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Aim. There are increasing evidence demonstrating that neutrophil-mediated inflammation plays a role in the etiology of type 2
diabetes. However, the molecular mechanisms by which neutrophils contribute to type 2 diabetes remain largely unknown. The
aim of the present work was to identify possible changes in circulating neutrophils to better elucidate neutrophil involvement in
human type 2 diabetes. Methods. Patients newly diagnosed with type 2 diabetes (n = 5) and age- and sex-matched healthy
controls (n = 5) were recruited. Neutrophils were purified from type 2 diabetes patients and controls, and RNA sequencing
(RNA-seq) was used for comprehensive transcriptome analysis. Differentially expressed genes (DEGs) were screened, and Gene
Ontology (GO) and KEGG pathway enrichment analyses were performed. Real-time polymerase chain reaction (qPCR) was
used for validation in external samples of type 2 diabetes patients (n = 8) and healthy controls (n = 8). Results. Gene expression
analysis showed that, compared with neutrophils from healthy controls, there were 1990 upregulated DEGs and 1314
downregulated DEGs in neutrophils from type 2 diabetes patients. GO analysis demonstrated that the DEGs were mainly
involved in myeloid leukocyte activation, T cell activation, adaptive immunity, and cytokine production. The top 20 enriched
KEGG pathways included the cytokine-cytokine receptor interaction pathway, NF-κB signaling pathway, cell adhesion
molecules, and chemokine signaling pathway. Furthermore, qPCR of genes related to neutrophil activation revealed that the
expression of SELL, SELP, CXCR1, and S100A8 was significantly increased in neutrophils from type 2 diabetes patients
compared with that in neutrophils from controls. Conclusions. Our study reveals an abnormal activation of circulating
neutrophils at the transcriptome level in type 2 diabetes patients. These findings suggest a potential involvement of neutrophil
dysfunction in the pathologic process of type 2 diabetes and provide insight into potential therapeutic targets for type 2 diabetes.

1. Introduction

Low-grade inflammation is a common component in type 2
diabetes, particularly in the development of obesity-related
insulin resistance [1]. Neutrophils are the most abundant type
of white blood cell and are reported as active players in inflam-
mation of obesity-related insulin resistance [2]. Additionally,
neutrophil count, a marker of subclinical inflammation, has
been shown to significantly increase in type 2 diabetes com-
pared with healthy subjects [3–5]. Neutrophil-lymphocyte

ratio significantly increases in prediabetes and diabetes and
may be a predictive marker for prediabetes and diabetes mel-
litus [6]. Furthermore, several large-scale prospective studies
demonstrated that the neutrophil count could be used as a
predictor of the incidence of type 2 diabetes [7], suggesting
the potential role of neutrophils in the development of type
2 diabetes.

Neutrophils eliminate extracellular pathogens by multi-
ple strategies, including phagocytosis, degranulation to release
lytic enzymes, and neutrophil extracellular traps (NETs),

Hindawi
Journal of Diabetes Research
Volume 2020, Article ID 9519072, 10 pages
https://doi.org/10.1155/2020/9519072

https://orcid.org/0000-0002-0775-4054
https://orcid.org/0000-0002-0947-0207
https://orcid.org/0000-0001-6390-6318
https://orcid.org/0000-0002-4451-4906
https://orcid.org/0000-0003-3927-1839
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/9519072


which are formed through a unique cell death process that is
clearly different from both apoptosis and necrosis, termed
“NETosis” [8–10]. However, improper activation of neutro-
phils may lead to tissue damage during exaggerated inflam-
matory responses [11]. Neutrophils from patients with type
2 diabetes reportedly produce more superoxide and cyto-
kines [12, 13], and neutrophils from type 2 diabetes patients
are more susceptible than those from healthy controls to
PMA-induced NETosis [14]. Neutrophil serine proteases,
which are crucial components of NET, including neutrophil
elastase (NE) and proteinase 3 (PR3), have been shown to
participate in the initiation of insulin resistance and type 2
diabetes [2, 15]. NE treatment elicits insulin resistance and
glucose intolerance in mice, while neutrophil elastase defi-
ciency results in improved tissue inflammation with less
macrophage infiltration in adipose tissues in high-fat diet-
induced obese mice [2]. Injection of recombinant PR3 alone
is sufficient to induce hyperglycemia in mice, and inhibition
of PR3 activity leads to an increase in glucose clearance
[15]. However, the precise mechanism by which neutrophils
induce type 2 diabetes remains elusive. Therefore, in this
study, we aimed to identify the transcriptomic changes in cir-
culating neutrophils from type 2 diabetes by RNA sequenc-
ing (RNA-seq) to better elucidate neutrophil involvement
in type 2 diabetes.

2. Materials and Methods

2.1. Subjects. Thirteen patients with type 2 diabetes whose
disease duration was less than one year were enrolled from
the Second Xiangya Hospital, Central South University.
The diagnosis of diabetes was based on the World Health
Organization (WHO) criteria (1999). The exclusion criteria
for type 2 diabetes were as follows: (1) acute infection, trauma,
or surgery within one month; (2) use of antibiotics, glucocor-
ticoids, or other immune regulators within one month; (3)
severe cardiocerebrovascular, liver, kidney, or malignant dis-
ease; (4) pregnancy or lactation; (4) autoimmune diseases,
such as hyperthyroidism; and (5) other types of diabetes. Thir-
teen gender- and age-matched controls were recruited and
exhibited euglycemia using a 75g glucose tolerance test. The
exclusion criteria for the controls were the same as those
above. Both patients and controls were divided into discovery
group (n = 5 : 5) and validation group (n = 8 : 8) randomly.

2.2. Measurements. Height and weight, waist circumference,
hip circumference, blood pressure, body mass index (BMI),
and weight/height ratio (WHR) were obtained for all patients.
Fasting venous blood samples were obtained at 8:00 am. The
following biochemical parameters were assessed in fasting
venous blood samples: fasting glucose, cholesterol (TC), tri-
glycerides (TGs), fasting blood glucose, fasting C-peptide
(FCP), and hemoglobin A1C (HbA1c) levels. Circulating cell
counts were analyzed by the automated hematology analyzer
Sysmex XE-2100. Plasma glucose was measured by a Hitachi
7170 analyzer (Boehringer Mannheim, Germany). Serum
cholesterol and TG levels were measured enzymatically.
Serum levels of C-peptide were assessed by the Advia Cen-
taur System (Siemens, Munich, Germany). HbA1c was deter-

mined by liquid chromatography (Bio-Rad Laboratories,
Hercules, CA).

2.3. Neutrophil Isolation and RNA Extraction. Human neu-
trophils were isolated from venous blood of patients and
healthy controls by density gradient centrifugation using
Ficoll-Paque Plus according to the manufacturer’s protocol
and then followed by positive magnetic separation for further
purification using human CD16 Microbeads (Miltenyi Bio-
tec). The cells were dissolved in TRIzol (Roche, America) in
a volume of 5 − 10 × 106 cells/1mL, followed by storage at
-80°C. Total RNA was extracted, and the concentration and
purity of RNA were tested on a NanoDrop spectrophotome-
ter, followed by reverse transcription using the High-
Capacity cDNA Reverse Transcription Kit (Thermo Fisher
Scientific, USA).

2.4. RNA-seq. In this study, we sequenced 5 samples from
type 2 diabetes patients and 5 samples from controls on
the BGISEQ-500 platform. A total of 19,718 genes were
detected, averaging approximately 24.04 million reads per
sample. Before downstream analyses, the raw sequencing
reads, such as low-quality, polluted, and unknown base
(N) reads, were filtered, followed by mapping of the clean
reads to the reference genome using HISAT [16] and
Bowtie2 [17]. The gene expression was calculated using a
software package called RSEM [18]. The average mapping
ratio to the reference genome was 92.93% (see Supplemen-
tary Tables 1 and 2), and the average mapping ratio to
genes was 65.73%. According to the gene expression level,
we identified differentially expressed genes (DEGs) between
type 2 diabetes patients and healthy control subjects by
using the DEG-seq algorithms [19]. An adjusted P value
not greater than 0.001 and an absolute value of the log2
ratio greater than 1 indicated significant gene expression
differences. All the samples were hierarchically clustered by
the expression level of all genes. According to the DEGs, we
next performed Gene Ontology (GO) classification including
molecular biological function, cellular component, and
biological process. With the DEGs, we performed KEGG
pathway classification and functional enrichment by using
phyper, which is a function of R package. We calculated the
false discovery rate (FDR) for each P value, and the terms
for which the FDR was not greater than 0.01 were defined as
significantly enriched.

2.5. Real-Time PCR Analysis. Real-time quantitative (qPCR)
was performed with Power SYBR green PCR master mix
(Go Taq® qPCR, Promega Corporation, USA) on the Mini-
Opticon real-time PCR detection system (ViiA™ 7 Real-
Time PCR System containing the Optiflex™ Optics System).
All the primers used for qPCR were designed and synthesized
by TSINGKE (TSINGKE Biological Technology, China). The
expression of each gene was quantified as a fold change
against β-actin by 2-ΔΔCt method. Primer sequences of genes
are shown in Table 1.

2.6. Statistical Analysis. Data are presented as the mean ± SD
or median with interquartile range. Student’s t-test was used
to identify the differentially expressed groups using GraphPad
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Prism version 5 for Windows. Normality was determined by
the Kolmogorov-Smirnov test. Data that were not normally
distributed were compared by the Mann-Whitney U test.

3. Results

3.1. Characteristics of Participants. The anthropometric char-
acteristics of the discovery group including 5 type 2 diabetes

patients and 5 control subjects and the validation group with
8 type 2 diabetes patients and 8 control subjects are presented
in Tables 2 and 3, respectively. In the discovery group,
HbA1c, postprandial glucose, fasting C-peptide, systolic
pressure, and diastolic blood pressure were higher in type 2
diabetes patients than in healthy controls (P < 0:05), and no
differences were found with respect to BMI, WHR, fasting
glucose, LDL-C, and TC between type 2 diabetes patients

Table 1: Primer sequences of forward and reverse primers.

Gene Sense (5′ to 3′) Antisense (3′ to 5′)
CXCR1 TCAAGTGCCCTCTAGCTGTT TGATCTAACTGAAGCACCGGC

CXCR2 TCTGCCTAGAGCTCTGACTAC CTGGGCTTTTCACCTGTAGGA

SELL TCTGTTGTGATTTCCTGGCAC CCCACCCACGTCCATATTCC

SELP CCCAGTGTGTAAAGCTATTTCGT GCTCCTCTCAGCATGAAACCT

PECAM1 TTTTGCCGTCTGAGTGGC CTTGAACAGAGCAGAAGGGTCA

S100A8 AGACCTGAAGGTTCTGTTTTTCA AGGACACTCGGTCTCTAGCA

S100A11 GCATCGAGTCCCTGATTGCT AGGGTCCTTCTGGTTCTTTGTG

S100A12 ATTCCTGTGCATTGAGGGGTTA TGTCAAAATGCCCCTTCCGA

SLC2A3 CGTGGAGAAAACTTGCTGCTG TCAGAGCTGGGGTGACCTTC

HSPA1 CGCAACGTGCTCATCTTTGA TCGCTTGTTCTGGCTGATGT

BST2 TGTCGCAATGTCACCCATCT AGCCATTAGGGCCATCACAGT

CPNE3 GACTCCCACGAAACTCAGGT AACATTCAGCGCCACCTTTG

β-Actin GCATCCCCCAAAGTTCACAA AGGACTGGGCCATTCTCCTT

Table 2: Clinical and biochemical characteristics of the study participants for RNA-seq.

HC (n = 5) T2D (n = 5) P value

Sex (male/female) 5 (4/1) 5 (3/2) 1.000

Age (years) 43:40 ± 13:22 41:40 ± 7:50 0.776

BMI (kg/m2) 23:18 ± 2:21 23:63 ± 13:27 0.942

WHR 0:86 ± 0:06 0:92 ± 0:03 0.081

DBP (mmHg) 74:40 ± 5:32 81:80 ± 5:85∗ 0.028

SBP (mmHg) 106:20 ± 8:95 124:00 ± 11:85∗ 0.029

TG (mmol/L) 1:03 ± 0:56 1:86 ± 0:62 0.056

TC (mmol/L) 4:22 ± 0:49 5:15 ± 1:27 0.166

HDL-C (mmol/L) 1:47 ± 0:44 1:17 ± 0:14 0.210

LDL-C (mmol/L) 2:34 ± 0:54 3:42 ± 1:23 0.109

HbA1c (%) 5:52 ± 0:46 7:80 ± 2:04∗ 0.040

Fasting BS (mmol/L)a 5.16 (4.88~5.36) 9.88 (5.52~10.22) 0.082

2 h postprandial BS (mmol/L) 4:88 ± 1:64 12:58 ± 5:17∗ 0.013

Fasting C-peptide (pmol/L) 350:36 ± 90:08 707:36±207:37∗∗ 0.008

2 h postprandial C-peptide (pmol/L) 1535:70 ± 549:43 1209:26 ± 82:11 0.225

White cell count (109/L) 6:38 ± 1:35 7:70 ± 1:92 0.241

Lymphoid cell count (109/L) 1:80 ± 0:47 2:61 ± 0:64 0.052

Neutrophil count (109/L) 4:15 ± 1:25 4:68 ± 1:59 0.569

Mononuclear count (109/L) 0:32 ± 0:12 0:31 ± 0:09 0.822

Data are expressed bymean ± SD or median (25-75th percentile). BMI: body mass index; WHR: waist to hip ratio; DBP: diastolic blood pressure; SBP: systolic
blood pressure; TG: triglycerides; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; acompared by the Mann-Whitney
U test. ∗P < 0:05 compared with HC. ∗∗P < 0:01 compared with HC.
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and control subjects. For the validation set, HbA1c and fast-
ing and postprandial glucose were higher in type 2 diabetes
patients than in healthy controls (P < 0:05).

3.2. Bioinformatics Analysis. RNA-seq analysis of neutrophils
was performed and then DEGs were identified. Compared
with neutrophils from the healthy controls, there were 1990
upregulated DEGs and 1314 downregulated DEGs in neutro-
phils from type 2 diabetes patients. The DEG-seq algorithm
was used to detect the DEGs between the two groups, and
the significance of the difference was established based on
the filtering criteria: fold change ≥ 2 or fold change ≤ 0:5
and adjusted P value ≤ 0.001 (Figures 1 and 2 and Supple-
mentary Data 1).

3.3. Gene Ontology (GO) Classification. Based on these DEGs,
a GO classification and a functional enrichment analysis
were performed to determine the molecular functions
(MM), cellular components (CC), and biological processes
(BP) involved in the proteins encoded by these genes. As
expected, most are important to neutrophil functioning.
We discovered that GO categories of the top 8 upregulated
biological functions were myeloid leukocyte activation
(log P = −22:62), T cell activation (log P = −14:94), adap-
tive immune system (log P = −14:48), cytokine produc-
tion (log P = −11:59), immune response-regulating signaling
pathway (log P = −11:40), cytokine-mediated signaling path-
way (log P = −10:00), immunoregulatory interactions between

a lymphoid and a nonlymphoid cell (log P = −10:00),
and immune response-regulating pathway (log P = −9:09)
(Figure 3(a) and Supplementary Data 3). Among the down-
regulated GO categories, there was a close relationship with
the response to molecules of bacterial origin, the biological
process of the inflammatory response, interleukin- (IL-)
10 signaling, regulation of cytokine production, cytokine-
cytokine receptor interaction, cellular response to lipids,
and regulation of cell adhesion (Figure 3(b) and Supple-
mentary Data 3).

3.4. KEGG Pathway Enrichment Analysis. KEGG pathway
enrichment analysis of the important DEGs suggested that
a wide range of biological pathways were altered in neutro-
phils from type 2 diabetes patients compared with controls.
P values were used to describe the significance level of path-
way enrichment. There were 318 main pathways identified,
and the top 20 differential pathways were primarily involved
in the cytokine-cytokine receptor interactions (P = 3:46 ∗
10−10), NF-κB signaling (P = 4:12 ∗ 10−9), tumor necrosis
factor (TNF) signaling (P = 6:23 ∗ 10−5), cell adhesion mole-
cule (CAM) signaling (P = 1:66 ∗ 10−5), Toll-like receptor
signaling (P = 2:82 ∗ 10−4), and chemokine signaling (P =
3:25 ∗ 10−4) (Figure 4 and Supplementary Data 2). In the
above most enriched pathways, especially cytokine-cytokine
receptor interactions and cell adhesion molecule (CAM)
signaling, the majority of the genes associated with the
two pathways were upregulated in type 2 diabetes, such

Table 3: Clinical and biochemical characteristics of the study participants for validation.

HC (n = 8) T2D (n = 8) P value

Sex (male/female) 8 (6/2) 8 (6/2) 1.000

Age (years) 44:25 ± 8:41 47:63 ± 10:74 0.496

BMI (kg/m2) 22:40 ± 2:10 23:82 ± 2:83 0.273

WHR 0:85 ± 0:08 0:88 ± 0:05 0.388

DBP (mmHg) 75:85 ± 7:85 79:88 ± 8:01 0.316

SBP (mmHg) 121:00 ± 11:20 118:50 ± 16:45 0.733

TG (mmol/L) 1:61 ± 0:81 1:54 ± 1:58 0.903

TC (mmol/L)a 4.77 (4.05~4.93) 3.96 (2.50~4.56) 0.050

HDL-C (mmol/L) 1:14 ± 0:48 1:51 ± 0:92 0.332

LDL-C (mmol/L) 2:75 ± 0:36 2:07 ± 0:89 0.065

HbA1c (%)a 5.30 (5.20~5.55) 6.50 (6.05~7.70)∗∗∗ <0.001
Fasting BS (mmol/L)a 4.61 (4.21~5.11) 5.97 (5.14~7.65)∗∗ 0.002

2 h postprandial BS (mmol/L) 4:88 ± 1:64 12:58±5:17∗∗∗ <0.001
Fasting C-peptide (pmol/L) 418:71 ± 90:49 369:44 ± 141:28 0.420

2 h postprandial C-peptide (pmol/L) 1598:80 ± 711:38 1229:03 ± 548:98 0.264

White cell count (109/L) 5:97 ± 0:81 5:73 ± 0:42 0.411

Lymphoid cell count (109/L) 1:97 ± 0:54 1:83 ± 0:83 0.695

Neutrophil count (109/L)a 3.41 (3.12~3.50) 3.42 (2.88~3.68) 0.878

Mononuclear count (109/L) 0:40 ± 0:08 0:30 ± 0:07 0.095

Data are expressed bymean ± SD or median (25-75th percentile). BMI: body mass index; WHR: waist to hip ratio; DBP: diastolic blood pressure; SBP: systolic
blood pressure; TG: triglycerides; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; acompared by the Mann-Whitney
U test. ∗P < 0:05 compared with HC. ∗∗P < 0:01 compared with HC. ∗∗∗P < 0:001 compared with HC.
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as chemokine (C-X-C motif) ligand (CXCL7, CXCL4), C-X-
C chemokine receptor type (CXCR1, CXCR2), also named
Interleukin 8 Receptor (IL8RA, IL8RB), as well as cell adhe-
sion molecules integrin subunit alpha M (ITGAM), L-
selectin (SELL), P-selectin (SELP), plate endothelial cell
adhesion molecule-1 (PECAM1), and P-selection glycopro-
tein ligand-1 (PSGL-1). Pathway maps of cytokine-cytokine
receptor interaction, cell adhesion molecules, and leukocyte
transendothelial migration are shown in Figure 5.

3.5. Real-Time Quantitative PCR. We next expanded the
analysis of the purified neutrophils. In the RNA-seq results,
genes were directly with neutrophil activation, like the
expression of adhesion molecules like SELL, SELP, PECAM1,
and related ligands or receptors, such as CXCR1, CXCR2,
calcium-binding protein (S100A8, S100A11, and S100A12),
bone marrow stromal cell antigen 2 (BST2), heat shock pro-
tein family A member 1A (HSPA1), and Copine 3 (CPNE 3)
were increased in type 2 diabetes (Figure 6). For the valida-
tion group, we performed qPCR for these genes. As adhesion
molecules, the expression of SELL and SELP in neutrophils
from patients was increased compared with that in neutro-
phils from healthy controls (P = 0:030 and P = 0:003). In
addition, CXCR1 expression was higher in neutrophils from

type 2 diabetes patients than in those from healthy controls
(P = 0:022). The levels of S100A8, which is derived mainly
from neutrophils regarded as a mediator of inflammation,
were higher in neutrophils from type 2 diabetes patients than
in those from healthy controls (P = 0:019). However, compa-
rable levels of PECAM1, CXCR2, SLC2A3, BST2, S100A11,
S100A12, and CPNE3 were found in neutrophils from diabe-
tes patients and controls (P > 0:05).

4. Discussion

Neutrophils are the first-line immune cells involved in
inflammation, and circulating neutrophil counts are moder-
ately increased in type 2 diabetes [3, 7]. However, the role
of neutrophils in the pathogenesis of type 2 diabetes is largely
unknown. Our study is the first to investigate the presence of
DEGs and the biological functions associated with these
genes in neutrophils from type 2 diabetes and healthy indi-
viduals. The study has shown that neutrophils from patients
with type 2 diabetes presented increased neutrophil activa-
tion, responses to chemokines and neutrophil transendothe-
lial cell migration at the transcriptome level.
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In the current study, we used an RNA-seq dataset to
assess the neutrophil gene expression changes at the tran-
scriptome level between patients with type 2 diabetes and
healthy controls. A total of 3304 DEGs were identified,
including 1990 upregulated genes and 1314 downregulated
genes. According to the GO analysis, myeloid leukocyte acti-
vation was the most significant among the top 20 enriched
terms, which is consistent with previous studies showing
increased leukocyte activation in patients with insulin resis-
tance and type 2 diabetes [20, 21], indicating a potential role
of leukocyte activation in the pathogenesis of type 2 diabetes.

Our data showed that the process of leukocyte-
endothelial adhesion was activated in the analyzed neutro-
phils as the pathway map of leukocyte transendothelial
migration shown. The adhesion genes ITGAM (CD11b),
PECAM1, SELL, and SELP and the receptor PSGL-1 were
upregulated in type 2 diabetes, and the mRNA levels of SELL
and SELP were also increased in neutrophils from patients
with type 2 diabetes, as assessed by real-time PCR; however,
there was no difference in PECAM1 levels in neutrophils
between patients and healthy controls. Selectins play unique
roles in neutrophil recruitment by mediating recognition
and adhesion between leukocytes and vascular endothelial
cells. Mice lacking in L-selectin and PSGL-1 show worse neu-

trophil recruitment into the inflamed peritoneum than
PSGL-1 knock-out mice. L-selectin (CD62L), which is
expressed by most leukocytes, is involved in neutrophil traf-
ficking [22]. P-selectin, encoded by SELP, can capture leuko-
cytes from the circulation to the vessel wall, leading to the
rolling of neutrophils [23], and polymorphisms of SELP are
associated with vascular risk of type 2 diabetes [24]. The
KEGG pathway analysis demonstrated that neutrophil roll-
ing function, neutrophil activation, and adhesion were dys-
regulated in patients with type 2 diabetes compared with
healthy controls. However, the literature also shows that
CD62L is decreased in peripheral blood neutrophils in
patients with diabetic microangiopathy, as assessed by flow
cytometry [25]. This difference may be explained by differ-
ences between transcriptome and protein levels.

The migration of neutrophils across endothelial cells to
the vascular wall is an essential step in tissue damage and
the inflammatory response. Adhesion molecules mediate the
adhesion of neutrophils to vascular endothelial cells. Several
studies have confirmed the activation of neutrophils and ele-
vated CD11b expression in diabetic patients [20, 21]. More-
over, it has been shown that the neutrophil-secreted enzyme
NE impairs insulin signaling and increases insulin resistance.
Conversely, obese mice without NE fed a high-fat diet showed
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improvement in insulin sensitivity [2]. Furthermore, NE has
been detected in the plasma of type 2 diabetes patients who
had elevated levels of glycated hemoglobin [26].

CXCR1 and CXCR2 widely exit on the cell surface of
neutrophils [27]. Neutrophils expressing CXCR1/2 can be
recruited to the pancreas by murine β cells, and macrophages
produce C-X-C motif ligand 2 (CXCL2) in autoimmune dia-
betes [28], which plays a vital role in the early stages of diabe-
tes. The expression of CXCR1/2 decreased after bariatric
surgery in female adipose tissue [29]. Moreover, CXCR2-
deficient mice are resistant to diet-induced insulin resistance
and diabetes, mainly because CXCL5 blocks insulin signaling
in muscle by activating the muscle Jak/STAT/SOCS pathway
through the CXCR2 receptor [30]. In accordance with this
finding, our RNA-seq analysis revealed that the CXCR1 and

CXCR2 genes were significantly upregulated in patients with
type 2 diabetes compared with healthy controls. Consistent
with this result, the real-time PCR results showed that
CXCR1 mRNA levels were significantly increased and that
there was a tendency toward increased CXCR2 mRNA levels
in type 2 diabetes.

Type 2 diabetes is associated with worse outcomes and
mortality caused by infection [31] due to impaired innate
immune functions, including phagocytosis, cytokine and
reactive oxygen species (ROS) production, bactericidal activ-
ity, and chemotaxis [32]. In our study, the GO analysis
showed that the diabetic neutrophil response to molecules
of bacterial origin, such as LPS, and inflammatory response
were decreased. In addition, the gene expression of cytoki-
nes/chemokines, such as CXCL2, CXCL3, CXCL5, and
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CXCL8, was downregulated. These data demonstrate that
neutrophils from patients with diabetes may also exhibit
impaired migration because of the downregulated chemo-
taxis, which may explain why some patients with diabetes

have increased infection rates. Kuwabara et al. showed that
neutrophils had an impaired response to LPS in a type 2 dia-
betes and obesity animal model, and neutrophils from the
GK rats were not capable of migrating to the site of inflam-
mation due to the impaired expression of adhesion proteins
after LPS stimulation [32]. In addition, a defect in the chemo-
taxis of leukocytes in patients with diabetes has been identi-
fied, which could contribute to increased infections in these
patients [33, 34], and high blood glucose induces a defective
leukocyte-endothelial interaction in rats [35]. Our research
is based on a small sample size, so the results may have lim-
ited generalizability. In addition the males are the majority
among the participants, so our opinions may be generalizable
mainly to males. Depending on the existing essay, the future
research needs more representative sample and focus on
making more depth analyses.

5. Conclusion

Our study investigated the presence of DEGs and the biolog-
ical functions associated with these genes in neutrophils from
type 2 diabetes patients and healthy controls. The study has
shown that patients with type 2 diabetes have increased neu-
trophil activation, increased responses to chemokines, and
increased neutrophil transendothelial cell migration at the
transcriptome level. On the other hand, in patients with type
2 diabetes, neutrophil responses to molecules of bacterial ori-
gin, such as LPS, the cellular response to bacteria, and inflam-
matory reactions are reduced. These findings support the role
of neutrophils in the pathogenesis of type 2 diabetes and
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provide insight into potential therapeutic targets for type 2
diabetes.
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