlin siRNA significantly reduced the mRNA
and protein levels of fibronectin and collagen IV in RPE cells
under high-glucose conditions (Figures 6(a)–6(d)).

4. Discussion

Prolonged hyperglycaemia is the major risk factor for the
pathogenesis of DR. Prolonged hyperglycaemia activated
cytokines, growth factors, and other molecules. The high
levels of extracellular matrix molecules were detected in
many organs of patients with diabetes mellitus and cell types
under elevated glucose conditions [18–21]. It has been
reported that extracellular matrix molecules contribute to
the thickening of the basement membrane and the formation
of fibrotic membranes during the development of DR [2].
Extracellular matrix molecules are upregulated in fibrotic
membranes from PDR patients [22] and can be mediated
by growth factors such as transforming growth factor beta
(TGF-β) and endothelin 1 (ET-1) [23, 24]. In addition, our
previous study also demonstrated that high glucose levels
induced the expression of extracellular matrix molecules in
RPE cells [25]. Increased extracellular matrix molecule depo-
sition is a structural hallmark of DR [23, 26–29].
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Figure 1: The vitreous concentration of gremlin in patients with
PDR and idiopathic epimacular membrane. Box plots showed that
the vitreous concentration of gremlin in patients with PDR was
significantly higher than in patients with idiopathic epimacular
membrane (p < 0:001). PDR represents proliferative diabetic
retinopathy; control represents idiopathic epimacular membrane.
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Figure 2: Scatter plot showed the levels of gremlin in the vitreous
from the eyes with proliferative diabetic retinopathy (PDR, n = 26)
and idiopathic epiretinal membrane (control samples, n = 22).
Open circles represent the vitreous levels of gremlin. The
horizontal lines indicate the mean concentration of gremlin in
each group.
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Gremlin has been implicated in the pathogenesis of
human diseases, such as idiopathic pulmonary fibrosis, pul-
monary hypertension, and diabetic nephropathy [30, 31]. In
addition, gremlin is involved in human tumours [32, 33]
and is expressed by tumour endothelium in vivo and by
proangiogenic endothelial cells in vitro [34]. Gremlin stimu-
lates endothelial cell intracellular signalling pathways and
migration in vitro, leading to an angiogenic response in vivo
[34, 35]. Gremlin is also proven to be localised to the outer
retina of diabetic rats, and its high expression has been
demonstrated in bovine retinal pericytes under elevated
glucose conditions compared with the control group [15]. In

the present study, the vitreous levels of gremlin were 67:79
± 33:96 ng/mL in PDR and 45:31 ± 12:31 ng/mL in the con-
trol samples. Significant differences were found between the
PDR and control groups. The vitreous gremlin levels in the
eyes with PDR were significantly higher than the levels in
the eyes with idiopathic epimacular membrane. In addition,
high glucose induced the expression of fibronectin, collagen
IV, and gremlin in a dose-dependent manner, and the high
expression of fibronectin and collagen IV was significantly
reduced by silence of gremlin in human RPE cells. The find-
ings indicate increased vitreous levels of gremlin in the eyes
with PDR, high levels of gremlin, fibronectin, and collagen
IV in high glucose-treated RPE cells, and blockage of gremlin
inhibition of fibronectin and collagen IV in RPE cells under
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Figure 3: High glucose levels induced the expression of fibronectin and collagen IV in RPE cells. Before measuring the expression of
fibronectin and collagen IV, the cells were exposed to normal glucose (5.5mM) and high glucose (15mM or 30mM) for 24 h. A real-time
PCR and an ELISA kit analysis illustrated that the (a, b) mRNA and (c, d) protein levels of fibronectin and collagen IV were upregulated
in response to high glucose compared with normal glucose. The data shown represent the mean ± standard deviation (SD) of three
independent experiments. ∗p < 0:05 versus 5.5mM; ∗∗p < 0:01 versus 5.5mM.
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Figure 4: High glucose induced the expression of gremlin in RPE
cells. The cells were exposed to normal glucose (5.5mM) and high
glucose (15mM or 30mM) for 24 h. A real-time PCR and a
western blot analysis illustrated that the (a) mRNA and (b)
protein levels of gremlin were upregulated in response to high
glucose compared with normal glucose. The data shown represent
the mean ± SD of three independent experiments. ∗p < 0:05 versus
5.5mM; ∗∗∗p < 0:001 versus 5.5mM.
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Figure 5: Gremlin siRNA significantly downregulated the
expression of gremlin in RPE cells under normal glucose
conditions. The cells were transfected with siRNA for 24 h and
then incubated in normal glucose for an additional 24 h. A real-
time PCR analysis showed that the silence of gremlin significantly
reduced the expression of gremlin in RPE cells. The data represent
the mean ± SD of three independent experiments. ∗∗p < 0:01
versus 5.5mM. GR represents gremlin; Con represents control.

4 Journal of Diabetes Research



high-glucose conditions, which suggested that gremlin may
be involved in the pathogenesis of PDR.

In conclusion, the vitreous gremlin levels were elevated in
the eyes with PDR compared with the eyes with idiopathic
epimacular membrane. The expression of gremlin, fibronec-
tin, and collagen IV was increased in RPE cells in the pres-
ence of high glucose, and the knockdown of gremlin
significantly reduced the expression of fibronectin and colla-
gen IV. The data suggest that gremlin may contribute to the
pathological process of PDR. The present study extends our
knowledge of the role of gremlin in the development PDR.
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