Generalized composition operators from Bloch type spaces to Q_K type spaces

Fang Zhang and Yongmin Liu

(Communicated by Miroslav Englis)

2000 Mathematics Subject Classification. 47B38, 30D45, 30D50.

Keywords and phrases. Generalized composition operator, Bloch type space, Q_K type space, $K-$Carleson measure.

Abstract. This paper characterizes the boundedness and compactness of the generalized composition operator $(C^g_\varphi f)(z) = \int_0^z f'(\varphi(\xi))g(\xi)d\xi$ from Bloch type spaces to Q_K type spaces.

1. Introduction

Let φ be an analytic self-map of the unit disk D. For $g \in H(D)$, the class of all analytic functions on D, we define a linear operator as follows

$$(C^g_\varphi f)(z) = \int_0^z f'(\varphi(\xi))g(\xi)d\xi, \quad f \in H(D).$$

The operator C^g_φ is called the generalized composition operator which is introduced in [5] for the first time. When $g = \varphi'$, we see that this operator is essentially composition operator C_φ which is defined by $C_\varphi f = f \circ \varphi$. Therefore, C^g_φ is a generalization of the composition operator C_φ. One of the critical problems on composition operators is to relate function theoretic properties of φ to operator theoretic properties of the restriction of C_φ to various Banach spaces of analytic functions. The composition
operators on B^α, Q_p, $F(p,q,s)$ and Q_k have been studied by some authors (see, for example, [3,6,7,10,12] and references therein). The purpose of this paper is to study the boundedness and compactness of the generalized composition operators from Bloch type spaces to Q_k type spaces by the K–Carleson measure, which can be viewed as a development of the study on spaces Q_k and $F(p,q,s)$. The corresponding problems for Q_k type spaces were studied in [2] and [4]. For $a \in D$, the Green’s function with logarithmic singularity at a is denoted by $g(z,a) = \log \frac{1}{|\varphi_a(z)|}$, where $\varphi_a(z) = \frac{a - z}{1 - az}$.

Let $K : [0, \infty) \to [0, \infty)$ be a right-continuous function. For $0 < p < \infty$, $-2 < q < \infty$, we say $f \in Q_k(p,q)$ provided

$$\|f\|_{p,K,p,q} = \sup_{a \in D} \int_D |f'(z)|^p (1 - |z|^2)^q K(g(z,a)) dA(z) < \infty,$$

and $f \in Q_{K,0}(p,q)$ provided

$$\lim_{|a| \to 1} \int_D |f'(z)|^p (1 - |z|^2)^q K(g(z,a)) dA(z) = 0,$$

where dA means the normalized Lebesgue area measure on D such that $A(D) = 1$. $Q_{K,0}(p,q)$ is the subspace of $Q_k(p,q)$, and $Q_k(p,q)$ is a Banach space under the norm $\|f\|_{Q_k(p,q)} = |f(0)| + \|f\|_{K,p,q}$. Throughout the paper, we always assume that K satisfies the following conditions:

(a) K is nondecreasing;
(b) K is two times differentiable on $(0, 1)$;
(c) $\int_0^{1/e} K(\log(1/r)) r dr < \infty$;
(d) $K(t) = K(1) > 0$, $t \geq 1$;
(e) $K(2t) \approx K(t)$, $t \geq 0$.

Also, we assume that $\int_0^1 (1 - r^2)^q K(\log \frac{1}{r}) r dr < \infty$. Otherwise, $Q_k(p,q)$ contains constant functions only (see [11]). In order to obtain the main results in this paper, we further assume that $\int_0^1 \varphi_k(s) \frac{ds}{s} < \infty$, where

$$\varphi_k(s) = \sup_{0 < t \leq 1} \frac{K(st)}{K(t)}, \ 0 < s \leq \infty.$$

If $p = 2, q = 0$, we have that $Q_K(p,q) = Q_k$. If $K(t) = t^s$, then $Q_k(p,q) = F(p,q,s)$. We know from [11] that $Q_k(p,q) \subset B^{\frac{2+q}{p-q}}$. For $0 < \alpha < \infty$, a function $f \in H(D)$ is said to belong to the Bloch type.
space B^α with the norm
\[\|f\|_\alpha = \sup_{z \in D} |f'(z)|(1 - |z|^2)^\alpha. \]

Let B^α_0 denote the subspace of B^α consisting of those $f \in B^\alpha$ such that
\[\lim_{|z| \to 1} |f'(z)|(1 - |z|^2)^\alpha = 0. \]

B^α is also a Banach space under the norm $\|f\|_{B^{\alpha}} = |f(0)| + \|f\|_\alpha$.

For a subarc $I \subset \partial D$, the boundary of D, let
\[S(I) = \{ r\xi \in D : 1 - |I| < r < 1, \xi \in I \}, \]
where $|I|$ denotes the arc length of $I \subset \partial D$. If $|I| \geq 1$ then we set $S(I) = D$. A positive measure μ on D is said to be a $K-$Carleson measure if
\[\sup_{I \subset \partial D} \int_{S(I)} K\left(1 - \frac{|z|}{|I|}\right)d\mu(z) < \infty, \]

If
\[\lim_{|I| \to 0} \int_{S(I)} K\left(1 - \frac{|z|}{|I|}\right)d\mu(z) = 0, \]
then we say μ is a vanishing $K-$Carleson measure. Clearly, if $K(t) = t^p, 0 < p < \infty$, then μ is a $K-$Carleson measure if and only if $(1 - |z|^2)^p d\mu(z)$ is a $p-$Carleson measure. Note that $p = 1$ give the classical Carleson measure.

In this paper, two quantities A_1 and A_2 are said to be equivalent if there exist two finite positive constants C_1 and C_2 such that $C_2 A_2 \leq A_1 \leq C_1 A_2$, written as $A_1 \approx A_2$. Throughout this paper, C always denote positive constants and may be different at different occurrences.

\section{Preliminaries and lemmas}

\textbf{Lemma 2.1.} [7] Let $\alpha > 0$, there are two functions $f_1, f_2 \in B^\alpha$ such that
\[|f'_1(z)| + |f'_2(z)| \geq \frac{1}{(1 - |z|^2)^\alpha} \]
for all $z \in D$.

\textbf{Lemma 2.2.} A positive measure μ on D is a $K-$Carleson measure if and only if
\[\sup_{a \in D} \int_D K(1 - |\varphi_a(z)|^2)d\mu(z) < \infty, \]
and a positive measure μ on D is a vanishing K–Carleson measure if and only if
\[
\lim_{|a|\to 1} \int_D K(1 - |\varphi_a(z)|^2) d\mu(z) = 0.
\]

Proof. It can be obtained from the definitions of K–Carleson measure, compact K–Carleson measure and Theorem 2.1 in [9]. □

Lemma 2.3. Let $0 < p < \infty$, $-2 < q < \infty$. Then
\[
\|f\|_{K,p,q}^p \approx \sup_{a \in D} \int_D |f'(z)|^p (1 - |z|^2)^q K(1 - |\varphi_a(z)|^2) dA(z),
\]
and $f \in Q_{K,0}(p,q)$ if and only if
\[
\lim_{|a|\to 1} \int_D |f'(z)|^p (1 - |z|^2)^q K(1 - |\varphi_a(z)|^2) dA(z) = 0.
\]

Proof. It can be obtained from the proof of Theorem 2 in [11]. □

Lemma 2.4. Let $0 < p < \infty$, $-2 < q < \infty$. Then a closed set K in $Q_{K,0}(p,q)$ is compact if and only if it is bounded and satisfies
\[
\lim \sup_{|a|\to 1} \int_{f \in K} |f'(z)|^p (1 - |z|^2)^q K(1 - |\varphi_a(z)|^2) dA(z) = 0.
\]

Proof. It can be proved similar to Lemma 1 in [8]. □

Lemma 2.5. [5] Let $0 < \alpha < \infty$, $g \in H(D)$ and φ be an analytic self-map of D. Suppose that X is a Banach space. Then $C_\varphi^g : B_0^\alpha \to X$ is compact if and only if $C_\varphi^g : B_0^\alpha \to X$ is weakly compact.

Lemma 2.6. Let $\alpha > 0$, $0 < p < \infty$, $-2 < q < \infty$, $g \in H(D)$ and φ be an analytic self-map of D. Then the operator $C_\varphi^g : B^\alpha \to Q_K(p,q)$ is compact if and only if for any bounded sequence $\{f_n\}$ in B^α which converges to zero uniformly on compact subsets of D as $n \to \infty$, we have $\|C_\varphi^g f_n\|_{Q_K(p,q)} \to 0$ as $n \to \infty$.

Proof. It can be proved similar to Proposition 3.11 in [1]. □

Lemma 2.7. Let $\alpha > 0$, $0 < p < \infty$, $-2 < q < \infty$, $g \in H(D)$ and φ be an analytic self-map of D. Suppose that $C_\varphi^g : B^\alpha \to Q_K(p,q)$ is compact, then for every $a \in D$,
\[
\lim_{r \to 1} \int_{|z| > r} |g(z)|^p (1 - |z|^2)^q K(g(z,a)) dA(z) = 0.
\]
Let $f_n(z) = n^{a-1}z^n$, we can check that $\limsup_{n \to \infty} |f_n'(z)| (1 - |z|^2)^\alpha = (2\alpha)\alpha e^{-\alpha}$, and thus $\{f_n\}$ is norm bounded in B^α and converges to zero uniformly on compact subsets of D. In view of Lemma 2.6 it follows that $\|C^\alpha_{f_n}\|_{K(p,q)} \to 0$, as $n \to \infty$. Therefore, for given $\varepsilon > 0$ and each $a \in D$, there is an $N > 1$ such that if $n \geq N$, then
\[
\int_D |f_n'(\varphi(z))|^p |g(z)|^p (1 - |z|^2)^q K(g(z), a) dA(z) < \varepsilon.
\]
Given $r \in (0, 1)$, we have
\[
n^{apr(n-1)} \int_{|\varphi| > r} |g(z)|^p (1 - |z|^2)^q K(g(z), a) dA(z) < \varepsilon.
\]
Choosing r so that $n^{apr(n-1)} = 1$, we complete the proof. \hfill \Box

Lemma 2.8. Let $\alpha > 0, 0 < p < \infty, -2 < q < \infty, g \in H(D)$ and φ be an analytic self-map of D. Suppose $C^\alpha_{\varphi} : B^\alpha \to Q_{K(p,q)}$ is compact, then for every $a \in D$,
\[
\lim_{r \to 1} \sup_{f \in B^\alpha} \int_{|\varphi| > r} |f'(\varphi(z))|^p |g(z)|^p (1 - |z|^2)^q K(g(z), a) dA(z) = 0.
\]

Proof. Let B_α denote the unit ball of B_α and $f_t(z) = f(tz), t \in (0, 1)$. Suppose $f \in B_\alpha$, then $f_t \to f$ uniformly on compact subsets of D as $t \to 1$ and $\{f_t\}$ is bounded on B^α, thus for any $\varepsilon > 0$ and $a \in D$ there is a $t \in (0, 1)$ such that
\[
\int_D |f_t'(\varphi(z)) - f'(\varphi(z))|^p |g(z)|^p (1 - |z|^2)^q K(g(z), a) dA(z) < \frac{\varepsilon}{2^p}.
\]
On the other hand, by Lemma 2.7, for above ε there is a $\delta = \delta(f, \varepsilon), \delta \in (0, 1)$ such that as $r \in [\delta, 1)$
\[
\int_{|\varphi| > r} |g(z)|^p (1 - |z|^2)^q K(g(z), a) dA(z) < \frac{\varepsilon}{2^p \sup_{t} \|f_t'\|_\infty}.
\]
Therefore, by the triangle inequality, we obtain that
\[
\int_{|\varphi| > r} |f'(\varphi(z))|^p |g(z)|^p (1 - |z|^2)^q K(g(z), a) dA(z)
\]
\[
= \int_{|\varphi| > r} |f'(\varphi(z)) - f_t'(\varphi(z)) + f_t'(\varphi(z))|^p |g(z)|^p (1 - |z|^2)^q K(g(z), a) dA(z)
\]
\[
< \varepsilon.
\]
Next we will show that above $\delta = \delta(f, \varepsilon)$ in fact is independent of f. Since $C_\varphi(B_\alpha)$ is relatively compact in $Q_K(p, q)$. It means that there are $f_1, f_2, \ldots, f_m \in B_{B_\alpha}$ such that for any $\varepsilon > 0$ and each $f \in B_{B_\alpha}$ there is a $k, k = 1, 2, \ldots, m$ such that

$$\int_D |f'(\varphi(z)) - f'_k(\varphi(z))|^p |g(z)|^p (1 - |z|^2)^q K(g(z, a)) dA(z) < \varepsilon.$$

If $\max_{1 \leq k \leq m} \delta_k(f_k, \varepsilon) = \delta < r < 1$, from above proof we have for all $k = 1, 2, \ldots, m$,

$$\int_{|\varphi| > r} |f'_k(\varphi(z))|^p |g(z)|^p (1 - |z|^2)^q K(g(z, a)) dA(z) < \varepsilon.$$

Hence for any $f \in B_{B_\alpha}$, by the triangle inequality, we obtain that

$$\int_{|\varphi| > r} |f'(\varphi(z))|^p |g(z)|^p (1 - |z|^2)^q K(g(z, a)) dA(z) < 2^p \varepsilon.$$

Thus the proof is completed. \(\Box\)

3. Main results

Theorem 3.1. Let $\alpha > 0, 0 < p < \infty, -2 < q < \infty, g \in H(D)$ and φ be an analytic self-map of D. Then following statements are equivalent:

1. $C_\varphi^g : B^\alpha \to Q_K(p, q)$ is bounded;
2. $C_\varphi^g : B_0^\alpha \to Q_K(p, q)$ is bounded;
3. $\sup_{\alpha \in D} \int_D \frac{|g(z)|^p (1 - |z|^2)^q}{(1 - |\varphi(z)|^2)^{pa}} K(g(z, a)) dA(z) < \infty$;
4. $\frac{|g(z)|^p (1 - |z|^2)^q}{(1 - |\varphi(z)|^2)^{pa}} dA(z)$ is a $K-Carleson$ measure.

Proof. (1) \Rightarrow (2) It is obvious.

(2) \Rightarrow (3) For $f \in B^\alpha$ if we set $f_s(t) = f(st)$ for $0 < s < 1$, then $f_s \in B_0^\alpha$ and $\|f_s\|_{B^\alpha} \leq \|f\|_{B^\alpha}$. Thus, by the condition (2) for all $f \in B^\alpha$, we have

$$\|C_\varphi^g(f_s)\|_{Q_K(p, q)} \leq \|C_\varphi^g\| \|f_s\|_{B^\alpha} \leq C \|f\|_{B^\alpha}.$$
From Lemma 2.1, there exist \(f_1 \) and \(f_2 \in B^\alpha \) such that

\[
\sup_{a \in D} \int_D \frac{|g(z)|^p(1-|z|^2)^q}{(1-|\varphi(z)|^2)^{p\alpha}} K(g(z),a) dA(z)
\]

\[
\leq 2^{p-1} \sup_{a \in D} \int_D |f_1(s \varphi(z))|^p|g(z)|^p(1-|z|^2)^q K(g(z),a) dA(z)
\]

\[+ 2^{p-1} \sup_{a \in D} \int_D |f_2(s \varphi(z))|^p|g(z)|^p(1-|z|^2)^q K(g(z),a) dA(z)
\]

\[
\leq C \|C^\alpha_2(f_1)\|_{Q_K(p,q)} + C \|C^\alpha_2(f_2)\|_{Q_K(p,q)}
\]

\[
\leq C \|C^\alpha_2(f_1)\|_{B^\alpha} + C \|C^\alpha_2(f_2)\|_{B^\alpha} < \infty.
\]

Applying Fatou’s lemma to the above inequality, we get

\[
\sup_{a \in D} \int_D \frac{|g(z)|^p(1-|z|^2)^q}{(1-|\varphi(z)|^2)^{p\alpha}} K(g(z),a) dA(z) < \infty.
\]

(3) \(\Rightarrow \) (4) From properties of \(K \) and the condition (3), we obtain

\[
\sup_{a \in D} \int_D \frac{|g(z)|^p(1-|z|^2)^q}{(1-|\varphi(z)|^2)^{p\alpha}} K(1-|\varphi_a(z)|^2) dA(z)
\]

\[
\leq \sup_{a \in D} \int_D \frac{|g(z)|^p(1-|z|^2)^q}{(1-|\varphi(z)|^2)^{p\alpha}} K(2g(z),a) dA(z)
\]

\[
\approx \sup_{a \in D} \int_D \frac{|g(z)|^p(1-|z|^2)^q}{(1-|\varphi(z)|^2)^{p\alpha}} K(g(z),a) dA(z) < \infty.
\]

Thus, by Lemma 2.2, \(\frac{|g(z)|^p(1-|z|^2)^q}{(1-|\varphi(z)|^2)^{p\alpha}} dA(z) \) is a \(K \)-Carleson measure.

(4) \(\Rightarrow \) (1) For any \(f \in B^\alpha \), we have

\[
\sup_{a \in D} \int_D |f'(\varphi(z))|^p|g(z)|^p(1-|z|^2)^q K(1-|\varphi_a(z)|^2) dA(z)
\]

\[
\leq \|f\|_{B^\alpha} \sup_{a \in D} \int_D \frac{|g(z)|^p(1-|z|^2)^q}{(1-|\varphi(z)|^2)^{p\alpha}} K(1-|\varphi_a(z)|^2) dA(z).
\]

In addition, that \((C^\alpha_\varphi f)(0) = 0 \). From Lemma 2.2 and Lemma 2.3, we have that \(C^\alpha_\varphi : B^\alpha \to Q_K(p,q) \) is bounded.

\[\square\]

Theorem 3.2. Let \(\alpha > 0, 0 < p < \infty, -2 < q < \infty, g \in H(D) \) and \(\varphi \) be an analytic self-map of \(D \). Then following statements are equivalent:

1. \(C^\alpha_\varphi : B^\alpha \to Q_K(p,q) \) is bounded;
(2) \(C^\varphi_g : B^\alpha \to Q_{K,0}(p, q) \) is compact;
(3) \(C^\varphi_g : B^\alpha_0 \to Q_{K,0}(p, q) \) is weakly compact;
(4) \(C^\varphi_g : B^\alpha_0 \to Q_{K,0}(p, q) \) is compact;
(5) \(\lim_{|\alpha| \to 1} \int_D \frac{|g(z)|^p(1 - |z|^2)^q}{(1 - |\varphi(z)|^2)^{p\alpha}} K(g(z, a))dA(z) = 0; \)
(6) \(\frac{|g(z)|^p(1 - |z|^2)^q}{(1 - |\varphi(z)|^2)^{p\alpha}}dA(z) \) is a vanishing \(K \)-Carleson measure.

Proof. \((1) \Leftrightarrow (3) \) Since \((C^\varphi_g)^**((B^\alpha_0)^**) = C^\varphi_g(B^\alpha) \subset Q_{K,0}(p, q) \), it follows from Gantmacher’s theorem.

(3) \(\Leftrightarrow (4) \) It follows from Lemma 2.5.

(4) \(\Rightarrow (5) \) Assume that \(C^\varphi_g : B^\alpha \to Q_{K,0}(p, q) \) is compact, then \(C^\varphi_g : B^\alpha_0 \to Q_{K,0}(p, q) \) is weakly compact. From above proofs we have that \(C^\varphi_g : B^\alpha \to Q_{K,0}(p, q) \) is bounded. Hence, as in the proof of Theorem 3.1, there exist \(f_1, f_2 \in B^\alpha \) such that

\[
\lim_{|\alpha| \to 1} \int_D \frac{|g(z)|^p(1 - |z|^2)^q}{(1 - |\varphi(z)|^2)^{p\alpha}} K(g(z, a))dA(z) \\
\leq 2^{p-1} \lim_{|\alpha| \to 1} \int_D |f'_1(\varphi(z))|^p |g(z)|^p(1 - |z|^2)^q K(g(z, a))dA(z) \\
+ 2^{p-1} \lim_{|\alpha| \to 1} \int_D |f'_2(\varphi(z))|^p |g(z)|^p(1 - |z|^2)^q K(g(z, a))dA(z) \\
= 0.
\]

(5) \(\Rightarrow (6) \) From properties of \(K \) and the condition (5), we obtain

\[
\lim_{|\alpha| \to 1} \int_D \frac{|g(z)|^p(1 - |z|^2)^q}{(1 - |\varphi(z)|^2)^{p\alpha}} K(1 - |\varphi_a(z)|^2) dA(z) \\
\leq \lim_{|\alpha| \to 1} \int_D \frac{|g(z)|^p(1 - |z|^2)^q}{(1 - |\varphi(z)|^2)^{p\alpha}} K(2g(z, a)) dA(z) \\
\approx \lim_{|\alpha| \to 1} \int_D \frac{|g(z)|^p(1 - |z|^2)^q}{(1 - |\varphi(z)|^2)^{p\alpha}} K(g(z, a)) dA(z) \\
= 0.
\]

Thus, by Lemma 2.2, \(\frac{|g(z)|^p(1 - |z|^2)^q}{(1 - |\varphi(z)|^2)^{p\alpha}}dA(z) \) is a compact \(K \)-Carleson measure.

(6) \(\Rightarrow (2) \) It follows from Lemma 2.4 that \(C^\varphi_g \) is compact if and only if

\[
\lim_{|\alpha| \to 1} \sup_{\|f\|_{B^\alpha_0} \leq 1} \int_D |f'(\varphi(z))|^p |g(z)|^p(1 - |z|^2)^q K(g(z, a))dA(z) = 0.
\]
For \(\|f\|_{B^\alpha} \leq 1 \), by Lemma 2.3, we have
\[
\int_D |f'(\varphi(z))|^p |g(z)|^p (1 - |z|^2)^q K(g(z, a)) dA(z)
\]
\[
\approx \int_D |f'(\varphi(z))|^p |g(z)|^p (1 - |z|^2)^q K(1 - |\varphi_a(z)|^2) dA(z)
\]
\[
= \int_D |f'(\varphi(z))|^p (1 - |\varphi(z)|^2)^{p\alpha} \frac{|g(z)|^p (1 - |z|^2)^q}{(1 - |\varphi(z)|^2)^{p\alpha}} K(1 - |\varphi_a(z)|^2) dA(z).
\]
Since \(\sup_{\|f\|_{B^\alpha} \leq 1} |f'(w)|(1 - |w|^2)^\alpha = 1 \) for each \(w \in D \), from Lemma 2.2 we get the desired result.

(2) \(\implies \) (1) It is obvious. \(\square \)

Theorem 3.3. Let \(\alpha > 0, 0 < p < \infty, -2 < q < \infty, g \in H(D) \) and \(\varphi \) be an analytic self-map of \(D \). Then following statements are equivalent:

1. \(C^\alpha : B^\alpha_0 \to Q_{K,0}(p,q) \) is bounded;

(2)
\[
\lim_{|a| \to 1} \int_D |g(z)|^p (1 - |z|^2)^q K(g(z, a)) dA(z) = 0
\]
and
\[
\sup_{a \in D} \int_D |g(z)|^p (1 - |z|^2)^q K(g(z, a)) dA(z) < \infty.
\]

Proof. (2) \(\implies \) (1) Suppose that condition (2) holds and let \(f \in B^\alpha_0 \). Then for any \(\varepsilon > 0 \) there is a \(r \in (0,1) \) such that as \(r < |w| < 1, |f'(w)|^p (1 - |w|^2)^{p\alpha} < \varepsilon \). Thus
\[
\sup_{a \in D} \int_{|\varphi| > r} |f'(\varphi(z))|^p |g(z)|^p (1 - |z|^2)^q K(g(z, a)) dA(z)
\]
\[
\leq \varepsilon \sup_{a \in D} \int_{|\varphi| > r} \frac{|g(z)|^p (1 - |z|^2)^q}{(1 - |\varphi(z)|^2)^{p\alpha}} K(g(z, a)) dA(z)
\]
\[
\leq C \varepsilon.
\]
On the other hand,
\[
\lim_{|a| \to 1} \int_{|\varphi| \leq r} |f'(\varphi(z))|^p |g(z)|^p (1 - |z|^2)^q K(g(z, a)) dA(z)
\]
\[
\leq \frac{\|f\|_{B^\alpha}^p}{(1 - r^2)^{p\alpha}} \lim_{|a| \to 1} \int_{|\varphi| \leq r} |g(z)|^p (1 - |z|^2)^q K(g(z, a)) dA(z) = 0.
\]
It follows that $C_\varphi^\beta : B_0^\alpha \to Q_{K,0}(p,q)$ is bounded.

(1) \Rightarrow (2) Suppose that $C_\varphi^\beta : B_0^\alpha \to Q_{K,0}(p,q)$ is bounded, then $C_\varphi^\beta : B_0^\alpha \to Q_K(p,q)$ is bounded. By Theorem 3.1, we get that

$$\sup_{a \in D} \int_D \frac{|g(z)|^p(1-|z|^2)^q}{(1-|\varphi(z)|^2)^{p\alpha}} K(g(z,a))dA(z) < \infty.$$

Let $f(z) = z \in B_0^\alpha$, the boundedness of C_φ implies

$$\lim_{|z| \to 1} \int_D |g(z)|^p(1-|z|^2)^q K(g(z,a))dA(z) = 0.$$

\[\square\]

Theorem 3.4. Let $\alpha > 0, 0 < p < \infty, -2 < q < \infty, \varphi \in H(D)$ and φ be an analytic self-map of D. Then following statements are equivalent:

1. $C_\varphi^\beta : B_0^\alpha \to Q_K(p,q)$ is compact;
2. $C_\varphi^\beta : B_0^\alpha \to Q_{K}(p,q)$ is compact;
3. $\sup_{a \in D} \int_D |g(z)|^p(1-|z|^2)^q K(g(z,a))dA(z) < \infty$ and

$$\lim_{r \to 1} \sup_{a \in D} \int_{|\varphi| > r} |g(z)|^p(1-|z|^2)^q K(g(z,a))dA(z) = 0.$$

Proof. (1) \Rightarrow (2) It is obvious.

(2) \Rightarrow (3) Let $\|f\|_{B_0^\alpha} \leq 1$ and $f_\delta(z) = f(tz)$, then $\|f_\delta\|_{B_0^\alpha} \leq 1$. Fixed $t \in (0,1)$, set $B_{B_0^\alpha}^t = \{f_\delta, f \in B_{B_0^\alpha}\}$. Then $B_{B_0^\alpha}^t \subset B_{B_0^\alpha}$. The compactness of C_φ^β implies that $C_\varphi^\beta(B_{B_0^\alpha}^t)$ is a relative compact subset of $Q_K(p,q)$. By Lemma 2.8, we see that for any $\varepsilon > 0$ and $a \in D$ there is a $\delta \in (0,1)$ such that as $r \in [\delta,1)$,

$$\sup_{\|f\|_{B_0^\alpha} \leq 1} \int_{|\varphi| > r} |f_\delta'(\varphi(z))|^p |g(z)|^p(1-|z|^2)^q K(g(z,a))dA(z) < \varepsilon.$$

As in the proof of Theorem 3.1, there exist $f_1, f_2 \in B^\alpha$ such that

$$\int_{|\varphi| > r} |g(z)|^p(1-|z|^2)^q K(g(z,a))dA(z) \leq C \int_{|\varphi| > r} |f_1'(t\varphi(z))|^p |g(z)|^p(1-|z|^2)^q K(g(z,a))dA(z)$$

$$+ C \int_{|\varphi| > r} |f_2'(t\varphi(z))|^p |g(z)|^p(1-|z|^2)^q K(g(z,a))dA(z)$$

$$< 2C\varepsilon.$$
By Fatou’s lemma, we have
\[
\lim_{r \to 1} \sup_{a \in D} \int_{|\varphi| > r} \frac{|g(z)|^p(1 - |z|^2)^q}{(1 - |\varphi(z)|^2)^{pa}} K(g(z, a))dA(z) = 0.
\]

On the other hand, by choosing \(f = z \in B_0^\alpha \) we obtain
\[
\sup_{a \in D} \int_D |g(z)|^p(1 - |z|^2)^q K(g(z, a))dA(z) < \infty.
\]

(3) \(\Rightarrow \) (1) Assume that \(\{f_n\} \subset B^\alpha, \|f_n\|_{B^\alpha} \leq 1 \) and \(f_n \to 0 \) uniformly on compact subsets of \(D \). By condition (3), for any \(\varepsilon > 0 \) there is a \(\delta \in (0, 1) \) such that as \(r \in [\delta, 1) \),
\[
\sup_{a \in D} \int_{|\varphi| > r} |f_n'(\varphi(z))|^p |g(z)|^p(1 - |z|^2)^q K(g(z, a))dA(z)
\leq \|f_n\|_{B^\alpha}^p \sup_{a \in D} \int_{|\varphi| > r} \frac{|g(z)|^p(1 - |z|^2)^q}{(1 - |\varphi(z)|^2)^{pa}} K(g(z, a))dA(z) < \varepsilon.
\]

On the other hand, since \(f_n'(\varphi(z)) \to 0 \) uniformly on \(\{ z : |\varphi(z)| \leq r \} \), for the above \(\varepsilon > 0 \) there is an integer \(N > 1 \) such that as \(n \geq N \),
\[
\sup_{a \in D} \int_{|\varphi| \leq r} |f_n'(\varphi(z))|^p |g(z)|^p(1 - |z|^2)^q K(g(z, a))dA(z)
\leq \sup_{|\varphi| \leq r} |f_n'(\varphi(z))|^p \sup_{a \in D} \int_{|\varphi| \leq r} |g(z)|^p(1 - |z|^2)^q K(g(z, a))dA(z)
\leq \varepsilon \sup_{a \in D} \int_{|\varphi| \leq r} |g(z)|^p(1 - |z|^2)^q K(g(z, a))dA(z)
\leq C\varepsilon.
\]

Since \((C^g f)(0) = 0\), then we obtain \(\|C^g f_n\|_{Q_K(p, q)} \to 0 \), as \(n \to \infty \). Therefore \(C^g : B^\alpha \to Q_K(p, q) \) is compact. \(\square \)

Acknowledgement. The authors are supported by the Natural Science Foundation of China (No. 10471039) and the grant of higher schools’ natural science basic research of Jiangsu Province of China (No. 06KJD110175, 07KJB110115).

References

School of Mathematics and Physics
Jiangsu Polytechnic University
213164 Changzhou
China
(E-mail: fangzhang188@163.com)

Department of Mathematics
Xuzhou Normal University
221116 Xuzhou
China

(Received: September 2008)