Marcinkiewicz integrals with variable kernels on
Hardy and weak Hardy spaces*

Xiangxing Tao, Xiao Yu and Songyan Zhang

(Communicated by Maria Carro)

2000 Mathematics Subject Classification. 42B20, 42B30.

Keywords and phrases. Marcinkiewicz integral, variable kernel, Hardy space, weak Hardy space, $L^{1,\alpha}$-Dini condition.

Abstract. In this article, we consider the Marcinkiewicz integrals with variable kernels defined by

$$
\mu_{\Omega}(f)(x) = \left(\int_{0}^{\infty} \left| \int_{|x-y| \leq t} \frac{\Omega(x, x-y)}{|x-y|^{n-1}} f(y) dy \right|^2 \frac{dt}{t^3} \right)^{1/2},
$$

where $\Omega(x, z) \in L^{\infty}(\mathbb{R}^n) \times L^q(S^{n-1})$ for $q > 1$. We prove that the operator μ_{Ω} is bounded from Hardy space, $H^p(\mathbb{R}^n)$, to $L^p(\mathbb{R}^n)$ space; and is bounded from weak Hardy space, $H^{p,\infty}(\mathbb{R}^n)$, to weak $L^p(\mathbb{R}^n)$ space for $\max\left\{ \frac{2n+1}{n+1}, \frac{n+\alpha}{n} \right\} < p < 1$, if Ω satisfies the $L^{1,\alpha}$-Dini condition with any $0 < \alpha \leq 1$.

1. Introduction

Let $\mathbb{R}^n (n \geq 2)$ be the n-dimensional Euclidean space and S^{n-1} denote the unit sphere in \mathbb{R}^n equipped with induced Lebesgue measure $d\sigma$, and let $x' = \frac{x}{|x|}$ for any $x \neq 0$.

*This work was supported partly by National Natural Science Foundation of China under grant #10771110, NSF of Ningbo City under grant #2006A610090, and sponsored by SRF for ROCS, SEM.
In 1958, E. M. Stein [12] first introduced the following Marcinkiewicz integral μ_ω of higher dimension with convolution kernel,

$$
\mu_\omega(f) = \left(\int_0^\infty \left| \int_{|x-y| \leq t} \frac{\omega(x-y)}{|x-y|^{n-1}} f(y) dy \right|^2 \frac{dt}{t^3} \right)^{1/2},
$$

where $\omega(x)$ is a homogeneous function of degree zero with $\omega \in L^1(S^{n-1})$ and $\int_{S^{n-1}} \omega(x') d\sigma(x') = 0$.

E. M. Stein proved that μ_ω is bounded on $L^p(\mathbb{R}^n)$ for $1 < p \leq 2$ and is of weak type $(1,1)$ if $\omega \in \text{Lip}_\alpha(S^{n-1})$ with $0 < \alpha \leq 1$. Subsequently, A. Benedek, A. Calderon and R. Panzone [3] showed that if $\omega \in C^1(S^{n-1})$, then μ_ω is bounded on $L^p(\mathbb{R}^n)$ for $1 < p < \infty$. Later on, the above results were improved by many authors under some weaker smoothness conditions on ω, see [1], [7, 8], [11], [14, 15, 16] for instance.

We remark that the Marcinkiewicz integral is essentially a Littlewood-Paley g-function. If let $\phi(x) = \omega(x)|x|^{-n+1}\chi_B(x)$ and $\phi_t(x) = t^{-n} \phi(x/t)$, where B denotes the unit ball of \mathbb{R}^n and χ_B denotes the characteristic function of B, then

$$
\mu_\omega(f)(x) = \left(\int_0^\infty |\phi_t * f(x)|^2 \frac{dt}{t} \right)^{1/2} = g_\phi(f)(x).
$$

In order to study non-smoothness partial differential equations with variable coefficients, mathematicians pay more attention to the singular integral with variable kernels, see [2], [4], [5] and [6] among others. Specially, in 1955 Calderón and Zygmund [4] considered the singular integral with variable kernel defined by

$$
T_\Omega(f)(x) = \text{p.v.} \int_{\mathbb{R}^n} \frac{\Omega(x, x-y)}{|x-y|^n} f(y) dy.
$$

In this paper, we study the Marcinkiewicz integral with variable kernel defined by

$$
\mu_\Omega(f)(x) = \left(\int_0^\infty \left| \int_{|x-y| \leq t} \frac{\Omega(x, x-y)}{|x-y|^{n-1}} f(y) dy \right|^2 \frac{dt}{t^3} \right)^{1/2}.
$$

We point out that μ_Ω can be interpreted as a Hilbert-valued function. In fact, denote the Hilbert space \mathcal{H} by
Since the condition (2) implies (2′), so the \(n \) that for no
proved that if \(\Omega \) under certain Dini condition.

Then we obtain that \(\mu_\Omega (f) (x) = \| h_f (\cdot, x) \|_\mathcal{H} \).

Before stating our theorems, we first introduce some definitions about the
variable kernel \(\Omega (x, z) \). A function \(\Omega (x, z) \) defined on \(\mathbb{R}^n \times \mathbb{R}^n \) is said to
be in \(L^\infty (\mathbb{R}^n) \times L^q (S^{n-1}) \), \(q \geq 1 \), if \(\Omega (x, z) \) satisfies the following three
conditions:

1. \(\Omega (x, \lambda z) = \Omega (x, z) \), for any \(x, z \in \mathbb{R}^n \) and any \(\lambda > 0 \);
2. \(\| \Omega \|_{L^\infty (\mathbb{R}^n) \times L^q (S^{n-1})} = \sup_{r \geq 0, y \in \mathbb{R}^n} \left(\int_{S^{n-1}} |\Omega (rz + y, z')|^q d\sigma (z') \right)^{1/q} < \infty \);
3. \(\int_{S^{n-1}} \Omega (x, z') d\sigma (z') = 0 \) for any \(x \in \mathbb{R}^n \).

In [4], Calderón and Zygmund proved that if \(\Omega \) satisfies (1), (3) and

\[
(2') \quad \sup_{y \in \mathbb{R}^n} \left(\int_{S^{n-1}} |\Omega (y, z')|^q d\sigma (z') \right)^{1/q} < \infty,
\]

then \(T_\Omega \) is bounded on \(L^2 (\mathbb{R}^n) \) provided \(q \geq 2(n-1)/n \). They also found
that for no \(n \) can we replace the exponent \(2(n-1)/n \) by a smaller one.

Since the condition (2) implies (2′), so the \(L^2 (\mathbb{R}^n) \) boundedness of \(T_\Omega \) holds
if \(\Omega \in L^\infty (\mathbb{R}^n) \times L^q (S^{n-1}) \) with \(q \geq 2(n-1)/n \). Recently in [7], the authors
proved that if \(\Omega \in L^\infty (\mathbb{R}^n) \times L^q (S^{n-1}) \) with \(q \geq 2(n-1)/n \), then \(\mu_\Omega \) is
bounded on \(L^2 (\mathbb{R}^n) \); and they also showed the \(H^1 - L^1 \) boundedness of \(\mu_\Omega \)
under certain Dini condition.

For \(0 < \alpha \leq 1 \), a function \(\Omega \in L^\infty (\mathbb{R}^n) \times L^1 (S^{n-1}) \) is called to satisfy
the \(L^{1,\alpha} \)-Dini condition if

\[
(1.1) \quad \int_0^1 \frac{\varpi (\delta)}{\delta^{1+\alpha}} d\delta < \infty,
\]

where

\[
(1.2) \quad \varpi (\delta) = \sup_{r > 0, y \in \mathbb{R}^n \mid |r| \leq \delta} \int_{S^{n-1}} |\Omega (rz + y, O z') - \Omega (rz' + y, z')| d\sigma (z'),
\]

and \(O \) is a rotation in \(\mathbb{R}^n \) with \(|O| = \| O - I \| \), where \(I \) is the identity
operator. For the special case \(\alpha = 0 \), it reduces to the \(L^1 \)-Dini condition.
Our first aim is to show that the Marcinkiewicz integral μ_{Ω} with variable kernel is bounded on Hardy spaces $H^p(\mathbb{R}^n)$ with some $p < 1$.

Theorem 1.1. Let $\Omega(x, z) \in L^\infty(\mathbb{R}^n) \times L^q(S^{n-1})$ with $q > 2(n-1)/n$, and let $\Omega(x, z')$ satisfy the $L^{1,\alpha}$-Dini condition with $0 < \alpha \leq 1$. Then, if $\max\{\frac{2n}{2n+1}, \frac{n}{n+\alpha}\} < p < 1$, there exists an absolute constant C independent of f such that

$$\|\mu_{\Omega}(f)\|_{L^p(\mathbb{R}^n)} \leq C\|f\|_{H^p(\mathbb{R}^n)}.$$

Corollary 1.2. Let $\omega(z) \in L^q(S^{n-1})$ with $q > 2(n-1)/n$, and let $\omega(z')$ satisfy $L^{1,\alpha}$-Dini condition with $0 < \alpha \leq 1$. Then, μ_{ω} is bounded from Hardy space $H^p(\mathbb{R}^n)$ to $L^p(\mathbb{R}^n)$ for $\max\{\frac{2n}{2n+1}, \frac{n}{n+\alpha}\} < p < 1$.

Another aim of the paper is to derive that μ_{Ω} is bounded from weak Hardy space $H^{p,\infty}(\mathbb{R}^n)$ to weak $L^p(\mathbb{R}^n)$ space, $L^{p,\infty}(\mathbb{R}^n)$, for some $p < 1$. Let us first recall the definition of weak Hardy space $H^{p,\infty}(\mathbb{R}^n)$.

Definition 1.3. Let $\varphi \in C_0^\infty$ with $\int \varphi(x)dx \neq 0$. Denote by $f^*_\ast(x) = \sup_{t > 0} |(\varphi_t * f)(x)|$, where $\varphi_t(x) = t^{-n}\varphi(t^{-1}x)$. A distribution f is said to belong to the weak Hardy space $H^{p,\infty}(\mathbb{R}^n)$ if $f^*_\ast(x)$ belongs to the weak $L^p(\mathbb{R}^n)$ space, $L^{p,\infty}(\mathbb{R}^n)$, i.e., there is a constant $C > 0$ such that

$$|\{x \in \mathbb{R}^n : f^*_\ast(x) > \beta\}| \leq \frac{Cp}{\beta^p}, \quad \forall \ \beta > 0.$$

The smallest constant C satisfying the above inequality is called the $H^{p,\infty}$ norm of f, and is denoted by $\|f\|_{H^{p,\infty}}$.

Theorem 1.4. Let $\Omega(x, z) \in L^\infty(\mathbb{R}^n) \times L^q(S^{n-1})$ with $q > 2(n-1)/n$, and let $\Omega(x, z')$ satisfy the $L^{1,\alpha}$-Dini condition with $0 < \alpha \leq 1$. Then, if $\max\{\frac{2n}{2n+1}, \frac{n}{n+\alpha}\} < p < 1$, there exists a constant C independent of f and β such that

$$|\{x : |\mu_{\Omega}(f)(x)| > \beta\}| \leq C \frac{\|f\|^p_{H^{p,\infty}}}{\beta^p}.$$

Corollary 1.5. Let $\omega(z) \in L^q(S^{n-1})$ for $q > 2(n-1)/n$, and let $\omega(z')$ satisfy $L^{1,\alpha}$-Dini condition with $0 < \alpha \leq 1$. Then μ_{ω} is bounded from weak Hardy space $H^{p,\infty}(\mathbb{R}^n)$ to weak space $L^{p,\infty}(\mathbb{R}^n)$ for $\max\{\frac{2n}{2n+1}, \frac{n}{n+\alpha}\} < p < 1$.

Remark 1.6. It’s easy to see that $\text{Lip}_\alpha \subset L^{1,\alpha}$-Dini for any $0 < \alpha \leq 1$. Thus, the conclusions of Corollary 1.2 and 1.5 may be regarded as an improvement and extension of Stein’s results about the Marcinkiewicz integrals with convolution kernels in [12] and [8].
Remark 1.7. It is worthy noting that the $H^1 - L^1$ boundedness of μ_Ω may be regarded as the limit case of Theorem 1.1 by choosing $p = 1$ and letting $\alpha \to 0$. Hence, Theorem 1.3 and Corollary 1.7 in [7] are the special cases of above Theorem 1.1.

Throughout the paper, \mathcal{C} always denotes a positive constant not necessarily the same at each occurrence. We use $a \sim b$ to mean the equivalence of a and b; that is, there exists a positive constant C independent of a, b such that $C^{-1}a \leq b \leq Ca$.

2. Proof of theorem 1.1

In order to show the $H^p - L^p$ boundedness of μ_Ω, we will use the atomic decomposition theory of the real Hardy space $H^p(\mathbb{R}^n)$ for $\frac{n}{n+1} < p \leq 1$, see for instance [13]. A function $a(x)$ is said to be $(p, 2, 0)$ atom if it satisfies the following three conditions:

(i) $\text{supp}(a) \subset B(x_0, r)$, where $B(x_0, r) = \{y \in \mathbb{R}^n : |y - x_0| \leq r\}$ is a ball in \mathbb{R}^n;
(ii) $\|a\|_{L^2} \leq |B(x_0, r)|^{1/2 - 1/p}$;
(iii) $\int_{\mathbb{R}^n} a(x)dx = 0$.

It is well known that every $f \in H^p(\mathbb{R}^n)$, $\frac{n}{n+1} < p \leq 1$, has an atomic decomposition $f = \sum \lambda_k a_k$, which converges in H^p norm and in the sense of distributions; where $\left(\sum |\lambda_k|^{1/p}\right) \approx \|f\|_{H^p}$, and all $a_k(x)$ are $(p, 2, 0)$ atoms.

Start with f in a nice dense class of function, say $f \in H^p(\mathbb{R}^n) \cap C^\infty_0(\mathbb{R}^n)$. If we denote the kernel by $K(x, z) = \frac{\partial^2}{|x-z|^2}$ and set

$$\mu_{\Omega, \epsilon}(f)(x) = \left(\int_0^\infty |F_{\Omega, t, \epsilon}(x)|^2 \frac{dt}{t^3}\right)^{\frac{1}{2}},$$

where

$$F_{\Omega, t, \epsilon}(x) = \int_{|x-y| \leq t} K(x, x-y) f(y) dy.$$

Now following [13] (Page 115), we write the distribution kernel $K = K_0 + K_\infty$, where K_0 has compact support, and thus the distribution $F_{\Omega, t, \epsilon}$ is well defined for every fixed ϵ and t, and

$$F_{\Omega, t, \epsilon}(x) = \sum_k \lambda_k \int_{\epsilon < |x-y| \leq t} K(x, x-y) a_k(y) dy.$$
We claim that, for almost every \(x \in \mathbb{R}^n \), \(\mu_\Omega(f)(x) = \lim_{\varepsilon \to 0} \mu_{\Omega,\varepsilon}(f)(x) \).

To see the claim, we use the cancellation condition of \(\Omega \) and the fact \(\Omega(x,z) \in L^\infty(\mathbb{R}^n) \times L^r(S^{n-1}) \) for any \(1 \leq r < 2(n-1)/n \) to obtain

\[
F_{\Omega,t,\varepsilon}(x) = \int_{|x-y| \leq t} \frac{\Omega(x,x-y)(f(y) - f(x))}{|x-y|^{n-1}} dy
\leq C \int_{|x-y| \leq t} \frac{|\Omega(x,x-y)|}{|x-y|^{n-2}} dy
\leq Ct^2.
\]

On the other hand, Hölder inequality gives

\[
F_{\Omega,t,\varepsilon}(x) \leq C \left(\int_{|x-y| \leq t} \frac{|\Omega(x,x-y)|^r}{|x-y|^{r(n-1)}} dy \right)^{1/r}
\leq Ct^{-(n-1)+r(n/r)},
\]

for any \(1 < r < n/(n-1) \). Therefore

\[
t^{-3}|F_{\Omega,t,\varepsilon}(x)|^2 \leq C(t\chi_{(0,1)}(t) + t^{-1-2n+2n/(r)}\chi_{(1,\infty)}(t))
\]
uniformly on \(\varepsilon \). So by the Lebesgue dominated convergence theorem we get that \(\mu_\Omega(f)(x) = \lim_{\varepsilon \to 0} \mu_{\Omega,\varepsilon}(f)(x) \).

Thus, by similar approximation arguments as in [9] (Theorem 7.3) and in [13] (Page 115), we can obtain

\[
(2.1) \quad \mu_\Omega(f) \leq \sum_k |\lambda_k| \mu_\Omega(a_k).
\]

Therefore, to derive the inequality (1.3) for any \(f \in H^p(\mathbb{R}^n) \) and prove Theorem 1.1, it suffices to show that for any \((p,2,0) \) atom \(a(x) \), there exists a constant \(C > 0 \) independent of \(a(x) \) such that

\[
(2.2) \quad \| \mu_\Omega(a) \|_{L^p} \leq C.
\]

Without loss of generality, we let the support of the atom \(a(x) \) is \(B = B(0,r) \), and denote \(B^* = B(0,8r) \). Using the \(L^2 \) boundedness of \(\mu_\Omega \), we have

\[
(2.3) \quad \int_{B^*} |\mu_\Omega(a)(x)|^p dx \leq |B^*|^{1-p/2} \| \mu_\Omega(a) \|_{L^2}^p
\leq C|B^*|^{1-p/2} \| a \|_{L^2}^p \leq C.
\]
We note that \((u + v)^s \leq u^s + v^s\) for any \(u, v \geq 0\) and \(0 \leq s \leq 1\). It is left to give the estimate for the integral

\[
I = \int_{(B^*)^c} |\mu_{\Omega}(a)(x)|^p dx
\]

\[
= \int_{(B^*)^c} \left(\int_0^\infty \int_{|x-y| \leq t} \frac{\Omega(x, x-y)}{|x-y|^{n-1}} a(y) dy \frac{1}{t^3} dt \right)^{p/2} dx
\]

\[
\leq \int_{(B^*)^c} \left(\int_0^{\|x\|+2r} \int_{|x-y| \leq t} \frac{\Omega(x, x-y)}{|x-y|^{n-1}} a(y) dy \frac{1}{t^3} dt \right)^{p/2} dx
\]

\[
+ \int_{(B^*)^c} \left(\int_{|x|+2r}^\infty \int_{|x-y| \leq t} \frac{\Omega(x, x-y)}{|x-y|^{n-1}} a(y) dy \frac{1}{t^3} dt \right)^{p/2} dx
\]

\[
:= I_1 + I_2.
\]

We note that, for \(y \in B\) and \(x \in (B^*)^c\), \(|x-y| \sim |x| \sim |x|+2r\). Thus by the mean value theorem we have

\[
\left| \frac{1}{|x-y|^2} - \frac{1}{(|x|+2r)^2} \right| \leq C \frac{r}{|x-y|^3}.
\]

Applying this inequality and the Minkowski’s inequality, we obtain that

\[
I_1 = \int_{(B^*)^c} \left(\int_0^{\|x\|+2r} \int_{|x-y| \leq t} \frac{\Omega(x, x-y)}{|x-y|^{n-1}} a(y) dy \frac{1}{t^3} dt \right)^{p/2} dx
\]

\[
\leq C \int_{(B^*)^c} \left(\int_B \left(\int_{|x-y|}^{\|x\|+2r} \frac{\Omega(x, x-y)}{|x-y|^{2(n-1)}} a(y) y^2 \frac{1}{t^3} dt \right)^{1/2} dy \right)^p dx
\]

\[
= C \int_{(B^*)^c} \left(\int_B \frac{\Omega(x, x-y)}{|x-y|^{n-1}} a(y) \left| \frac{1}{|x-y|^2} - \frac{1}{(|x|+2r)^2} \right|^{1/2} dy \right)^p dx
\]

\[
\leq C r^{\frac{p}{2}} \int_{(B^*)^c} \left(\int_B \frac{\Omega(x, x-y)}{|x-y|^{n+1}} a(y) dy \right)^p dx.
\]

Since \(1 > p > \frac{n}{n+\frac{1}{2}}\), so we can choose \(\varepsilon\) satisfying \(0 < \varepsilon < n + \frac{1}{2} - \frac{n}{p}\). Using Hölder inequality for integrals, we have

\[
I_1 \leq C r^{\frac{p}{2}} \int_{(B^*)^c} \left(\int_B \frac{\Omega(x, x-y)}{|x-y|^{n+\varepsilon}} \cdot |x-y|^{-\frac{\varepsilon}{2}} a(y) dy \right)^p dx
\]
\[
= C r^{\frac{p}{2}} \int_{(B^*)^c} \left(\int_B \frac{|\Omega(x, x - y)|}{|x - y|^{n+\varepsilon}} \cdot |a(y)|dy \right)^p \cdot |x|^{(\varepsilon - \frac{1}{2})p} dx \\
\leq C r^{\frac{p}{2}} \left(\int_{(B^*)^c} \int_B \frac{|\Omega(x, x - y)|}{|x - y|^{n+\varepsilon}} \cdot |a(y)|dy dx \right)^p \left(\int_{(B^*)^c} |x|^{(\varepsilon - \frac{1}{2})p} dx \right)^{1-p} \\
\leq C r^{\frac{p}{2}} \left(\int_B \int_{(B^*)^c} \frac{|\Omega(x, x - y)|}{|x - y|^{n+\varepsilon}} dx \cdot |a(y)|dy \right)^p \left(\int_{8r}^\infty t^{(\varepsilon - \frac{1}{2})p} \cdot t^{-n-1} dt \right)^{1-p} \\
\leq C r^{\frac{p}{2}} \|\Omega\|^p_{L^\infty \times L^1} \left(\int_B |a(y)|dy \int_{8r}^\infty t^{-n-\varepsilon t^{-1}n-1} dt \right)^p . \|\epsilon^{(\varepsilon - \frac{1}{2})p} + (1-p) \|a\|^p_{L^2} \leq C.
\]
where we have used that \(|x - y| \sim |x|\).

As to the estimate of \(I_2\). Noting that if \(t \geq |x| + 2r\), then \(B \subset \{ y : |x - y| < t \}\). So by the cancellation condition (iii) of \(a\), we have

\[
\int_{|x-y| < t} a(y)dy = 0.
\]

From this and Minkowski's inequality for integrals, we obtain

\[
I_2 = \int_{(B^*)^c} \left(\int_{|x|+2r}^\infty \left(\int_{|x-y| \leq t} \left(\frac{\Omega(x, x - y)}{|x - y|^{n-1}} - \frac{\Omega(x, x)}{|x - y|^{n-1}} \right) \cdot a(y)\right)^2 |y| \frac{1}{t^3} dt \right)^{p/2} dx \\
\leq I_{21} + I_{22},
\]
where

\[
I_{21} = \int_{(B^*)^c} \left(\int_{|x|+2r}^\infty \left(\int_{|x-y| \leq t} \left| \frac{\Omega(x, x - y) - \Omega(x, x)}{|x - y|^{n-1}} \right| a(y)\right)^2 \frac{1}{t^3} dt \right)^{p/2} dx,
\]
and

\[
I_{22} = \int_{(B^*)^c} \left(\int_{|x|+2r}^\infty \left(\int_{|x-y| \leq t} \left| \frac{\Omega(x, x - y) - \Omega(x, x)}{|x - y|^{n-1}} \right| a(y)\right)^2 \frac{1}{t^3} dt \right)^{p/2} dx.
\]
Applying Minkowski inequality for integrals, Hölder inequality for integrals and Fubini theorem successively, we can obtain

\[
I_{21} \leq \int_{(B^*)^c} \left| \int_B \frac{|\Omega(x, x - y) - \Omega(x, x)|}{|x - y|^n} |a(y)| dy \right|^p dx
\]

\[
\leq \sum_{j=1}^{+\infty} \int_{2^j r \leq |x| < 2^{j+1} r} \left[\int_B \frac{|\Omega(x, x - y) - \Omega(x, x)|}{|x - y|^n} |a(y)| dy \right]^p dx
\]

\[
\leq \sum_{j=1}^{+\infty} \left(\int_{2^j r \leq |x| < 2^{j+1} r} \left[\int_B \frac{|\Omega(x, x - y) - \Omega(x, x)|}{|x - y|^n} |a(y)| dy dx \right]^p (2^j r)^{(1-p)} \right)
\]

\[
= \sum_{j=1}^{+\infty} \left(\int_B \left(\int_{2^j r \leq |x| < 2^{j+1} r} \frac{|\Omega(x, x - y) - \Omega(x, x)|}{|x - y|^n} dx \right)^p |a(y)| dy \right) (2^j r)^{(1-p)}
\]

To estimate the inner integral above, we note \(|y| < r\) and \(|x| > 2r\), which implies,

\[
\left| \frac{x - y}{|x - y|} - \frac{x}{|x|} \right| = \left| \frac{(|x| - |x - y|) x - |x| y}{|x||x - y|} \right|
\]

\[
\leq \frac{|x| - |x - y| + |y|}{|x - y|} \leq \frac{4|y|}{|x|}
\]

And thus

\[
\int_{\mathbb{S}^{n-1}} |\Omega(x, x - y) - \Omega(x, x)| d\sigma(x')
\]

\[
= \int_{\mathbb{S}^{n-1}} \Omega \left(x, \frac{x - y}{|x - y|} \right) - \Omega \left(x, \frac{x}{|x|} \right) d\sigma(x') \leq \varpi \left(\frac{4|y|}{|x|} \right).
\]

This and a direct computation give

\[
\int_{2^j r \leq |x| < 2^{j+1} r} \frac{|\Omega(x, x - y) - \Omega(x, x)|}{|x - y|^n} dx
\]

\[
\leq C \int_{2^j r}^{2^{j+1} r} t^{-1} \varpi \left(\frac{4|y|}{t} \right) dt
\]

\[
= C \int_{\frac{4|y|}{2^j r}}^{\frac{4|y|}{2^{j+1} r}} \varpi(\delta) \frac{\delta d\delta}{\delta}
\]

Now using the condition \(\int_0^1 \frac{\varpi(\delta)}{\delta^p} d\delta < \infty\), and \(1 > p > \frac{n}{n+\alpha}\), we can get
\[I_{21} \leq C \sum_{j=3}^{+\infty} \left(\int_B |a(y)| \left(\int_{\frac{|y|}{2^{j+3}r}}^{\frac{|y|}{2^{j-1}r}} \frac{\omega(\delta)}{\delta^{1+\alpha}} \delta^\alpha d\delta dy \right)^p \right) (2^j r)^{n(1-p)} \]

\[\leq C \sum_{j=3}^{+\infty} (2^j r)^{n(1-p)} (2^j)^{-\rho_\alpha} \left(\int_B |a(y)| dy \right)^p \]

\[\leq C r^{n(1-p)} \left(\int_B |a(y)| dy \right)^p \leq C. \]

At last, we give the estimate of \(I_{22} \). Obviously, mean value theorem gives

\[\frac{1}{|x-y|^{n-1}} - \frac{1}{|x|^{n-1}} \leq C \frac{|y|}{|x|^n}. \]

Applying this inequality, Minkowski's inequality for integrals, and the fact \(\frac{n}{n+1} < p < 1 \), we deduce that

\[I_{22} \leq \int_{|x|>8r} \left(\int_{|x|+2r}^{+\infty} \left(\int_{|x-y| \leq t} \frac{|\Omega(x,x)||y|}{|x|^{n}} |a(y)| dy \right)^2 \frac{dt}{t^3} \right)^{p/2} dx \]

\[\leq C \int_{|x|>8r} \left(\int_B \frac{|\Omega(x,x)||y|}{|x|^{n+1}} |a(y)| dy \right)^p dx \]

\[\leq C r^p \left(\int_{|x|>8r} |\Omega(x,x)|^p |x|^{(-n-1)p} dx \right) \left(\int_B |a(y)| dy \right)^p \]

\[\leq C r^p \left(\int_{|x|>8r} |\Omega(x,x)|^p |x|^{(-n-1)p} dx \right) \left(\int_B |a(y)| dy \right)^p \]

\[\leq C. \]

Combining (2.3), and the estimates of \(I_1, I_{21} \) and \(I_{22} \), we get (2.2) and then complete the proof of Theorem 1.1.

3. Proof of theorem 1.4

In order to prove theorem 1.4, we need the following decomposition theorem for distributions in \(H^{p,\infty}(\mathbb{R}^n) \).

Lemma 3.1. [10] Given a distribution \(f \in H^{p,\infty}(\mathbb{R}^n) \), there exits a bounded function sequence \(\{f_k\}_{k=-\infty}^{+\infty} \) which has the following properties:

(a) \(f = \sum_k f_k \) in the sense of distributions;
(b) Each \(f_k \) may be further decomposed in \(L^p \) as \(f_k = \sum_i h_i^k \), where \(\{h_i^k\} \) satisfies the following three conditions:

(i) \(\text{supp}(h_i^k) \subset B_i^k := B(x_i^k, r_i^k) \), where \(B(x, r) \) denotes the ball in \(\mathbb{R}^n \) with the center at \(x \) and radius \(r \). Moreover, \(\sum_i |B_i^k| \leq C_1 2^{-kp} \), where \(C_1 \sim \|f\|_{H^p, \infty} \) and \(\sum_i \chi_{B_i^k}(x) \leq C \);

(ii) \(\|h_i^k\|_p \leq C2^k \);

(iii) \(\int h_i^k(x)dx = 0 \).

We now give the proof of Theorem 1.4. For any \(f \in H^{p, \infty}(\mathbb{R}^n) \) and \(\beta > 0 \), we choose \(k_0 \) satisfying \(2^{k_0} \leq \beta < 2^{k_0+1} \). Applying Lemma 3.1, we can write

\[
f = \sum_{k=-\infty}^{k_0} f_k + \sum_{k=k_0+1}^{+\infty} f_k = F_1 + F_2, \quad f_k = \sum_i h_i^k,
\]

where \(h_i^k \) satisfies the properties (i), (ii) and (iii) of Lemma 3.1.

Let \(A_k = \text{supp}(f_k) \), then \(A_k = \bigcup_i B_i^k \) and \(|A_k| \leq \sum_i |B_i^k| \leq C2^{-kp}\|f\|_{H^p, \infty} \), also \(\|f_k\|_\infty \leq C2^k \), so we can get

\[
\|F_1\|_2 \leq \sum_{k=-\infty}^{k_0} \|f_k\|_2 \leq C \sum_{k=-\infty}^{k_0} 2^k |A_k|^{\frac{2}{p}} \leq C \sum_{k=-\infty}^{k_0} 2^{k(1-\frac{2}{p})}\|f\|_{H^p, \infty}^\frac{2}{p} \leq C\|f\|_{H^p, \infty}^{\frac{2}{p}} \beta^{1-\frac{2}{p}}.
\]

By the \(L^2 \)-boundedness of \(\mu_{\Omega} \), it follows

\[
\text{(3.1)} \quad \{|x: \mu_{\Omega}(F_1)(x) > \beta| \leq \|\mu_{\Omega}(F_1)\| \leq C \frac{\|F_1\|_2^2}{\beta^2} \leq C \|f\|_{H^p, \infty}^p \beta^{-p}.
\]

On the other hand, we denote \(B_i^k = B(x_i^k, 2R_i^k) \) and \(R_i^k = \left(\frac{4}{3} \right)^{k-k_0} r_i^k \), and let \(B_{k_0} = \bigcup_{k=k_0+1}^{+\infty} \bigcup_i B_i^k \), we can get

\[
|B_{k_0}| \leq C \sum_{k=k_0+1}^{+\infty} \sum_i |B_i^k| \leq C \sum_{k=k_0+1}^{+\infty} \sum_i 2^n (\frac{4}{3})^{k-k_0} |B_i^k|
\]

\[
\text{(3.2)} \quad \leq C \sum_{k=k_0+1}^{+\infty} \sum_i (\frac{4}{3})^{k-k_0} |B_i^k| \leq C \sum_{k=k_0+1}^{+\infty} (\frac{4}{3})^{k-k_0} 2^{-kp} \|f\|_{H^p, \infty} \leq C \frac{\|f\|_{H^p, \infty}^p}{\beta^p},
\]

X. Tao, X. Yu, S. Zhang 11
Marcinkiewicz integral with variable kernels

where the last inequality holds owing to \(p > \frac{n}{n+\frac{3}{2}} \). Therefore, in order to prove Theorem 1.4, it suffices to show

\[
(3.3) \quad |\{ x \in (B_{y_0})^c : \mu_\Omega(F_2)(x) > \beta \}| \leq C \frac{\| f \|_{\mathcal{H}^{p,\infty}}}{\beta p}.
\]

Firstly, a similar argument as the one used in (2.1) and Minkowski’s inequality for series give

\[
(3.4) \quad \int_{(B_{y_0})^c} |\mu_\Omega(F_2)(x)|^p dx \leq \int_{(B_{y_0})^c} \sum_{k=k_0+1}^{+\infty} \sum_{i} |\mu_\Omega(h^k_i)(x)|^p dx \\
\leq C \sum_{k=k_0+1}^{+\infty} \sum_{i} (J_1 + J_2),
\]

where

\[
J_1 = \int_{(B_{y_0})^c} \left| \int_{|x-y| \leq t} \frac{\Omega(x, x-y)}{|x-y|^{n-1}} h^k_i(y) dy \right|^2 \frac{dt}{t^3} dx,
\]

and

\[
J_2 = \int_{(B_{y_0})^c} \left| \int_{|x-y| \leq t} \frac{\Omega(x, x-y)}{|x-y|^{n-1}} h^k_i(y) dy \right|^2 \frac{dt}{t^3} dx.
\]

It is obvious that when \(y \in B^k_i, x \in B^c_{y_0} \), we will have \(|x-x^k_i| \sim |x-y| \sim |x-x^k_i| + 2r_i^k \) and

\[
\left| \frac{1}{(|x-x^k_i| + 2r_i^k)^2} - \frac{1}{|x-y|^2} \right| \leq C \frac{r_i^k}{|x-y|^3}.
\]

Because of \(\frac{n}{n+\frac{3}{2}} < p < 1 \), one can choose proper \(\varepsilon \) such that \(0 < \varepsilon < n + \frac{1}{2} - \frac{3}{p} \). Combining the above inequality and Minkowski’s inequality for integrals, the size condition of \(h^k_i \) and Hölder inequality for integrals, we deduce that

\[
J_1 \leq \int_{(B_{y_0})^c} \left| \int_{B^k_i} \frac{|\Omega(x, x-y)|}{|x-y|^{n-1}} \left| h^k_i(y) \right| \left| \frac{(r_i^k)^{\frac{3}{2}}}{|x-y|^\frac{3}{2}} \right| dy \right|^p dx \\
\leq C 2^{kp} (r_i^k)^{\frac{3}{2}} \int_{(B_{y_0})^c} \left| \int_{B^k_i} \frac{|\Omega(x, x-y)|}{|x-y|^{n+\varepsilon}} \left| x-x^k_i \right|^{-\frac{3}{2} - \frac{3}{2}} dy \right|^p dx
\]
\[= C 2^{kp} (r_i^k)^\frac{2}{3} \int_{(B_k^c)^c} \left| \int_{B_k^c} \left| \frac{\Omega(x, x - y)}{|x - y|} \right| dy \right|^p \left| x - x_i^k \right|^{-\frac{1}{2}} p dx \]
\[\leq C 2^{kp} (r_i^k)^\frac{2}{3} \left(\int_{(B_k^c)^c} \left| \frac{\Omega(x, x - y)}{|x - y|^{n + \epsilon}} \right| dy dx \right)^{\frac{p}{2}} \left(\int_{(B_k^c)^c} \left| x - x_i^k \right|^{\frac{2}{p} + 1 + \frac{1}{p}} dx \right)^{1 - p} \]
\[= C 2^{kp} (r_i^k)^\frac{2}{3} \left(\int_{B_k^c} \int_{(B_k^c)^c} \left| \frac{\Omega(x, x - y)}{|x - y|^{n + \epsilon}} \right| dy dx \right)^{\frac{p}{2}} \left(\int_{2R_i^k}^{+\infty} r^{\frac{(1 - p) p + n - 1}{p}} dr \right)^{1 - p} \]
\[\leq C 2^{kp} (r_i^k)^\frac{2}{3} \left| B_i^k \right|^p \Omega \left(\int_{2R_i^k}^{+\infty} r^{\frac{1 - \epsilon - 1}{p}} dr \right)^{\frac{p}{2}} \left(2 R_i^k \right)^{n(1 - p) - \frac{2}{3}} \leq C 2^{kp} \left| B_i^k \right|^p \left(\frac{3}{4} \right)^{(k - k_0)(n p + \frac{2}{3} - n)} \]

It follows

\[\sum_{k = k_0 + 1}^{+\infty} \sum_{t} J_1 \leq C \sum_{k = k_0 + 1}^{+\infty} \left(\frac{3}{4} \right)^{(k - k_0)(n p + \frac{2}{3} - n)} \| f \|^p_{L^{\infty}} \leq C \| f \|^p_{H^{p, \infty}} \]

Next we estimate \(J_2 \). One notes that \(B_k^c \subset \{ y; |x - y| < t \} \) since \(x \in B_k^c \) and \(t > |x - x_i^k| + 2 r_i^k \). By the cancellation of \(h_i^k \) and Minkowski’s inequality for integrals, we can get

\[J_2 = \int_{(B_k^c)^c} \int_{|x - y| \leq t} \left| \frac{\Omega(x, x - y)}{|x - y|^{n - 1}} h_i^k(y) \right| dy \left| \frac{dt}{t^3} \right| dx \]
\[= \int_{(B_k^c)^c} \int_{|x - y| \leq t} \left(\frac{\Omega(x, x - y)}{|x - y|^{n - 1}} - \frac{\Omega(x, x - x_i^k)}{|x - x_i^k|^{n - 1}} \right) h_i^k(y) dy \left| \frac{dt}{t^3} \right| dx \]
\[\leq C 2^{kp} \int_{(B_k^c)^c} \left| \frac{1}{|x - x_i^k|} \right| \int_{B_k^c} \left| \frac{\Omega(x, x - y)}{|x - y|^{n - 1}} - \frac{\Omega(x, x - x_i^k)}{|x - x_i^k|^{n - 1}} \right| dy \left| \frac{dt}{t^3} \right| dx \]
\[+ C 2^{kp} \int_{(B_k^c)^c} \left| \frac{1}{|x - x_i^k|} \right| \int_{B_k^c} \left| \frac{\Omega(x, x - y)}{|x - y|^{n - 1}} \right| dy \left| \frac{dt}{t^3} \right| dx \]
\[= C 2^{kp} (J_{2, 1} + J_{2, 2}). \]
Decompose $J_{2,1}$ as following

\[
J_{2,1} = \sum_{j=1}^{+\infty} \int_{2^{-j} R_i^k \leq |x-x_i^k| \leq 2^{j+1} R_i^k} \left| \int_{B_i^k} \frac{\Omega(x, x-y)}{|x-x_i^k|^n} - \frac{\Omega(x, x-x_i^k)}{|x-x_i^k|^n} \right| dx
\]

\[
\leq \sum_{j=1}^{+\infty} (2^j R_i^k)^{n(1-p)} \left(\int_{2^{-j} R_i^k \leq |x-x_i^k| \leq 2^{j+1} R_i^k} \left| \int_{B_i^k} \frac{\Omega(x, x-y)}{|x-x_i^k|^n} \right| dx \right)^p
\]

Observe that $|y-x_i^k| < r_i^k$ and $|x-x_i^k| > R_i^k \geq 2r_i^k$. Using a similar argument as in inequalities (2.4) and (2.5), we can deduce that

\[
\left| \frac{x-y}{|x-y|} - \frac{x-x_i^k}{|x-x_i^k|} \right| \leq 4 \left| \frac{y-x_i^k}{|x-x_i^k|} \right|
\]

and then

\[
\int_{2^{-j} R_i^k \leq |x-x_i^k| \leq 2^{j+1} R_i^k} \left| \frac{\Omega(x, x-y)}{|x-x_i^k|^n} - \frac{\Omega(x, x-x_i^k)}{|x-x_i^k|^n} \right| dx
\]

\[
= \int_{2^{j} R_i^k}^{2^{j+1} R_i^k} \int_{2^{-j} R_i^k \leq |x-x_i^k| \leq 2^{j+1} R_i^k} \left| \Omega(rx' + x_i^k, \frac{rx' + x_i^k - y}{|rx' + x_i^k - y|}) - \Omega(rx', x_i^k) \right| d\sigma(x') r^{-1} dr
\]

\[
\leq C \int_{2^{j} R_i^k}^{2^{j+1} R_i^k} \varpi \left(\frac{|y-x_i^k|}{r} \right)^{-1} r^{-1} dr
\]

\[
= C \int_{2^{-j} R_i^k}^{2^{j+1} R_i^k} \varpi \left(\frac{|y-x_i^k|}{\delta} \right)^{-1} \varpi(\delta) \frac{|y-x_i^k|}{\delta^2} d\delta
\]

\[
= C \int_{2^{-j} R_i^k}^{2^{j+1} R_i^k} \varpi(\delta) \frac{|y-x_i^k|}{\delta^{1+\alpha}} d\delta \leq C \left(\frac{r_i^k}{2^j R_i^k} \right)^{\alpha}.
\]

This follows

\[
J_{2,1} \leq C \sum_{j=1}^{+\infty} (2^j R_i^k)^{n(1-p)} \left(\frac{x_i^k}{2^j R_i^k} \right)^{\alpha p} |B_i^k|^p
\]

\[
\leq C |B_i^k| \left(\frac{3}{4} \right)^{k \cdot \frac{\alpha}{np} (np-n+\alpha)} \cdot \sum_{j=1}^{+\infty} 2^{j(n-np-\alpha p)} \leq C |B_i^k| \left(\frac{3}{4} \right)^{k \cdot \frac{\alpha}{np} (np-n+\alpha)}.
\]
To deal with $J_{2,2}$, we use the mean value theorem, Hölder inequality for integrals, and the condition $\frac{n}{n+\frac{2}{p}} < p < 1$ to give

$$J_{2,2} = \int_{(B_{0})^c} \left(\frac{1}{|x-x_i^k|} \int_{B_{i}^k} \frac{\Omega(x, x-y) - \Omega(x, x-y)}{|x-y|^{n-1}} dy \right)^p dx$$

$$\leq C \int_{(B_{0})^c} \left(\frac{1}{|x-x_i^k|} \int_{B_{i}^k} \frac{\Omega(x, x-y)}{|x-x_i^k|^{n+\frac{2}{p}}} dy \right)^p dx$$

$$= C(r_i^k)^p \int_{(B_{0})^c} |x-x_i^k|^{-\frac{2}{p}} \left(\int_{B_{i}^k} \frac{\Omega(x, x-y)}{|x-x_i^k|^{n+\frac{2}{p}}} dy \right)^p dx$$

$$\leq (r_i^k)^p \left(\int_{(B_{0})^c} \int_{B_{i}^k} |\Omega(x, x-y)| dx \right)^p \left(\int_{(B_{0})^c} |x-x_i^k|^{-\frac{2}{p}+n(1-p)} dx \right)$$

$$\leq C(r_i^k)^p |B_{i}^k|^p \left(\frac{4}{3} \right)^{-\frac{k}{n}} r_i^k \frac{k}{n} - \frac{2}{n} + n(1-p) = C |B_i^k| \left(\frac{3}{4} \right)^{\frac{k}{n}}.$$

Combining the estimates of $J_{2,1}$ and $J_{2,2}$, we obtain that

$$\sum_{k=k_0+1}^{+\infty} \sum_i J_2 \leq C \sum_{k=k_0+1}^{+\infty} \sum_i 2^{kp} (J_{2,1} + J_{2,2})$$

$$\leq C \left(\sum_{k=k_0+1}^{+\infty} \left(\left(\frac{3}{4} \right)^{\frac{k}{n}} \right)^{\frac{k}{n}} \right) \|f\|_{L^p}^p$$

$$\leq C \|f\|_{L^p}^p.$$

Obviously, the inequalities (3.5), (3.6) and (3.4) yield the inequality (3.3) and the result follows.

\[\square\]

References

Department of Mathematics
Zhejiang University of Science & Technology
Hangzhou, Zhejiang province, 310023
P. R. China
(E-mail: xxtau@163.com)
(E-mail: yx2000s@sinra.com)
(E-mail: syzh201@163.com)

(Received: July 2007)
Submit your manuscripts at http://www.hindawi.com