Maximal operators of Fejér means of Walsh-Kaczmarz-Fourier series

Ushangi Goginava and Károly Nagy

(Communicated by Maria Carro)

2000 Mathematics Subject Classification. 42C10.
Keywords and phrases. Walsh Kaczmarz system, Hardy space, Fejér means.

Abstract. The main aim of this paper is to prove that there exists a martingale \(f \in H_{1/2} \) such that the maximal Fejér operator with respect to Walsh-Kaczmarz system does not belong to the space \(L_{1/2} \). For the two-dimensional case, we prove that there exists a martingale \(f \in H_{1/2}^{□} (f \in H_{1/2}) \) such that the restricted (unrestricted) maximal operator of Fejér means of two-dimensional Walsh-Kaczmarz-Fourier series does not belong to the space weak-\(L_{1/2} \).

1. Introduction

The first result with respect to the a.e. convergence of the Walsh-Fejér means \(\sigma_n f \) is due to Fine [1]. Later, Schipp [9] showed that the maximal operator \(\sigma^* f := \sup_n |\sigma_n f| \) is of weak type \((1,1) \), from which the a.e. convergence follows by standard argument. Schipp’s result implies by interpolation also the boundedness of \(\sigma^*: L_p \to L_p \) (\(1 < p \leq \infty \)). This fails to hold for \(p = 1 \), but Fujii [2] proved that \(\sigma^* \) is bounded from the dyadic Hardy space \(H_1 \) to the space \(L_1 \). Fujii’s theorem was extended by Weisz [19]. Namely, he proved that the maximal operator of the Fejér means of the one-dimensional Walsh-Fourier series is bounded from the martingale Hardy space \(H_p (G) \) to the space \(L_p (G) \) for \(p > 1/2 \). Simon [13] gave a counterexample, which shows that this boundedness does not hold for \(0 < p < 1/2 \). In the endpoint case \(p = 1/2 \) Weisz [21] proved that \(\sigma^* \) is
bounded from the Hardy space $H_{1/2}(G)$ to the space weak-$L_{1/2}(G)$ (see also [14]). In [5] the first author proved that the maximal operator $σ^*$ is not bounded from the Hardy space $H_{1/2}(G)$ to the space $L_{1/2}(G)$.

In 1948 Šneider [16] introduced the Walsh-Kaczmarz system and showed that the inequality

$$\limsup_{n \to \infty} \frac{D_n(x)}{\log n} \geq C > 0$$

holds a.e. In 1974 Schipp [10] and Young [17] proved that the Walsh-Kaczmarz system is a convergence system. Skvortsov in 1981 [15] showed that the Fejér means with respect to the Walsh-Kaczmarz system converge uniformly to f for any continuous functions f. Gát [3] proved, for any integrable functions, that the Fejér means with respect to the Walsh-Kaczmarz system converge almost everywhere to the function and Gát proved that $\|σ^*\|_{1} \leq C\|f\|_{H_1}$. The result of Gát was extended to the Hardy space by Simon [11], who proved that $σ^*$ is of type (H_p, L_p) for $p > 1/2$. Weisz [21] showed that in endpoint case $p = 1/2$ the maximal operator is of weak type $(H_{1/2}, L_{1/2})$.

In this paper we will prove a stronger result than the unboundedness of the maximal operator from the Hardy space $H_{1/2}$ to the space $L_{1/2}$, in particular, we prove that there exists a martingale $f \in H_{1/2}$ such that

$$\|σ^*\|_{1/2} = +\infty.$$

For the two-dimensional Walsh-Kaczmarz-Fourier series Simon proved [12] that the restricted maximal operator $σ^*_{\lambda}$ is bounded from the Hardy space H_p to the space L_p for all $p > 1/2$.

In the paper [7] it was proved that the assumption $p > 1/2$ is essential. Namely, the maximal operator $σ^* := \sup_n |σ^*_{n,n}|$ of the Fejér means of double Fourier series with respect to the Walsh-Kaczmarz system is not bounded from the Hardy space $H_{1/2}$ to the space weak-$L_{1/2}$. In this paper we will prove a stronger result than in the paper [7], in particular, we prove that there exists a martingale $f \in H_{1/2}^{\square}(f \in H_{1/2})$ such that

$$\|σ^*_{\lambda}\|_{weak-L_{1/2}} = +\infty (\|σ^*\|_{weak-L_{1/2}} = +\infty).$$

Thus, as regards boundedness of $σ^*$, the case of two-dimensional Walsh-Kaczmarz series differs from the case of one-dimensional Walsh-Kaczmarz series.

Let denote by \mathbb{Z}_2 the discrete cyclic group of order 2, the group operation is the modulo 2 addition and every subset is open. The normalized Haar measure on \mathbb{Z}_2 is given in the way that the measure of a singleton is $1/2$.
Let $G := \bigoplus_{k=0}^{\infty} \mathbb{Z}_2$, G be called the Walsh group. The elements of G are sequences $x = (x_0, x_1, \ldots, x_k, \ldots)$ with $x_k \in \{0, 1\}$ ($k \in \mathbb{N}$).

The group operation on G is the coordinate-wise addition (denoted by $+$), the normalized Haar measure (denoted by μ) and the topology are the product measure and topology. Dyadic intervals are defined by $I_0(x) := G, I_n(x) := \{y \in G : y = (x_0, \ldots, x_{n-1}, y_n, y_{n+1}, \ldots)\}$ for $x \in G, n \in \mathbb{N}$. They form a base for the neighborhoods of G. Let $0 = (0 : i \in \mathbb{N}) \in G$ denote the null element of G and $I_n := I_n(0)$ for $n \in \mathbb{N}$.

Let L_p denote the usual Lebesgue spaces on G (with the corresponding norm or quasinorm $\| \cdot \|_p$). The space weak-L_p consists of all measurable functions f for which

$$\|f\|_{\text{weak-}L_p} := \sup_{\lambda > 0} \lambda \mu(|f| > \lambda)^{1/p} < +\infty.$$

The Rademacher functions are defined as

$$r_k(x) := (-1)^{x_k} (x \in G, k \in \mathbb{N}).$$

Let the Walsh-Paley functions be the product functions of the Rademacher functions. Namely, each natural number n can be uniquely expressed as

$$n = \sum_{i=0}^{\infty} n_i 2^i, \quad n_i \in \{0, 1\} (i \in \mathbb{N}),$$

where only a finite number of n_i’s different from zero. Let the order of $n > 0$ be denoted by $|n| := \max\{j \in \mathbb{N} : n_j \neq 0\}$. Walsh-Paley functions are $w_0 = 1$ and for $n \geq 1$

$$w_n(x) := \prod_{k=0}^{\infty} (r_k(x))^{n_k} = r_{|n|}(x)(-1)^{\sum_{k=0}^{|n|-1} n_k x_k}.$$

The Walsh-Kaczmarz functions are defined by $\kappa_0 = 1$ and for $n \geq 1$

$$\kappa_n(x) := r_{|n|}(x) \prod_{k=0}^{|n|-1} (r_{|n|-1-k}(x))^{n_k} = r_{|n|}(x)(-1)^{\sum_{k=0}^{|n|-1} n_k x_{|n|-1-k}}.$$
The set of Walsh-Kaczmarz functions and the set of Walsh-Paley functions is the same in dyadic blocks. Namely,

\[\{ \kappa_n : 2^k \leq n < 2^{k+1} \} = \{ w_n : 2^k \leq n < 2^{k+1} \} \]

for all \(k \in \mathbb{P} \) and \(\kappa_0 = w_0 \).

V. A. Skvortsov (see [15]) gave a relation between the Walsh-Kaczmarz functions and the Walsh-Paley functions by the help of the transformation \(\tau_A : G \rightarrow G \) defined by

\[\tau_A(x) := (x_{A-1}, x_{A-2}, \ldots, x_1, x_0, x_A, x_{A+1}, \ldots) \]

for \(A \in \mathbb{N} \). By the definition of \(\tau_A \), we have

\[\kappa_n(x) = r_{n|n|}(x)w_{n-2^{|n|}}(\tau_{|n|}(x)) \quad (n \in \mathbb{N}, x \in G). \]

The Dirichlet kernels are defined by

\[D_n^\alpha := \sum_{k=0}^{n-1} \alpha_k, \]

where \(\alpha_n = w_n \) or \(\kappa_n \) \((n \in \mathbb{P})\), \(D_0^\alpha := 0 \). The \(2^n \)th Dirichlet kernels have a closed form (see e.g. [8])

\[D_{2^n}^w(x) = D_{2^n}^\kappa(x) = D_{2^n}(x) = \begin{cases} 0, & \text{if } x \notin I_n \\ 2^n, & \text{if } x \in I_n. \end{cases} \]

The \(\sigma \)-algebra generated by the dyadic intervals of measure \(2^{-k} \) will be denoted by \(F_k \) \((k \in \mathbb{N})\).

Denote by \(f = (f^{(n)}, n \in \mathbb{N}) \) a martingale with respect to \((F_n, n \in \mathbb{N})\) (for details see, e. g. [20]). The maximal function of a martingale \(f \) is defined by

\[f^* = \sup_{n \in \mathbb{N}} |f^{(n)}|. \]

In case \(f \in L_1(G) \), the maximal function can also be given by

\[f^*(x) = \sup_{n \in \mathbb{N}} \frac{1}{\mu(I_n(x))} \left| \int_{I_n(x)} f(u) \, d\mu(u) \right|, \quad x \in G. \]

For \(0 < p < \infty \) the Hardy martingale space \(H_p(G) \) consists of all martingales for which
\[\| f \|_{H_p} := \| f^* \|_p < \infty. \]

If \(f \in L_1(G) \), then it is easy to show that the sequence \((S_{2^n} f : n \in \mathbb{N}) \) is a martingale. If \(f \) is a martingale, that is \(f = (f^{(0)}, f^{(1)}, ...) \) then the Walsh-(Kaczmarz)-Fourier coefficients must be defined in a little bit different way:

\[\hat{f}(i) = \lim_{k \to \infty} \int_G f^{(k)}(x) \alpha_i(x) \, d\mu(x) \quad (\alpha = w \text{ or } \kappa). \]

The Walsh-(Kaczmarz)-Fourier coefficients of \(f \in L_1(G) \) are the same as the ones of the martingale \((S_{2^n} f : n \in \mathbb{N}) \) obtained from \(f \).

The two-dimensional dyadic cubes are of the form

\[I_{n,n}(x,y) := I_n(x) \times I_n(y). \]

By \(F_{n,n} \), we denote the \(\sigma \)-algebra generated by the dyadic rectangles \(\{I_{n,n}(x,y) : (x,y) \in G \times G\} \).

Denote by \(f = (f^{(n,n)}, n \in \mathbb{N}) \) a martingale with respect to \((F_{n,n}, n \in \mathbb{N}) \) (for details see, e. g. [20]). The maximal function of a martingale \(f \) is defined by

\[f^\square = \sup_{n \in \mathbb{N}} \left| f^{(n,n)} \right|. \]

In case \(f \in L_1(G \times G) \), the maximal function can also be given by

\[f^\square(x,y) = \sup_{n \in \mathbb{N}} \frac{1}{\mu(I_{n,n}(x,y))} \left| \int_{I_{n,n}(x,y)} f(u,v) \, d\mu(u,v) \right|, \]

\[(x,y) \in G \times G, \]

For \(0 < p < \infty \) the Hardy martingale space \(H_p^\square(G \times G) \) consists of all martingales for which

\[\| f \|_{H_p} := \| f^\square \|_p < \infty. \]

Let

\[I_{n,m}(x,y) := I_n(x) \times I_m(y). \]

We denote by \(F_{n,m}(n,m \in \mathbb{N}) \), the \(\sigma \)-algebra generated by the dyadic rectangles \(\{I_{n,m}(x,y) : (x,y) \in G \times G\} \).

Denote by \(f = (f^{(n,m)}, n,m \in \mathbb{N}) \) a martingale with respect to \((F_{n,m}, n,m \in \mathbb{N}) \) (for details see, e. g. [20]).
The maximal function of a martingale \(f \) is defined by
\[
f^* = \sup_{n,m \in \mathbb{N}} |f^{(n,m)}|.
\]

For \(0 < p < \infty \) the Hardy martingale space \(H_p(G \times G) \) consists of all martingales for which
\[
\|f\|_{H_p} := \|f^*\|_p < \infty.
\]

In case \(f \in L_1(G \times G) \), maximal functions can also be given by
\[
f^* (x,y) = \sup_{n,m \in \mathbb{N}} \frac{1}{\mu(I_{n,m}(x,y))} \left| \int_{I_{n,m}(x,y)} f(u,v) \, d\mu(u,v) \right|.
\]

2. The one-dimensional maximal operator

For \(n = 1, 2, \ldots \) and a martingale \(f \) the Fejér means of the Walsh-(Kaczmarz)-Fourier series of the function \(f \) is given by
\[
\sigma_n^\alpha f (x) = \frac{1}{n} \sum_{j=0}^{n-1} S_j^\alpha (f; x) \quad (\alpha = w \text{ or } \kappa).
\]

For a martingale \(f \) we consider the maximal operator
\[
\sigma_n^{\alpha,*} f = \sup_{n \in \mathbb{P}} |\sigma_n^\alpha f (x)| \quad (\alpha = w \text{ or } \kappa).
\]

The \(n \)th Fejér kernel of the Walsh-(Kaczmarz)-Fourier series defined by
\[
K_n^\alpha (x) := \frac{1}{n} \sum_{k=0}^{n-1} D_k^\alpha (x) \quad (\alpha = w \text{ or } \kappa).
\]

A bounded measurable function \(a \) is a \(p \)-atom, if there exists a dyadic interval \(I \), such that
\begin{enumerate}
\item \(\int_I ad\mu = 0; \)
\item \(\|a\|_\infty \leq \mu(I)^{-1/p}; \)
\item \(\text{supp } a \subset I. \)
\end{enumerate}

The basic result of atomic decomposition is the following one.

Theorem A. (Weisz [20].) A martingale \(f = (f^{(n)}; n \in \mathbb{N}) \) is in \(H_p(0 < p \leq 1) \) if and only if there exists a sequence \((a_k, k \in \mathbb{N}) \) of \(p \)-atoms
and a sequence \((\mu_k, k \in \mathbb{N})\) of real numbers such that for every \(n \in \mathbb{N},\)

\[
\sum_{k=0}^{\infty} \mu_k S_{2^n} a_k = f^{(n)},
\]

\[
\sum_{k=0}^{\infty} |\mu_k|^p < \infty.
\]

Moreover,

\[
\|f\|_{H^p} \sim \inf \left(\sum_{k=0}^{\infty} |\mu_k|^p \right)^{1/p},
\]

where the infimum is taken over all decompositions of \(f\) of the form (1).

We will use the following lemma of Goginava:

Lemma 1. (Goginava [6]) Let \(2 < A \in \mathbb{P}\) and \(q_A := 2^{2A} + 2^{A-2} + \ldots + 2^2 + 2^0\). Then

\[
q_{A-1} \left| K_{q_{A-1}}^w (x) \right| \geq 2^{2m+2s-3}
\]

for \(x \in I_{2A} (0, ..., 0, x_{2m} = 1, 0, ..., 0, x_{2s} = 1, x_{2s+1}, ..., x_{2A-1}), m = 0, 1, ..., A - 3, s = m + 2, m + 3, ..., A - 1.\)

We will prove the following theorem.

Theorem 1. There exists a martingale \(f \in H_{1/2} (G)\) such that

\[
\|\sigma^{\kappa,*} f\|_{1/2} = +\infty.
\]

Proof. Since \(\frac{2^{m_k}}{m_k} \uparrow \infty\) as \(k \to \infty\) it is easy to show that there exists an increasing sequence of positive integers \((m_k : k \in \mathbb{N})\) such that

\[
\sum_{k=0}^{\infty} \frac{1}{m_k^{1/2}} < \infty,
\]

\[
\sum_{l=0}^{k-1} \frac{2^{4m_l}}{m_l} < \frac{2^{4m_k}}{m_k},
\]

\[
\frac{k2^{4m_k-1}}{m_k} \leq \frac{2^{2m_k}}{m_k}.
\]

Let

\[
f^{(A)} (x) := \sum_{k, 2m_k < A} \lambda_k a_k, \text{ where } \lambda_k := \frac{1}{m_k}
\]
and

\[a_k(x) := 2^{2m_k} \left(D_{2^{2m_k+1}}(x) - D_{2^{2m_k}}(x) \right). \]

The martingale \(f := (f^{(0)}, f^{(1)}, \ldots, f^{(A)}, \ldots) \) is in \(H_{1/2}(G) \). Indeed, since

\[S_{2^A} a_k(x) = \begin{cases} 0, & \text{if } A \leq 2m_k, \\ a_k(x), & \text{if } A > 2m_k, \end{cases} \]

and

\[f^{(A)}(x) = \sum_{k:2^m_k < A} \lambda_k a_k(x) = \sum_{k=0}^{\infty} \lambda_k S_{2^A} a_k(x) \]

by (2) and Theorem A we conclude that \(f \in H_{1/2}(G) \).

Now, we investigate the Fourier coefficients.

Let \(j \in \{2^{2m_k}, \ldots, 2^{2m_k+1} - 1\} \) for some \(k = 0, 1, 2, \ldots \). Then it is evident that

\[\hat{f}^\kappa(j) := \lim_{A \to \infty} \hat{f}^{(A)}(j) = \frac{2^{2m_k}}{m_k} \]

and \(\hat{f}^\kappa(j) = 0 \), if \(j \notin \{2^{2m_k}, \ldots, 2^{2m_k+1} - 1\}, k = 0, 1, 2, \ldots \).

Now, we decompose the \(q_{m_k} \) th Walsh-Kaczmarz-Fejér means as follows. (For the definition of \(q_{m_k} \) see Lemma 1 of Goginava.)

\[\sigma_{q_{m_k}} f(x) = \frac{1}{q_{m_k}} \sum_{j=0}^{2^{2m_k} - 1} S_j f(x) + \frac{1}{q_{m_k}} \sum_{j=2^{2m_k}}^{q_{m_k} - 1} S_j f(x) = I + II. \]

Let \(j < 2^{2m_k} \). Then (3) gives that

\[|S_j f(x)| \leq \sum_{l=0}^{k-1} \sum_{v=2^m_l}^{2^{2m_l+1} - 1} |\hat{f}^\kappa(v)| \leq \sum_{l=0}^{k-1} \frac{2^{4m_l}}{m_l} < \frac{2^{4m_{k-1}}}{m_{k-1}} \]

and

\[I \leq \frac{1}{q_{m_k}} \sum_{j=0}^{2^{2m_k} - 1} |S_j f(x)| \leq \frac{2^{4m_{k-1}}}{m_{k-1}}. \]

Now, we discuss \(II \).
For $2^{2m_k} \leq j < q_{m_k}$ we have the following:

$$S_j^\kappa f(x) = \sum_{v=0}^{2^{2m_{k-1}}+1} \hat{f}^\kappa(v) \kappa_v(x) + \sum_{v=2^{2m_k}}^{j-1} \hat{f}^\kappa(v) \kappa_v(x)$$

$$= \sum_{l=0}^{k-1} \sum_{v=2^{2m_l}}^{2^{2m_l+1}-1} \hat{f}^\kappa(v) \kappa_v(x) + \sum_{v=2^{2m_k}}^{j-1} \hat{f}^\kappa(v) \kappa_v(x)$$

$$= \sum_{l=0}^{k-1} \sum_{v=2^{2m_l}}^{2^{2m_l+1}-1} \frac{\hat{f}}{m_l} \kappa_v(x) + \frac{2^{2m_k}}{m_k} \sum_{v=2^{2m_k}}^{j-1} \kappa_v(x)$$

(7) $$= \sum_{l=0}^{k-1} \frac{2^{2m_l}}{m_l} \left(D_{2^{2m_l+1}}(x) - D_{2^{2m_l}}(x) \right) + \frac{2^{2m_k}}{m_k} \left(D_j^\kappa(x) - D_{2^{2m_k}}(x) \right).$$

This gives that

$$II = \left(\frac{q_{m_k} - 2^{2m_k}}{q_{m_k}} \right) \sum_{l=0}^{k-1} \frac{2^{2m_l}}{m_l} \left(D_{2^{2m_l+1}}(x) - D_{2^{2m_l}}(x) \right)$$

$$+ \frac{2^{2m_k}}{q_{m_k} m_k} \sum_{j=2^{2m_k}}^{q_{m_k}-1} \left(D_j^\kappa(x) - D_{2^{2m_k}}(x) \right)$$

$$=: II_1 + II_2.$$

To discuss II_1, we use (3) and $|D_{2^n}(x)| \leq 2^n$. Thus, we can write

(8) $$|II_1| \leq c \sum_{l=0}^{k-1} \frac{2^{4m_l}}{m_l} < \frac{2^{4m_k-1}}{m_{k-1}}.$$

From $\sigma_{q_{m_k}}^\kappa f(x) = I + II_1 + II_2$, and (6), (8) we have

(9) $$|\sigma_{q_{m_k}}^\kappa f(x)| \geq |II_2| - |I| - |II_1| \geq |II_2| - c \frac{2^{4m_k-1}}{m_{k-1}}.$$

Now, we discuss II_2.

We can write the nth Dirichlet kernel with respect to the Walsh-Kaczmarz system in the following form:

$$D_n^\kappa(x) = D_{2^n}(x) + \sum_{k=2^{2|n|}}^{n-1} r_{|k|}(x) w_{k-2^{2|n|}}(\tau_{|k|}(x))$$

$$= D_{2^n}(x) + r_{|n|}(x) D_{n-2^{2|n|}}^w(\tau_{|n|}(x)).$$

(10)
By the help of this, we immediately get

\[|I_2| = \frac{2^{2m_k}}{q_{m_k}^2} \left| \sum_{j=0}^{q_{m_k-1}^2} \left(D_{j+2m_k}^\epsilon(x) - D_{2m_k}^\epsilon(x) \right) \right| \]

\[\geq \frac{2^{2m_k}}{q_{m_k}^2} \left| \phi_{2m_k}^\epsilon(x) \sum_{j=0}^{q_{m_k-1}^2} D_j^\epsilon(\phi_{2m_k}^\epsilon(x)) \right| \]

Thus, from (9) we have

\[|\sigma_{q_{m_k}}^\epsilon f(x)| \geq c q_{m_k-1}^{\epsilon} |K_{q_{m_k-1}}^\epsilon (\phi_{2m_k}^\epsilon(x))| - c \frac{2^{4m_k-1}}{m_k}. \]

Define the set \(J_{2A}^{l,s}(x) \) for \(l < s < A \) by

\[J_{2A}^{l,s}(x) := I_{2A}(x_0, x_1, \ldots, x_{2A-2l-2}, x_{2A-2s-1} = 1, 0, \ldots, 0, x_{2A-2l-1} = 1, 0, \ldots, 0). \]

Let \(x \in J_{2m_k}^{l,s}(x) \), for some \(l = \lfloor m_k/2 \rfloor, \lfloor m_k/2 \rfloor + 1, \ldots, m_k - 3 \), and \(s = l + 2, l + 3, \ldots, m_k - 1 \), then from Lemma 1 and (4) we have

\[\left| \sigma_{q_{m_k}}^\epsilon f(x) \right| \geq c \frac{2^{2l+2s}}{m_k} - c \frac{2^{4m_k-1}}{m_k}. \]

Hence,

\[\int_G |\sigma_{q_{m_k}}^\epsilon f(x)|^{1/2} d\mu(x) \]

\[\geq \int_G |\sigma_{q_{m_k}}^\epsilon f(x)|^{1/2} d\mu(x) \]

\[\geq \frac{c}{m_k^{1/2}} \sum_{l=\lfloor m_k/2 \rfloor}^{m_k-3} \sum_{s=l+2}^{m_k-1} \sum_{x_i=0}^{1} \int_{J_{2m_k}^{l,s}(x)} |\sigma_{q_{m_k}}^\epsilon f(x)|^{1/2} d\mu(x) \]

\[\geq \frac{c}{m_k^{1/2}} \sum_{l=\lfloor m_k/2 \rfloor}^{m_k-3} \sum_{s=l+2}^{m_k-1} \frac{1}{2^{2m_k-2l-2}} \]

\[\geq \frac{c}{m_k^{1/2}} \sum_{l=\lfloor m_k/2 \rfloor}^{m_k-3} \sum_{s=l+2}^{m_k-1} \frac{2l^2}{2s} \geq cm_k^{1/2} \to \infty \text{ as } k \to \infty. \]
That is \(\| \sigma_{\kappa,*} f \|_{1/2} = +\infty \). The proof is complete. \(\square \)

3. The two-dimensional restricted maximal operator

For \(\alpha = w \) or \(\kappa \) the rectangular partial sums of the double Walsh-(Kaczmarz)-Fourier series are defined as follows:

\[
S_{M,N}^\alpha f (x,y) := \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} \hat{f}(i,j) \alpha_i(x) \alpha_j(y),
\]

where the number

\[
\hat{f}(i,j) = \int_{G \times G} f(x,y) \alpha_i(x) \alpha_j(y) \, d\mu(x,y).
\]

is said to be the \((i,j)\)th Walsh-(Kaczmarz)-Fourier coefficient of the function \(f \). If \(f \in L_1(G \times G) \) then it is easy to show that the sequence \((S_{2^n,2^n}^\alpha f : n \in \mathbb{N})\) is a martingale. If \(f \) is a martingale, that is \(f = (f^{(n,n)} : n \in \mathbb{N}) \) then the Walsh-(Kaczmarz)-Fourier coefficients must be defined in a little bit different way:

\[
\hat{f}^\alpha (i,j) = \lim_{k \to \infty} \int_{G \times G} f^{(k)}(x,y) \alpha_i(x) \alpha_j(y) \, d\mu(x,y).
\]

The Walsh-(Kaczmarz)-Fourier coefficients of \(f \in L_1(G \times G) \) are the same as the ones of the martingale \((S_{2^n,2^n}^\alpha f : n \in \mathbb{N})\) obtained from \(f \).

For \(n, m \in \mathbb{P} \) and a martingale \(f \) the \((n,m)\)th Fejér mean of the double Walsh-(Kaczmarz)-Fourier series is given by

\[
\sigma_{n,m}^\alpha f (x,y) = \frac{1}{nm} \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} S_{i,j}^\alpha f (x,y).
\]

For the martingale \(f \) the restricted maximal operator is defined by

\[
\sigma_\lambda^{\square} f (x,y) = \sup_{2^{-\lambda \leq n/m \leq 2^\lambda}} |\sigma_{n,m}^\alpha f (x,y)|.
\]

A bounded measurable function \(a \) is a \(p \)-atom, if there exists a dyadic 2-dimensional cube \(I \times I \), such that

a) \(\int_{I \times I} a \, d\mu = 0; \)

b) \(\|a\|_\infty \leq \mu(I \times I)^{-1/p}; \)

c) \(\text{supp } a \subset I \times I. \)
The basic result of atomic decomposition is the following one.

Theorem B. (Weisz [20]). A martingale \(f = (f^{(n,n)} : n \in \mathbb{N}) \) is in \(H_{p}^\square (0 < p \leq 1) \) if and only if there exists a sequence \((a_k, k \in \mathbb{N})\) of \(p \)-atoms and a sequence \((\mu_k, k \in \mathbb{N})\) of real numbers such that for every \(n \in \mathbb{N} \),

\[
\sum_{k=0}^{\infty} \mu_k S_{2^n,2^n} a_k = f^{(n,n)},
\]

\[
\sum_{k=0}^{\infty} |\mu_k|^p < \infty.
\]

Moreover,

\[
\|f\|_{H_p^\square} \sim \inf \left(\sum_{k=0}^{\infty} |\mu_k|^p \right)^{1/p},
\]

We will prove the following theorem.

Theorem 2. There exists a martingale \(f \in H_{1/2}^\square (G \times G) \) such that

\[
\left\| \sigma^{\kappa, \square} f \right\|_{\text{weak-}L_{1/2}} = +\infty.
\]

Proof. To prove Theorem 2 we modify the sequence \(\{m_k : k \in \mathbb{P}\} \) and atoms \(a_k \) given in the previous section in the following way.

Let \(\{m_k : k \in \mathbb{N}\} \) be an increasing sequence of positive integers such that

\[
\sum_{k=0}^{\infty} \frac{1}{m_k^{1/2}} < \infty,
\]

\[
\sum_{l=0}^{k-1} \frac{2^{8m_l}}{m_l} < \frac{2^{8m_k}}{m_k},
\]

\[
\frac{2^{8m_k-1}}{m_{k-1}} < \frac{2^{m_k}}{km_k},
\]

Let

\[
f^{(A,A)} (x,y) := \sum_{k,2^{m_k} < A} \lambda_k a_k (x,y), \text{ where } \lambda_k := \frac{1}{m_k}
\]

and

\[
a_k (x,y) := 2^{4m_k} (D_{2^{m_k+1}} (x) - D_{2^{m_k}} (x)) (D_{2^{2m_k+1}} (y) - D_{2^{2m_k}} (y)).
\]
The martingale $f := \{f^{(0,0)}, f^{(1,1)}, \ldots, f^{(A,A)}, \ldots\} \in \mathcal{H}_{1/2} (G \times G)$.

Indeed,

$$S_{2^A, 2^A} a_k (x, y) = \begin{cases} 0, & \text{if } A \leq 2m_k, \\ a_k (x, y), & \text{if } A > 2m_k, \end{cases}$$

$$f^{(A,A)} (x) = \sum_{k, 2m_k < A} \lambda_k a_k (x, y) = \sum_{k=0}^{\infty} \lambda_k S_{2^A, 2^A} a_k (x, y)$$

from (12) and Theorem B we conclude that $f \in \mathcal{H}_{1/2} (G \times G)$.

Now, we investigate the Fourier coefficients. Since

$$\int_{G \times G} f^{(A)} (x, y) \kappa_i (x) \kappa_j (y) d\mu (x, y)$$

$$= \begin{cases} 0, & (i, j) \notin \bigcup_{k=0}^{\infty} \{2^{2m_k}, \ldots, 2^{2m_k+1} - 1\} \times \{2^{2m_k}, \ldots, 2^{2m_k+1} - 1\}, \\
0, & (i, j) \in \{2^{2m_k}, \ldots, 2^{2m_k+1} - 1\} \times \{2^{2m_k}, \ldots, 2^{2m_k+1} - 1\}, \\
\frac{\lambda_k a_k (x, y)}{m_k}, & (i, j) \in \{2^{2m_k}, \ldots, 2^{2m_k+1} - 1\} \times \{2^{2m_k}, \ldots, 2^{2m_k+1} - 1\}, \\
& A > 2m_k, \end{cases}$$

we can write

$$\hat{f}^\kappa (i, j) = \begin{cases} \frac{\lambda_k a_k (x, y)}{m_k}, & (i, j) \in \{2^{2m_k}, \ldots, 2^{2m_k+1} - 1\} \times \{2^{2m_k}, \ldots, 2^{2m_k+1} - 1\}, \\
0, & (i, j) \notin \bigcup_{k=1}^{\infty} \{2^{2m_k}, \ldots, 2^{2m_k+1} - 1\} \times \{2^{2m_k}, \ldots, 2^{2m_k+1} - 1\}. \end{cases}$$

We decompose the (q_{mk}, q_{mk})th Fejér means as follows

$$\sigma_{q_{mk}, q_{mk}}^\kappa f (x, y)$$

$$= \frac{1}{q_{mk}^2} \sum_{i=0}^{q_{mk} - 1} \sum_{j=0}^{q_{mk} - 1} S_{i,j}^\kappa f (x, y)$$

$$= \frac{1}{q_{mk}^2} \sum_{i=0}^{2^m_{mk} - 1} \sum_{j=0}^{2^m_{mk} - 1} S_{i,j}^\kappa f (x, y) + \frac{1}{q_{mk}^2} \sum_{i=2^m_{mk}}^{q_{mk} - 1} \sum_{j=0}^{2^m_{mk} - 1} S_{i,j}^\kappa f (x, y)$$

$$+ \frac{1}{q_{mk}^2} \sum_{i=0}^{2^m_{mk} - 1} \sum_{j=2^m_{mk}}^{q_{mk} - 1} S_{i,j}^\kappa f (x, y) + \frac{1}{q_{mk}^2} \sum_{i=2^m_{mk}}^{q_{mk} - 1} \sum_{j=2^m_{mk}}^{q_{mk} - 1} S_{i,j}^\kappa f (x, y)$$

$$= I + II + III + IV.$$
Let
\[(i, j) \in \left(\{2^{2m_k}, \ldots, q_{m_k} - 1\} \times \{0, 1, \ldots, 2^{2m_k} - 1\}\right) \cup \left(\{0, 1, \ldots, 2^{2m_k} - 1\} \times \{2^{2m_k}, \ldots, q_{m_k} - 1\}\right) \cup \left(\{0, 1, \ldots, 2^{2m_k} - 1\} \times \{0, 1, \ldots, 2^{2m_k} - 1\}\right).
\]
for some \(k\). Then from (15) and (13) it is easy to show that
\[|S^n_{i,j} f(x,y)| \leq \sum_{l=0}^{k-1} \sum_{\nu=2^{2m_l}} \sum_{\mu=2^{2m_l}} |\tilde{f}^\kappa(\nu, \mu)| \leq \sum_{l=0}^{k-1} \frac{2^{2m_l}}{m_l} \leq C2^{m_k},
\]
where
\[|S^n_{i,j} f(x,y)| \leq \frac{1}{q_{2m_k}} \sum_{i=0}^{2^{2m_k} - 1} \sum_{j=0}^{2^{2m_k} - 1} |S^n_{i,j} f(x,y)| \leq C\frac{2^{4m_k} q_{2m_k}}{q_{2m_k}^2} \leq C\frac{2^{m_k}}{km_k},
\]
Consequently, we have
\[|I| \leq \frac{1}{q_{2m_k}} \sum_{i=0}^{2^{2m_k} - 1} \sum_{j=0}^{2^{2m_k} - 1} |S^n_{i,j} f(x,y)| \leq C\frac{2^{4m_k} q_{2m_k}}{q_{2m_k}^2} \leq C\frac{2^{m_k}}{km_k},
\]
and
\[|II| \leq \frac{2^{2m_k}(q_{2m_k} - 2^{2m_k}) \frac{2^{m_k}}{q_{2m_k}^2}}{km_k} \leq C\frac{2^{m_k}}{km_k}
\]
and
\[|III| \leq C\frac{2^{m_k}}{km_k}.
\]
Combining (16)-(19) we obtain that
\[|\sigma^q_{mv_k q_{m_k}} f(x,y)| \geq |IV| - C\frac{2^{m_k}}{km_k}.
\]
Now, we discuss IV.
Let \((i, j) \in \{2^{2m_k}, \ldots, q_{m_k} - 1\} \times \{2^{2m_k}, \ldots, q_{m_k} - 1\}\). Then from (15) we have
\[S^n_{i,j} f(x,y) = \sum_{\nu=0}^{i-1} \sum_{\mu=0}^{j-1} \tilde{f}^\kappa(\nu, \mu) \kappa_\nu(x) \kappa_\mu(y)
\]
\[= \sum_{l=0}^{k-1} \sum_{\nu=2^{2m_l}} \sum_{\mu=2^{2m_l}} \tilde{f}^\kappa(\nu, \mu) \kappa_\nu(x) \kappa_\mu(y)
\]
\[+ \sum_{\nu=2^{2m_k}} \sum_{\mu=2^{2m_k}} \tilde{f}^\kappa(\nu, \mu) \kappa_\nu(x) \kappa_\mu(y).
\]
By (13), (14) and IV and

\[
\begin{align*}
\text{By the help of the equation (10) we immediately have for }\quad (21) \quad & \quad \sum_{l=0}^{k-1} \frac{q^{4m_l}}{m_l} (D_{2^{m_l+1}}(x) - D_{2^{m_l}}(x)) \times (D_{2^{m_l+1}}(y) - D_{2^{m_l}}(y)) \\
& \quad + \frac{q^{4m_k}}{m_k} (D_{r_{2m_k}}(x) - D_{2^{m_k}}(x)) (D_{r_{2m_k}}(y) - D_{2^{m_k}}(y))
\end{align*}
\]

and

\[
IV = \frac{1}{q_{m_k}^2} (q_{m_k} - 2^{2m_k})^2
\]

\[
\times \sum_{l=0}^{k-1} \frac{q^{4m_l}}{m_l} (D_{2^{m_l+1}}(x) - D_{2^{m_l}}(x)) (D_{2^{m_l+1}}(y) - D_{2^{m_l}}(y))
\]

\[
+ \frac{1}{q_{m_k}^2} \frac{q^{4m_k}}{m_k} \left(\sum_{i=2^{m_k}}^{2^{m_k-1}} \sum_{j=2^{m_k}}^{2^{m_k-1}} (D_{r_{2m_k}}(x) - D_{2^{m_k}}(x)) (D_{r_{2m_k}}(y) - D_{2^{m_k}}(y)) \right)
\]

\[
= IV_1 + IV_2.
\]

By (13), (14) and \(|D_{2^n}(x)| \leq 2^n\) we get that

\[
|IV_1| \leq C \sum_{l=0}^{k-1} \frac{q^{8m_l}}{m_l} \leq C \frac{q^{2m_k}}{km_k}
\]

and

\[
\left| \sigma_{q_{m_k}}^{r_{2m_k}} f(x, y) \right| \geq \left| IV_2 \right| - \frac{C 2^{m_k}}{km_k}.
\]

By the help of the equation (10) we immediately have for \(IV_2\)

\[
IV_2 = \frac{1}{q_{m_k}^2} \frac{q^{4m_k}}{m_k} r_{2m_k}(x) r_{2m_k}(y) \sum_{i=0}^{q_{m_k}-1} D_i^w (\tau_{2m_k}(x)) \sum_{j=0}^{q_{m_k}-1} D_j^w (\tau_{2m_k}(y))
\]

\[
= \frac{1}{q_{m_k}^2} \frac{q^{4m_k}}{m_k} r_{2m_k}(x) r_{2m_k}(y) q_{m_k}^2 K_{q_{m_k}}^{r_{2m_k}} (\tau_{2m_k}(x)) K_{q_{m_k}-1}^{r_{2m_k}} (\tau_{2m_k}(y)).
\]

Let \((x, y) \in J_{l_1, l_2+2}^{2m_k} \times J_{l_2, l_2+2}^{2m_k}(y)\), where \((l_1, l_2) \in \{0, 1, ..., m_k - 3\} \times \{0, 1, ..., m_k - 3\}\.

Then from Lemma 1 we can write

\[
q_{m_k-1} \left| K_{q_{m_k}-1}^{r_{2m_k}} (\tau_{2m_k}(x)) \right| \geq C 2^{4l_1} \quad \text{and} \quad q_{m_k-1} \left| K_{q_{m_k}-1}^{r_{2m_k}} (\tau_{2m_k}(y)) \right| \geq C 2^{4l_2}.
\]
Consequently,

\((22) \quad |\sigma_{q_{m_k},q_{m_k}} f(x,y)| \geq \frac{C}{m_k} 2^{4l_1+4l_2} - \frac{2^{m_k}}{km_k}. \)

Denote

\[A(m_k) := \{ (l_1, l_2) : 0 \leq l_2 \leq m_k - 3, 0 \leq l_1 \leq \frac{m_k}{4}, l_1 + l_2 \geq \frac{m_k}{4} \} \]

and

\[\lambda'_k := \frac{c^{2m_k}}{m_k}. \]

For \((l_1, l_2) \in A(m_k)\), we have

\[|\sigma_{q_{m_k},q_{m_k}} f(x,y)| \geq \frac{c^{2m_k}}{m_k} \]

and

\[\mu \left\{ (x,y) \in G \times G : \sigma^{\kappa,\square} f(x,y) \geq C \lambda'_k \right\} \geq \]

\[\geq \sum_{(l_1, l_2) \in A(m_k)} \mu \left\{ (x,y) \in J_{2m_k}^{l_1,l_1+2}(x) \times J_{2m_k}^{l_2,l_2+2}(y) : |\sigma_{q_{m_k},q_{m_k}} f(x,y)| \geq \lambda'_k \right\} \]

\[\geq C \sum_{l_1=0}^{[m_k/4]} \sum_{l_2=[m_k/4]-l_1}^{m_k-3} \sum_1^{m_k-3} \sum_0^{l_1} \prod \mu \left\{ J_{2m_k}^{l_1,l_1+2}(x) \times J_{2m_k}^{l_2,l_2+2}(y) \right\} \]

\[\geq C \sum_{l_1=0}^{[m_k/4]} \sum_{l_2=[m_k/4]-l_1}^{m_k-3} \sum_0^{l_2} 2^{2l_1+2l_2} \geq \frac{C m_k}{2m_k/2}. \]

Consequently,

\[\lambda'_k \left(\mu \left\{ (x,y) : \sigma^{\kappa,\square} f(x,y) \geq C \lambda'_k \right\} \right)^2 \geq \frac{c^{2m_k}}{m_k} \frac{m_k^2}{2m_k} = C m_k \rightarrow \infty \text{ as } k \rightarrow \infty. \]

This completes the proof of this theorem. \(\square\)

4. The two-dimensional unrestricted maximal operator

If \(f \in L_1(G \times G) \) then it is easy to show that the sequence \((S_{2^n,2^m} f) : n, m \in \mathbb{N})\) is a martingale. If \(f \) is a martingale, that is
If \(f = (f^{(n,m)} : n, m \in \mathbb{N}) \) then the Walsh-(Kaczmarz)-Fourier coefficients must be defined in a little bit different way:

\[
\hat{f}(i,j) = \lim_{\min(k,l) \to \infty} \int_{G \times G} f^{(k,l)}(x,y) \alpha_i(x) \alpha_j(y) \, d\mu(x,y).
\]

The Walsh-(Kaczmarz)-Fourier coefficients of \(f \in L_1(G \times G) \) are the same as the ones of the martingale \((S_{2^n,2^m}(f) : n, m \in \mathbb{N})\) obtained from \(f \).

For the martingale \(f \) the unrestricted maximal operator of the Fejér mean is defined by

\[
\sigma^{\alpha,*} f(x,y) = \sup_{n,m \in \mathbb{N}} |\sigma_{n,m}^\alpha(f;x,y)|.
\]

A function \(a \in L_2 \) is called a rectangle \(p \)-atom if there exists a dyadic rectangle \(R \) such that

(a) \(\text{supp} \, a \subset R \),
(b) \(\|a\|_2 \leq |R|^{1/2 - 1/p} \),
(c) \(\int_G a(x,y) \, d\mu(x) = \int_G a(x,y) \, d\mu(y) = 0 \) for all \(x,y \in G \).

The basic result of atomic decomposition is the following one.

Theorem C. (Weisz [20]). A martingale \(f = (f^{(n,m)} : n, m \in \mathbb{N}) \) is in \(H_p(0 < p \leq 1) \) if there exists a sequence \((a_k, k \in \mathbb{N}) \) of rectangle \(p \)-atoms and a sequence \((\mu_k, k \in \mathbb{N}) \) of real numbers such that for every \(n, m \in \mathbb{N} \),

\[
\sum_{k=0}^{\infty} \mu_k S_{2^n,2^m} a_k = f^{(n,m)},
\]

\[
\sum_{k=0}^{\infty} |\mu_k|^p < \infty.
\]

Moreover,

\[
\|f\|_{H_p} \sim \inf \left(\sum_{k=0}^{\infty} |\mu_k|^p \right)^{1/p}.
\]

We will prove the following theorem.

Theorem 3. There exists a martingale \(f \in H_{1/2}(G \times G) \) such that

\[
\|\sigma^{\alpha,*} f\|_{\text{weak-L}_{1/2}} = +\infty.
\]
Proof. Now, we use the sequence \(\{ \mu_k : k \in \mathbb{N} \} \) and the atoms \(a_k \) defined in the previous proof. Let

\[
 f^{(A,B)}(x,y) := \sum_{l:2m_l < \min(A,B)} \lambda_l a_l(x,y).
\]

First, we prove that the martingale \(f := (f^{(A,B)} : A, B \in \mathbb{N}) \) belongs to the Hardy space \(H_{1/2}(G \times G) \). Indeed, since

\[
 \|a_l\|_2 \leq c2^{6m_l},
\]

\[
 S_{2^A, 2^B} a_k(x,y) = \begin{cases} 0, & \text{if } \min(A,B) \leq 2m_k, \\ a_k(x,y), & \text{if } \min(A,B) > 2m_k, \end{cases}
\]

\[
 f^{(A,B)}(x,y) := \sum_{l:2m_l < \min(A,B)} \lambda_l a_l(x,y) = \sum_{k=0}^\infty \lambda_k S_{2^A, 2^B} a_k(x,y)
\]

from (12) and Theorem C we conclude that \(f \in H_{1/2}(G \times G) \).

Now, we investigate the Fourier coefficients. Since

\[
 \int_{G \times G} f^{(A,B)}(x,y) \kappa_i(x) \kappa_j(y) d\mu(x,y)
\]

\[
 = \begin{cases} 0, & (i,j) \notin \bigcup_{k=0}^\infty \{2^{2m_k}, \ldots, 2^{2m_k+1} - 1\} \times \{2^{2m_k}, \ldots, 2^{2m_k+1} - 1\}, \\ 0, & (i,j) \in \{2^{2m_k}, \ldots, 2^{2m_k+1} - 1\} \times \{2^{2m_k}, \ldots, 2^{2m_k+1} - 1\}, \\ \frac{2^{4m_k}}{mk}, & (i,j) \in \{2^{2m_k}, \ldots, 2^{2m_k+1} - 1\} \times \{2^{2m_k}, \ldots, 2^{2m_k+1} - 1\}, \\ & \min(A,B) > 2m_k, \end{cases}
\]

we can write

\[
 \hat{f}^\kappa(i,j) = \begin{cases} \frac{2^{4m_k}}{mk}, & (i,j) \in \{2^{2m_k}, \ldots, 2^{2m_k+1} - 1\} \times \{2^{2m_k}, \ldots, 2^{2m_k+1} - 1\}, \\ 0, & (i,j) \notin \bigcup_{k=1}^\infty \{2^{2m_k}, \ldots, 2^{2m_k+1} - 1\} \times \{2^{2m_k}, \ldots, 2^{2m_k+1} - 1\}. \end{cases}
\]

The estimation of

\[
 \mu \left\{ (x,y) : \sigma^{\kappa,a} f(x,y) \geq C\lambda_k \right\}
\]

is analogous to the estimation of

\[
 \mu \left\{ (x,y) : \sigma^{\kappa,\square} f(x,y) \geq C\lambda_k \right\}
\]
and we have that
\[\sup_{\lambda > 0} \lambda \mu \left\{ (x, y) : \sigma^{x,y} f(x, y) \geq \lambda \right\}^2 = \infty. \]

Theorem 3 is proved. \[\square \]

Acknowledgement. The first author is supported by the Georgian National Foundation for Scientific Research, grant no GNSF/ST07/3-171.

References

Institute of Mathematics
Faculty of Exact and Natural Sciences
Tbilisi State University
Chavchavadze str. 1, Tbilisi 0128
Georgia
(E-mail : zgoginava@hotmail.com)

Institute of Mathematics and Computer Sciences
College of Nyíregyháza
P.O. Box 166, Nyíregyháza
H-4400 Hungary
(E-mail : nkaroly@nyf.hu)

(Received : December 2008)
Submit your manuscripts at http://www.hindawi.com