Hardy operator with variable limits on monotone functions

Vladimir D. Stepanov and Elena P. Ushakova

(Communicated by Lars-Erik Persson)

2000 Mathematics Subject Classification. 26D15.
Keywords and phrases. Weighted integral inequalities for monotone functions.

Abstract. We characterize weighted $L^p - L^q$ inequalities with the Hardy operator of the form $Hf(x) = \int_{a(x)}^{b(x)} f(y)u(y)dy$ with a non-negative weight function u, restricted to the cone of monotone functions on the semiaxis. The proof is based on the Sawyer criterion and the boundedness of generalized Hardy operator with variable limits.

1. Introduction

We study the Hardy operator

\begin{equation}
Hf(x) = \int_{a(x)}^{b(x)} f(y)u(y)dy
\end{equation}

with a non-negative weight function u, restricted to the cone of non-increasing or non-decreasing non-negative functions on the semiaxis $\mathbb{R}^+: = [0, \infty)$. The border functions $a(x)$ and $b(x)$ are supposed to be continuous and strictly increasing on \mathbb{R}^+ and as a model case may be taken such that

\begin{equation}
0 = a(0) = b(0) < a(\infty) = b(\infty) = \infty.
\end{equation}

\footnote{The research work was financially supported by the Russian Foundation for Basic Research (project 03-01-00017) and by the Far Eastern Branch of RAS.}
The equalities in (2) are not important as well as continuity of the border functions and assumed for simplicity. Also for simplicity we assume that $a(x) \neq b(x)$ everywhere on \mathbb{R}^+ except a countable subset.

The operator (1) with $u = 1$ was studied in [1], but the only sufficient condition for weighted $L^p - L^q$ boundedness on monotone functions was found there. A natural way to solve this problem is to apply the Sawyer criterion [2]. However, it leads to the additional problem for weighted $L^p - L^q$ characterization of generalized Hardy operators. This was done in [3] for the case $a(x) < b(x)$, $x > 0$ (see also, [4], [5]). Using the results of [3] and the block-diagonal structure of (1) we characterize the operator \mathbb{H} on monotone functions.

The paper is organized as follows. Section 2 contains the weighted $L^p - L^q$ characterization of generalized Hardy operators. In particular, for the operator \mathbb{H}, the “fairway” form of criteria are given. In Section 3 we remind the Sawyer criterion and formulate its dual form, more convenient for our purpose. The main result is given in Section 4.

Throughout of the paper products of the form $0 \cdot \infty$ are taken to be equal to 0. Relations $A \ll B$ mean $A \leq cB$ with some constants c depending only on parameters of summations and, possibly, on the constants of equivalence in the inequalities of the type (8). We write $A \approx B$ instead of $A \ll B \ll A$ or $A = cB$. \mathbb{Z} denotes the set of all integers and χ_E stands for a characteristic function (indicator) of a subset E. The union of disjoint sets we denote by \bigcup and \sqcup. Also we make use of marks $:=$ and $=:$. for introducing new quantities as well as the symbol \square for the end of proof.

2. Generalized Hardy operator

Let

\begin{equation}
K f(x) = \int_{a(x)}^{b(x)} k(y, x) f(y) dy, \quad x > 0,
\end{equation}

with a measurable kernel $k(x, y) \geq 0$ and strictly increasing functions $a(x)$ and $b(x)$, satisfying (2) such that $a(x) \neq b(x)$ for $0 < x < \infty$ except $x \in X$, where

\begin{equation}
X = \{x_k\}, \quad k \in \Sigma \subset \mathbb{Z} \quad \text{and} \quad a(x_k) = b(x_k).
\end{equation}

Denote

\begin{equation}
0, \infty =: I \sqcup J,
\end{equation}

\begin{equation}
I =: \bigcup_{i \in \Sigma_1} I_i, \quad J =: \bigcup_{j \in \Sigma_2} J_j, \quad \Sigma = \Sigma_1 \sqcup \Sigma_2,
\end{equation}

\begin{equation}
I_i = (t_i, t_{i+1}), \quad J_j = (s_j, s_{j+1}),
\end{equation}

where $\{t_i\}_{i \in \Sigma_1} \subset \{x_k\}_{k \in \Sigma_1}$, $\{s_j\}_{j \in \Sigma_2} \subset \{x_k\}_{k \in \Sigma_2}$ such that

\begin{equation}
x \in I_i \iff a(x) < b(x),
\end{equation}

\begin{equation}
x \in J_j \iff a(x) > b(x),
\end{equation}

\begin{equation}
x \in X \iff a(x) = b(x).
\end{equation}
(7) \(x \in J_j \Leftrightarrow b(x) < a(x) \).

Suppose that there exists \(D \geq 1 \) such that for all \(i \in \Sigma_1 \) and \(j \in \Sigma_2 \) the condition

\[
D^{-1} k(y, x) \leq k(y, z) + k(a(z), x) \leq D k(y, x),
\]

holds, if

\[
\begin{cases}
t_i \leq x \leq z \leq t_{i+1}, \\
a(z) \leq y \leq b(x),
\end{cases}
\]

and, similarly,

\[
D^{-1} k(y, x) \leq k(y, z) + k(b(z), x) \leq D k(y, x),
\]

when

\[
\begin{cases}
s_j \leq x \leq z \leq s_{j+1}, \\
b(z) \leq y \leq a(x).
\end{cases}
\]

We call a linear operator \(T : \mathcal{L}(U) \to \mathcal{M}(V) \) block-diagonal, if \(U = \bigsqcup_k U_k, V = \bigsqcup_k V_k \) and \(T = \sum_k T_k \), where \(T_k : \mathcal{L}(U_k) \to \mathcal{M}(V_k) \) and \(T_k f = \chi_{U_k} T(\chi_{U_k} f) \).

The following Lemma is frequently used. For completeness we provide the proof.

Lemma 1. Let \(U = \bigsqcup_k U_k, V = \bigsqcup_k V_k \) and \(T = \sum_k T_k \) is a block-diagonal operator, \(T_k : \mathcal{L}^p(U_k) \to \mathcal{L}^q(V_k) \). Then

\[
\|T\|_{\mathcal{L}^p(U) \to \mathcal{L}^q(V)} = \sup_k \|T_k\|_{\mathcal{L}^p(U_k) \to \mathcal{L}^q(V_k), \quad 0 < p \leq q < \infty}
\]

and

\[
\|T\|_{\mathcal{L}^p(U) \to \mathcal{L}^q(V)} = \left(\sum_k \|T_k\|_{\mathcal{L}^r(U_k) \to \mathcal{L}^q(V_k)}^{1/r} \right)^{1/r}, \quad 0 < q < \infty, \quad \frac{1}{r} = \frac{1}{p} - \frac{1}{q}.
\]

Proof. Let \(0 < p \leq q < \infty \). Since \(\|T f\|_{\mathcal{L}^q(V)} \geq \|T_k f\|_{\mathcal{L}^q(V_k)} \) for all \(k \), the lower estimate in (10) is trivial. For the upper bound, applying Jensen inequality, we write

\[
\|T f\|_{\mathcal{L}^q(V)}^q = \sum_k \|T_k f\|_{\mathcal{L}^q(V_k)}^q
\leq \left(\sup_k \|T_k\|_{\mathcal{L}^r(U_k) \to \mathcal{L}^q(V_k)} \right)^q \sum_k \|f \chi_k\|_{\mathcal{L}^r(U_k)}^q \|f\|_{\mathcal{L}^r(U)}^q.
\]

\[
\|T f\|_{\mathcal{L}^q(V)}^q \leq \left(\sup_k \|T_k\|_{\mathcal{L}^r(U_k) \to \mathcal{L}^q(V_k)} \right)^q \|f\|_{\mathcal{L}^r(U)}^q.
\]
Hardy operator with variable limits on monotone functions

Let \(0 < q < p < \infty \). The upper bound in (11) follows similar to (12) by application of Hölder’s inequality. For the lower bound let \(0 < \lambda < 1 \) be given and the functions \(f_k \in L^p(U_k) \) are such that for all \(k \)

\[
\|f_k\|_{L^p(U_k)} = \|T_k\|_{L^p(U_k) \to L^q(U_k)}, \\
\lambda \|T_k\|_{L^p(U_k) \to L^q(U_k)} \|f_k\|_{L^p(U_k)} \leq \|T_k f_k\|_{L^p(U_k)}.
\]

The inequality here follows from the definition of the norm of a linear operator and then we can change the function \(f_k \), if necessary, by multiplying on a constant for the equality is satisfied. If we put \(f = \sum_k \lambda U_k f_k \), then

\[
\lambda^q \sum_k \|T_k\|_{L^p(U_k) \to L^q(U_k)} = \lambda^q \sum_k (\|T_k\|_{L^p(U_k) \to L^q(U_k)} \|f_k\|_{L^p(U_k)})^q \\
\leq \sum_k \|T_k f_k\|_{L^p(U_k)}^q \\
= \|T f\|_{L^q(V)}^q \\
\leq \|T\|_{L^p(U) \to L^q(V)}^q \|f\|_{L^p(U)}^q \\
= \|T\|_{L^p(U) \to L^q(V)}^q \left(\sum_k \|T_k\|_{L^p(U_k) \to L^q(U_k)}^p \right)^{q/p}
\]

and the lower bound in (11) follows by tending \(\lambda \to 1 \). \(\square \)

Remark. Observe, that if \(0 < p < 1 \leq q \) and \(\|T\| < \infty \), then \(\|T\| = 0 \) ([6], § 1.47) and, if \(0 < q < \infty \), \(0 < p < 1 \), \(\|T\| < \infty \) and \(T \) is an integral operator, then \(\|T\| = 0 \) ([7], Theorem 2).

We consider the inequality

\[
(13) \quad \left(\int_0^\infty |K f(x)|^q w^q(x) dx \right)^{1/q} \leq C \left(\int_0^\infty |f(x)|^p v^p(x) dx \right)^{1/p}
\]

where \(w(x) \geq 0 \) and \(v(x) \geq 0 \) are locally integrable functions (weights) and \(K \) is given by (3) with the border functions \(a(x) \) and \(b(x) \) satisfying (2), (4-7) and the kernel \(k(y, x) \geq 0 \) satisfying (8) and (9).

Denote

\[
L^p_w := \left\{ f : \|f\|_{L^p} = \left(\int_0^\infty |f(x)|^p v^p(x) dx \right)^{1/p} < \infty \right\}
\]

and let \(\|K\|_{X \to Y} \) stand for the norm of \(K: X \to Y \).

Obviously, under the above assumptions on \(a(x) \) and \(b(x) \) \(K \) has a block-diagonal structure and Lemma 1 gives

\[
(14) \quad \|K\|_{L^p_w \to L^q_v} = \sup_{k \in \Sigma} A_k, \quad 1 < p \leq q < \infty,
\]
\[
\|K\|_{L^p_\mu \to L^q_\nu} = \left(\sum_{k \in \mathbb{Z}} \hat{A}_k \right)^{1/r}, \quad 1 < q < p < \infty,
\]

where
\[
\hat{A}_k = \|K\|_{L^p_\mu(U_k) \to L^q_\nu(U_k)},
\]

\(U_k\) runs the intervals \(I_i, J_j\), and \(a(U) = (a(u_1), a(u_2))\) if \(U = (u_1, u_2) \subset \mathbb{R}^+\).

The norms (16) we estimate with the help of [3] by the following scheme.

We have two types of the intervals \(U_k\), namely \(I_i\) (see (6)) and \(J_j\) (see (7)). Since on each of \(I_i\) the operator \(K\) with the kernel \(k(y, x) \in (8)\) satisfies the conditions of Theorem 2 [3], then

\[
\hat{A}_i \approx \begin{cases}
A_i = A_0^{(i)} + A_1^{(i)}, & 1 < p \leq q < \infty, \\
B_i = \left[\sum_{k \in \mathbb{Z}} \left(B_{k,1}^{(i)} + B_{k,2}^{(i)} + B_{k,3}^{(i)} + B_{k,4}^{(i)} \right) \right]^{1/r}, & 1 < q < p < \infty,
\end{cases}
\]

where
\[
A_0^{(i)} = \sup_{s \in I_i, s \leq t \leq a^{-1}(b(s))} \left(\int_s^t k^q(a(t), x) w^q(x) dx \right)^{1/q} \left(\int_{a(t)}^{b(s)} v^{-p'}(x) dx \right)^{1/p'},
\]
\[
A_1^{(i)} = \sup_{s \in I_i, s \leq t \leq a^{-1}(b(s))} \left(\int_s^t w^q(x) dx \right)^{1/q} \left(\int_{a(t)}^{b(s)} k^q(x, t) v^{-p'}(x) dx \right)^{1/p'},
\]
\[
B_{k,1}^{(i)} = \left(\int_{a^{(i)}}^{a^{(i)} + a^{-1}(t)} k^q(t, x) w^q(x) dx \right)^{r/q} \times \left(\int_{a(t)}^{a(t)} v^{-p'}(x) dx \right)^{r/p'} \left(v^{-p'}(t) dt \right)^{1/r},
\]
\[
B_{k,2}^{(i)} = \left(\int_{b^{(i)}}^{b^{(i)} + b^{-1}(s)} w^q(x) dx \right)^{r/p} \times \left(\int_{b(s)}^{b(s)} k^q(x, t) v^{-p'}(x) dx \right)^{r/p'} \left(w^q(t) dt \right)^{1/r},
\]
\[B_{k,3}^{(i)} = \left(\int_{\xi_k^{(i)}}^{\xi_{k+1}^{(i)}} k^3(t, x)w^q(x)dx \right)^{r/q} \times \left(\int_{\xi_k^{(i)}}^{\xi_{k+1}^{(i)}} v^{-p'}(x)dx \right)^{r/p'} \left(\int_{\xi_k^{(i)}}^{\xi_{k+1}^{(i)}} v^{-p'}(t)dt \right)^{1/r} \]

\[B_{k,4}^{(i)} = \left(\int_{\xi_k^{(i)}}^{\xi_{k+1}^{(i)}} w^q(x)dx \right)^{r/p} \times \left(\int_{\xi_k^{(i)}}^{\xi_{k+1}^{(i)}} k^3(t, x)v^{-p'}(x)dx \right)^{r/p'} \left(\int_{\xi_k^{(i)}}^{\xi_{k+1}^{(i)}} w^q(t)dt \right)^{1/r} \]

and the sequence \(\{\xi_k^{(i)}\}_{k \in \mathbb{Z}, I_i \subset \mathbb{Z}} \) is such that \(\xi_0^{(i)} \in I_i \) and \(\xi_k^{(i)} = (a^{-1} \circ b)^k(\xi_0^{(i)}) \). Analogously, we can estimate the norm of the operator \(Kf(x) \) for \(x \in J_j \). Since the kernel \(k(y, x) \) satisfies the condition (9) and \(b(x) < a(x) \), then

\[
(18) \begin{cases} A_j = A_0^{(j)} + A_1^{(j)}, \\
B_j = \left[\sum_{k \in \mathbb{Z}, I_j} \left(B_{k,1}^{(j)} + B_{k,2}^{(j)} + B_{k,3}^{(j)} + B_{k,4}^{(j)} \right) \right]^{1/r}. \end{cases} \]

where

\[A_0^{(j)} = \sup_{s \in J_j} \sup_{s \leq t \leq b^{-1}(a(s))} \left(\int_s^t k^3(b(t), x)w^q(x)dx \right)^{1/q} \left(\int_{b(t)}^{a(s)} v^{-p'}(x)dx \right)^{1/p'} \]

\[A_1^{(j)} = \sup_{s \in J_j} \sup_{s \leq t \leq b^{-1}(a(s))} \left(\int_s^t w^q(x)dx \right)^{1/q} \left(\int_{b(t)}^{a(s)} k^3(t, x)v^{-p'}(x)dx \right)^{1/p'} \]

\[B_{k,1}^{(j)} = \left(\int_{\xi_k^{(j)}}^{\xi_{k+1}^{(j)}} k^3(t, x)w^q(x)dx \right)^{r/q} \times \left(\int_{\xi_k^{(j)}}^{\xi_{k+1}^{(j)}} v^{-p'}(x)dx \right)^{r/p'} \left(\int_{\xi_k^{(j)}}^{\xi_{k+1}^{(j)}} v^{-p'}(t)dt \right)^{1/r} \]
\[B^{(j)}_{k,2} = \left(\int_{\xi_{k+1}}^{B} \left(\int_{\xi_{k}}^{a} w_{a}^{\frac{r}{p}}(x)dx \right)^{r/p} \right. \]

\[
\times \left(\int_{a(\xi_{k})}^{b(\xi_{k+1})} k'(x,t) v^{-\frac{r'}{q'}}(x)dx \right)^{r/p'} \left. \int_{a(\xi_{k})}^{b(\xi_{k+1})} w^{\frac{r}{q}}(t)dt \right)^{1/r} \]

\[B^{(j)}_{k,3} = \left(\int_{\xi_{k+1}}^{B} \left(\int_{\xi_{k}}^{a} k^3(t,x)w^{3}(x)dx \right)^{r/q} \right. \]

\[
\times \left(\int_{a(\xi_{k})}^{b(\xi_{k+1})} v^{-\frac{r'}{q'}}(x)dx \right)^{r/q'} \left. \int_{a(\xi_{k})}^{b(\xi_{k+1})} v^{\frac{r}{q}}(t)dt \right)^{1/r} \]

\[B^{(j)}_{k,4} = \left(\int_{\xi_{k+1}}^{B} \left(\int_{\xi_{k}}^{a} w_{a}^{\frac{r}{p}}(x)dx \right)^{r/p} \right. \]

\[
\times \left(\int_{a(\xi_{k})}^{b(\xi_{k+1})} k'(x,t) v^{-\frac{r'}{q'}}(x)dx \right)^{r/p'} \left. \int_{a(\xi_{k})}^{b(\xi_{k+1})} w^{\frac{r}{q}}(t)dt \right)^{1/r} \]

and the sequence \(\{\xi^{(j)}_{k}\}_{k\in\mathbb{Z}} \subseteq \mathbb{Z} \) is such as \(\xi^{(j)}_{k} \in J_{j} \) and \(\xi^{(j)}_{k} = (b^{-1} \circ a)^{k}(\xi^{(j)}_{0}) \).

On the base of the above estimates and Lemma 1 we obtain

Theorem 1. Let \(1 < p \leq q \leq \infty \), then the least constant \(C \) of inequality (13) is equivalent to \(\mathcal{A} \), where

\[\mathcal{A} = \sup_{i \in \Sigma_{1}} A_{i} + \sup_{j \in \Sigma_{2}} A_{j}. \]

If \(1 < q < p < \infty \), then \(C \approx \mathbb{B} \), where

\[\mathbb{B} = \left(\sum_{i \in \Sigma_{1}} B^{i}_{i} \right)^{1/r} + \left(\sum_{j \in \Sigma_{2}} B^{j}_{j} \right)^{1/r}. \]

Remark 2. Theorem 1 has a counterpart for the operator

\[\tilde{K} f(x) = \int_{a(x)}^{b(x)} k(x,y) f(y)dy, \]

where the kernel \(k(x, y) \geq 0 \) satisfies the conditions

\[D^{-1} k(x, y) \leq k(x, b(z)) + k(z, y) \leq D k(x, y) \]
and
\[D^{-1}k(x, y) \leq k(x, a(z)) + k(z, y) \leq Dk(x, y) \]
instead of (8) and (9), respectively. We omit details which can be restored
by using ([3], Theorem 3).

Theorem 1 has a particularly transparent form, when \(k(y, x) = 1 \), with
the help of the following

Definition 1. Given boundary functions \(a(x) \) and \(b(x) \), satisfying the
conditions (2), a number \(p \in (1, \infty) \) and a weight function \(v(x) \) such that
\(0 < v(x) < \infty \) almost everywhere for \(x \in \mathbb{R}^+ \), \(v^p(x) \) and \(v^{-q'}(x) \), \(q' = p/(p - 1) \), are locally integrable on \(\mathbb{R}^+ \), we define fairway - the function
\(\sigma(x) \) such that \(\min(a(x), b(x)) \leq \sigma(x) < \max(a(x), b(x)) \), \(x \notin \{x_k\} \) and
\[
\int_{\min(a(x), b(x))}^{\sigma(x)} v^{-q'}(y)dy = \int_{\sigma(x)}^{\max(a(x), b(x))} v^{-q'}(y)dy \quad \text{for all} \quad x \in \mathbb{R}^+ \setminus X.
\]

Put
\[
\Delta(x) = \left[\min(a(x), b(x)) \right] , \max(a(x), b(x)) \right],
\]
\[
\delta(x) = \begin{cases}
\left[b^{-1}(\sigma(x)), a^{-1}(\sigma(x)) \right], & x \in I, \\
\left[a^{-1}(\sigma(x)), b^{-1}(\sigma(x)) \right], & x \in J,
\end{cases}
\]
where \(a^{-1}(y) \) and \(b^{-1}(y) \) are the functions converse to \(y = a(x) \) and \(y =
\]

Theorem 2. Let the operator \(\mathbb{H} \) of the form (1) be given with \(u = 1 \)
and the boundary functions \(a(x) \) and \(b(x) \) satisfying the conditions (2), (4-7).
Then for the norm of \(\mathbb{H} \) and \(1 < p \leq q < \infty \) the estimate
\[
\alpha_0(p, q)A \leq ||\mathbb{H}||_{L^p_\Delta \rightarrow L^q_\Delta} \leq \alpha_1(p, q)A,
\]
does not hold, where
\[
A = \sup_{t > 0} \left(\int_{\delta(t)} \frac{1}{q} \int_{\Delta(t)} v^{-q'}(y)dy \right)^{1/q} \left(\int_{\Delta(t)} v^{-q'}(y)dy \right)^{-1/p'}.
\]

If \(0 < q < \infty \), \(p > 1 \), \(1/r = 1/q - 1/p \), then
\[
\beta_0(p, q)B \leq ||\mathbb{H}||_{L^p_\Delta \rightarrow L^q_\Delta} \leq \beta_1(p, q)B,
\]
where
\[
B = \left(\int_0^\infty \left(\int_{\delta(t)} w^{q}(y)dy \right)^{r/p} \left(\int_{\Delta(t)} v^{-q'}(y)dy \right)^{r/q'} w^q(t)dt \right)^{1/r}.
\]
3. Sawyer criterion

Let

\[Tf(x) = \int_0^\infty t(x, y) f(y) dy \]

be an integral operator with a non-negative kernel and

\[T^* g(y) = \int_0^\infty t(x, y) g(x) dx \]

is formally adjoint to \(T \). If, for instance,

\[Hf(x) = \int_0^x f(y) dy, \]

then

\[H^* g(y) = \int_y^\infty g(x) dx. \]

By the Sawyer criterion [2] the weighted inequality

\[\left(\int_0^\infty (T f)^q (x) w^q(x) dx \right)^{1/q} \leq C \left(\int_0^\infty f^p(x) v^p(x) dx \right)^{1/p}, \quad 0 \leq f \downarrow, \]

for all non-increasing function \(f \) is equivalent, when \(1 < p, q < \infty \), to the following two inequalities

\[\left(\int_0^\infty (HT^* g)^{q'} (x) V^{-q'} (x) v^p(x) dx \right)^{1/q'} \leq C_1 \left(\int_0^\infty g^{q'} (x) w^{-q'} (x) dx \right)^{1/q'}, \]

and

\[\int_0^\infty (T^* g)^q (x) dx \leq C_2 \left(\int_0^\infty v^p(x) dx \right)^{1/p} \left(\int_0^\infty g^{q'} (x) w^{-q'} (x) dx \right)^{1/q'}, \]

where \(g \geq 0 \), \(p' = p/(p - 1) \), \(q' = q/(q - 1) \) and \(V(x) = \int_0^x v^p(y) dy \). We assume the constants \(C, C_1 \) and \(C_2 \) as the least possible. The second inequality (21) is easily characterized by the duality in Lebesgue's space and

\[C_2 = A_0: = \left(\int_0^\infty \left(\int_0^\infty t(x, y) dy \right)^q w^q(x) dx \right)^{1/q} \left(\int_0^\infty v^p(x) dx \right)^{-1/p}. \]

As for the first inequality (20) it is more convenient for our purpose to use the dual form of (20)
\[\left(\int_0^\infty (TH^*g)^q(x)w^q(x)dx \right)^{1/q} \leq C_1 \left(\int_0^\infty g^p(x)V^p(x)e^{-\nu^p/\nu'(x)}dx \right)^{1/p}, \]

for all \(g \geq 0 \).

Thus, if we characterize (23) by a finiteness of, say, a constant \(A_1 \), then for (19) we have

\[C \approx A_0 + A_1. \]

The similar criterion is valid for the inequality (19) restricted to the cone of non-decreasing functions. We omit details (see [8]).

4. Main result

Let \(a(x) \) and \(b(x) \) satisfy the assumptions of § 1 and 2. Taking into account (6) and (7) we observe, that the inequality

\[\left(\int_0^\infty \left| \mathbb{H}f(x) \right|^q w^q(x)dx \right)^{1/q} \leq C \left(\int_0^\infty f^p(x)v^p(x)dx \right)^{1/p}, \quad 0 \leq f \downarrow, \]

is equivalent to

\[\left(\int_0^\infty \left[\mathbb{H}f(x) \right]^q w^q(x)dx \right)^{1/q} \leq C \left(\int_0^\infty f^p(x)v^p(x)dx \right)^{1/p}, \quad 0 \leq f \downarrow, \]

where

\[\mathbb{H}f(x) = \begin{cases} \mathbb{H}f(x), & x \in I_i, \\ -\mathbb{H}f(x), & x \in J_j. \end{cases} \]

By the Sawyer criterion for the least possible constant \(C \) in (26) we have

\[C \approx A_0 + A_1, \]

where

\[A_0 = \left(\int_0^\infty \int_{a(x)}^{b(x)} u(y)dy \right)^q \left(\int_0^\infty w^q(x)dx \right)^{-1/p} \left(\int_0^\infty v^p(x)dx \right)^{-1/p} \]

and \(A_1 \) is a characterization constant for the inequality

\[\left(\int_0^\infty (\mathbb{H}H^*g)^q(x)w^q(x)dx \right)^{1/q} \leq C_1 \left(\int_0^\infty g^p(x)V^p(x)e^{-\nu^p/\nu'(x)}dx \right)^{1/p}, \]
for all \(g \geq 0 \). Using (27) and notations of \(\S \) 2 we write for the left hand side of (29)

\[
\Phi := \int_0^\infty \left(\prod_{n=1}^N f_n(x) \right)^q (x) w^q(x) dx
\]

\[
= \sum_{i \in \Sigma_1} \int_{t_i}^{t_{i+1}} \left(\int_{a(x)}^{b(x)} u(s) ds \right)^q \left(\int_{\alpha(x)}^\infty g(y) dy \right)^q w^q(x) dx
\]

\[
+ \sum_{j \in \Sigma_2} \int_{s_j}^{s_{j+1}} \left(\int_{b(x)}^{a(x)} u(s) ds \right)^q \left(\int_{\beta(x)}^\infty g(y) dy \right)^q w^q(x) dx
\]

Plainly

\[
F_i \approx \int_{t_i}^{t_{i+1}} \left(\int_{a(x)}^{b(x)} u(s) ds \right)^q \left(\int_{a(x)}^\infty g(y) dy \right)^q w^q(x) dx
\]

\[
+ \int_{t_i}^{t_{i+1}} \left(\int_{a(x)}^{b(x)} u(s) ds \right)^q \left(\int_{\alpha(x)}^\infty g(y) dy \right)^q w^q(x) dx,
\]

\[
G_j \approx \int_{s_j}^{s_{j+1}} \left(\int_{b(x)}^{a(x)} u(s) ds \right)^q \left(\int_{\beta(x)}^\infty g(y) dy \right)^q w^q(x) dx
\]

\[
+ \int_{s_j}^{s_{j+1}} \left(\int_{b(x)}^{a(x)} u(s) ds \right)^q \left(\int_{\gamma(x)}^\infty g(y) dy \right)^q w^q(x) dx.
\]

Hence,

\[
\Phi \approx \int_0^\infty \left| \int_{a(x)}^{b(x)} u(s) ds \right|^q \left(\int_{\max(a(x), b(x))}^\infty g(y) dy \right)^q w^q(x) dx
\]

\[
+ \int_0^\infty \left| \int_{a(x)}^{b(x)} k(y, x) g(y) dy \right|^q w^q(x) dx,
\]

where

\[
k(y, x) := \begin{cases}
\int_{a(x)}^{y} u(s) ds, & a(x) \leq y \leq b(x), x \in I_i, \\
\int_{b(x)}^{y} u(s) ds, & b(x) \leq y \leq a(x), x \in J_j.
\end{cases}
\]

(30)

Clearly, the kernel \(k(y, x) \geq 0 \) satisfies the condition (8) and (9) with \(D = 1 \). Thus, the inequality (29) is equivalent to the following two inequalities
Hardy operator with variable limits on monotone functions

\begin{equation}
(31) \left(\int_0^\infty \left(\int_{a(x)}^{b(x)} g(y)dy \right)^q \left| \int_{a(x)}^{b(x)} u(s)ds \right|^q w^q(x)dx \right)^{1/q} \leq C_{1,0} \left(\int_0^\infty g^p(x)V^p(x)u^{-p'/p'}(x)dx \right)^{1/p}, \quad g \geq 0,
\end{equation}

and

\begin{equation}
(32) \left(\int_0^\infty \left| \int_{a(x)}^{b(x)} k(y,x)g(y)dy \right|^q w^q(x)dx \right)^{1/q} \leq C_{1,1} \left(\int_0^\infty g^p(x)V^p(x)u^{-p'/p'}(x)dx \right)^{1/p'}, \quad g \geq 0,
\end{equation}

with \(C_1 \approx C_{1,0} + C_{1,1} \). Characterization of (31) is known, because \(\max(a(x), b(x)) \) is an increasing function, \(C_{1,0} \approx A_{1,0} \), where for \(1 < p \leq q < \infty \)

\begin{equation}
(33) \quad A_{1,0} := \sup_{t > 0} \left(\int_0^t \left| \int_{a(t)}^{b(t)} u(s)ds \right|^q w^q(x)dx \right)^{1/q} \times \left(\int_{\max(a(t), b(t))}^\infty \frac{V^{-p'}(x)w^p(x)dx}{x} \right)^{1/p'},
\end{equation}

and for \(1 < q < p < \infty \) with \(1/r = 1/q - 1/p \)

\begin{equation}
(34) \quad A_{1,1} := \left(\int_0^\infty \left(\int_{a(t)}^{b(t)} u(s)ds \right)^{q/r} w^q(x)dx \right) \times \left(\int_{\max(a(t), b(t))}^\infty V^{-p'}(x)w^p(x)dx \right)^{q/r'} \left| \int_{a(t)}^{b(t)} u(s)ds \right|^{q/r} w^q(t)dt \right)^{1/r}.
\end{equation}

Applying Theorem 1 we obtain the main result of the paper.

\textbf{Theorem 3.} For the least possible constant in the inequality (25) the two-sided estimate

\[C \approx A_0 + A_{1,0} + A_{1,1} \]

holds,

where \(A_0 \) and \(A_{1,0} \) are given by (28) and (33) - (34), respectively, and

\begin{equation}
(35) \quad A_{1,1} = \sup_{i \in \Sigma_i} \left[\sup_{s \in J_i} \sup_{s \leq t \leq a^{-1}(b(s))} (A_0(s,t) + A_1(s,t)) \right] = \sup_{s \in J_i} \left[\sup_{s \leq t \leq a^{-1}(a(s))} (A_0(s,t) + A_1(s,t)) \right], \quad 1 < p \leq q < \infty,
\end{equation}
(36) \[
A_{1,1} = \left(\sum_{i \in \Sigma_1} \sum_{k \in \mathbb{Z}_i} \mathcal{R}_k^r + \mathcal{R}_k^p + \mathcal{R}_k^{r,3} + \mathcal{R}_k^{r,4} \right)^{1/r} \\
+ \left(\sum_{j \in \Sigma_2} \sum_{k \in \mathbb{Z}_j} \mathcal{R}_k^r + \mathcal{R}_k^p + \mathcal{R}_k^{r,3} + \mathcal{R}_k^{r,4} \right)^{1/r}, \quad 1 < q < p < \infty,
\]

\[
A_{0}(s,t) = \left(\int_s^t k^q \left(\min \{a(t), b(t)\}, x \right) u^q(x) dx \right)^{1/q} \\
\times \left(\int_{\min(a(s), b(s))}^{\max(a(s), b(s))} V^{-p'}(x) u^p(x) dx \right)^{1/p'}, \\
\]

\[
A_{1}(s,t) = \left(\int_s^t u^q(x) dx \right)^{1/q} \\
\times \left(\int_{\min(a(s), b(s))}^{\max(a(s), b(s))} \mathcal{B}^q(x, t) V^{-p'}(x) u^p(x) dx \right)^{1/p'}, \\
\]

\[
B_{h,1} = \left(\int_{\min(a(\xi_{k+1}), b(\xi_{k+1}))}^{\max(a(\xi_{k+1}), b(\xi_{k+1}))} \left(\int_{\xi_{k+1}}^{\max(a^{-1}(t), b^{-1}(t))} k^q(t, x) u^q(x) dx \right)^{r/q} \\
\times \left(\int_{t}^{\min(a(\xi_{k+1}), b(\xi_{k+1}))} V^{-p'}(x) u^p(x) dx \right)^{r/p'} \right)^{1/r} \\
\]

\[
B_{h,2} = \left(\int_{\xi_{k+1}}^{\max(a(\xi_{k+1}), b(\xi_{k+1}))} \left(\int_{\min(a^{-1}(t), b^{-1}(t))}^{\xi_{k+1}} k^q(t, x) u^q(x) dx \right)^{r/q} \\
\times \left(\int_{\min(a(t), b(t))}^{\max(a(t), b(t))} V^{-p'}(x) u^p(x) dx \right)^{r/p'} \right)^{1/r} \\
\]

\[
B_{h,3} = \left(\int_{\max(a(\xi_{k+1}), b(\xi_{k+1}))}^{\min(a^{-1}(t), b^{-1}(t))} \left(\int_{\xi_{k+1}}^{\max(a(t), b(t))} k^q(t, x) u^q(x) dx \right)^{r/q} \\
\times \left(\int_{\max(a(t), b(t))}^{\min(a^{-1}(t), b^{-1}(t))} V^{-p'}(x) u^p(x) dx \right)^{r/p'} \right)^{1/r},
\]
Hardy operator with variable limits on monotone functions

\[
B_{k,A} = \left(\int_{\xi_k}^{\xi_{k+1}} \left(\int_{t}^{t^+} w^q(x)dx \right)^{r/p} \right.
\]
\[
\times \left(\int_{\max(a(t), b(t))}^{\max(a(\xi_k), b(\xi_k))} k^p(x, t) v^{-p}(x) dx \right)^{r/p'} \left. \right) w^q(t) dt \right)^{1/r},
\]

and

\[
\xi_k = \begin{cases}
(a^{-1} \circ b)^k(\xi_0), & \xi_0 \in I_i, \quad \text{if} \quad a(x) < b(x), \\
(b^{-1} \circ a)^k(\xi_0), & \xi_0 \in I_j, \quad \text{if} \quad b(x) < a(x).
\end{cases}
\]

Remark 3. The similar result as Theorem 3 is also true for non-decreasing functions. We omit details.

Acknowledgements. The paper was composed during the visit of the second author to Department of Mathematics of Korean Advanced Institute of Science and Technology. The author thanks the Institute for hospitality and support. Also the authors thank Dmitry V. Prokhorov for discussion.

References

Department of Mathematics
KAIST, 373-1 Kusong-Dong
Yusong-Gu, Taegon, 305-701
SOUTH KOREA
(Email : vstep@math.kaist.ac.kr)

Computing Centre FEB RAS
Tikhookeanskaya 153
Khabarovsk, 680042
RUSSIA
(Email : ushakova@as.khb.ru)

(Received : February 2003)
Submit your manuscripts at
http://www.hindawi.com