Research Article

A Class of Schur Multipliers on Some Quasi-Banach Spaces of Infinite Matrices

Nicolae Popa

Unit Research 1, Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania

Correspondence should be addressed to Nicolae Popa, npopa@imar.ro

Received 31 July 2011; Accepted 16 November 2011

Academic Editor: Lars Erik Persson

Copyright © 2012 Nicolae Popa. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We characterize the Schur multipliers of scalar type acting on scattered classes of infinite matrices.

In [1], Schur introduced a new product between two matrices \(A = (a_{jk}) \) and \(B = (b_{jk}) \) of the same size, finite or infinite. This product, known in the literature as the Schur product or Hadamard product, is defined to be the matrix of elementwise products

\[
A \ast B = (a_{jk}b_{jk}).
\]

This concept was used in different areas of analysis as complex function theory, Banach spaces, operator theory, and multivariate analysis.

Bennett studied in [2] the behaviour, under Schur multiplication, of the norm \(\| \cdot \|_{p,q}, \ 1 \leq p,q \leq \infty \),

\[
\|A\|_{p,q} = \sup_{\|x\|_p \leq 1} \left(\sum_j \left(\sum_k |a_{jk}x_k|^q \right)^{1/q} \right).
\]

In particular, he was interested in characterizing the \((p,q)\)-multipliers: the matrices \(M \) for which \(M \ast A \) maps \(\ell_p \) into \(\ell_q \) whenever \(A \) does.
In his paper it is proved a theorem about Schur multipliers which are Toeplitz matrices, that is about the matrices of the form

\[A = \begin{pmatrix} a_0 & a_1 & a_2 & a_3 & \cdots \\ a_{-1} & a_0 & a_1 & a_2 & \cdots \\ a_{-2} & a_{-1} & a_0 & a_1 & \cdots \\ a_{-3} & a_{-2} & a_{-1} & a_0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}, \]

where \((a_j)_{j=-\infty}^{\infty} \) is a sequence of complex numbers.

Theorem 8.1 in [2] reads as follows.

Theorem B. A Toeplitz matrix \(A \) is a Schur multiplier if and only if \(\mu = \sum_{j=-\infty}^{\infty} a_j e^{ijt} \) is a bounded Borel measure on \([0, 2\pi)\).

This fact leads naturally to the idea of identifying the Schur multipliers with the noncommutative bounded Borel measures, see, for example, [3].

We denote by \(M(\ell_2) \) the space of all \((2,2)\) Schur multipliers from \(B(\ell_2) \) into \(B(\ell_2) \), where \(B(\ell_2) \) is, as usual, the Banach space of linear and bounded operators on \(\ell_2 \) with the usual operator norm.

The space \(M(\ell_2) \) endowed with norm \(\|A\|_{M(\ell_2)} = \sup_{\|B\|_{B(\ell_2)}} \|A \ast B\|_{B(\ell_2)} \) becomes a Banach space.

Since we work with different quasi-Banach spaces of matrices \(X, Y \) we use the notation \((X,Y) \) for the space of all Schur multipliers from \(X \) into \(Y \) equipped with the quasi-norm

\[\|A\|_{(X,Y)} = \sup_{\|B\|_X \leq 1} \|A \ast B\|_X. \]

In this way \((X,Y) \) becomes a quasi-Banach.

In [2] Bennett raised the problem of characterizing the Hankel matrices which are Schur multipliers.

We recall that a matrix \(A \) is called a *Hankel matrix* if it is defined by a sequence \((a_j)_{j=1}^{\infty} \) of complex numbers in the following way:

\[A = \begin{pmatrix} a_0 & a_1 & a_2 & a_3 & \cdots \\ a_1 & a_2 & a_3 & a_4 & \cdots \\ a_2 & a_3 & a_4 & a_5 & \cdots \\ a_3 & a_4 & a_5 & a_6 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}. \]

Pisier in [4] solved the above problem. He proved the following theorem.
Theorem P. A Hankel matrix is a Schur multiplier if and only if the Fourier multiplier \(\sum_{n=0}^{\infty} x_n e^{int} \rightarrow \sum_{n=0}^{\infty} a_n x_n e^{int} \) maps boundedly \(H^1(S_1) \) into itself.

Here \(H^1(S_1) \) is the Hardy space of the Schatten class \(S_1 \)-valued analytic functions, endowed with the norm \(\|f\|_{H^1(S_1)} = (1/2\pi) \int_0^{2\pi} \| \sum_{n=0}^{\infty} A_n e^{int} \|_{S_1} dt < \infty \). For the definition of the Schatten classes \(S_p \), see, for example, [5].

In [5], Aleksandrov and Peller characterized the Toeplitz matrices which are Schur multipliers for \(S_p, 0 < p < 1 \). They proved the following theorem.

Theorem AP. Let \(0 < p < 1 \). A Toeplitz matrix \(T \) given by the complex sequence \((t_n)_{n=0}^{\infty} \) belongs to \((S_p, S_p) \) if and only if there exists a measure \(\mu \in M_p \) with the Fourier coefficients \(\hat{\mu}(j) = t_j \). Moreover, in this case

\[
\|T\|_{(S_p, S_p)} = \|\mu\|_{M_p},
\]

where \(M_p = \{ \mu : \mathbb{T} \rightarrow \mathbb{C} | \mu = \sum_{j} \alpha_j \delta_{t_j}, t_j \in \mathbb{T}, t_j \text{ distinct points} \}, \|\mu\|_{M_p} = (\sum_{|\alpha_j|^p})^{1/p} < \infty \), and \(\delta_t \) is the Dirac measure concentrated at the point \(t \in \mathbb{T} \).

The above-mentioned papers [4, 5] show that a complete description of general Schur multipliers, at least, either for \(B(\ell_2) \) or \(S_p, 0 < p \leq 1 \), is a difficult target. In this way it is natural to consider and study other classes of Schur multipliers than those which are Toeplitz matrices. In [6], the following notation, more appropriate for our aims, for the entries of a matrix \(B \) was introduced. Namely, we put

\[
b_k^l = \begin{cases} b_{l+k}, & k \geq 0, \ l = 1, 2, \ldots, \\ b_{l-k}, & k < 0, \ l = 1, 2, \ldots, \end{cases}
\]

and write \(B = (b_k^l)_{l \geq 1, k \in \mathbb{Z}} \).

Let \(B^{(1)} = (b_k^m)_{k \in \mathbb{Z}, m \geq 1} \), where \(l = 1, 2, 3, \ldots \), be the matrix given by

\[
b_k^m = \begin{cases} b_k^l, & m = l, \\ 0, & m \neq l. \end{cases}
\]

We call the matrix \(B^{(1)} \), the \(l \)th corner matrix associated to \(B \).

Now, we associate to each matrix \(B^l \) a periodical distribution on \(\mathbb{T} \), denoted by \(f_l \), such that \(\hat{b}_k^l = \hat{f}_l(k) \), and we identify the matrix \(B = (B^{(1)}_{l \in \mathbb{Z}}) \) with the sequence of associated distributions \((f_l)_{l \in \mathbb{Z}} \).

Then for the sequence \(\alpha = (\alpha^1, \alpha^2, \ldots) \) and the matrix \(B = (f_l)_{l \in \mathbb{Z}} \), we denote by \(\alpha \circ B \) the matrix given by \((\alpha^l f_l)_{l \in \mathbb{Z}} \).

In particular, if \(B \) is a Toeplitz matrix \((B \in \mathbb{C}) \) and if \(\alpha \) is the constant sequence then \(\alpha \circ B \) coincides with the matrix \(\alpha B \).
Hence, if $[\alpha]$ is the matrix
\[
[\alpha] = \begin{pmatrix}
\alpha^1 & \alpha^1 & \alpha^1 & \cdots \\
\alpha^1 & \alpha^2 & \alpha^2 & \cdots \\
\alpha^1 & \alpha^2 & \alpha^3 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]
(9)
it is clear that $\alpha \odot B = [\alpha] \ast B$.

We define ms to be the space of all sequences α such that $\alpha \odot B \in B(\ell_2)$ for all $B \in B(\ell_2)$, or equivalently $[\alpha] \in M(\ell_2)$.

On ms we consider the norm $\|\alpha\|_{ms} = \|[\alpha]\|_{M(\ell_2)}$. Then ms is a unital commutative Banach algebra with respect to the usual multiplication of sequences. As it was observed in [6], the multiplication of a function with a scalar corresponds to the multiplication \odot of a sequence and an infinite matrix.

We call the matrices $[\alpha]$ scalar matrices. In this context, in [6] a theorem of Haar’s type for infinite matrices was proved. The product \odot appeared also in [7] in other contexts.

An important role in applications is played by the upper triangular projection applied to the matrix $[\alpha]$. For an infinite matrix $A = (a_{ij})_{i \geq 1, j \geq 1}$, the upper triangular projection is
\[
P_T(A) = \begin{cases}
a_{ij}, & \text{if } i \leq j, \\
0, & \text{otherwise.}
\end{cases}
\]
(10)

A sequence $b = (b_n)_{n \geq 1}$ belongs to pms if and only if
\[
B = \{b\} = P_T([b]) \in M(\ell_2).
\]
(11)

The space pms endowed with the norm $\|b\| = \|[b]\|_{M(\ell_2)}$ becomes a Banach algebra with respect to the usual product of sequences.

In [6] there were given sufficient and necessary conditions in order for matrices of the form $[\alpha]$ or $\{\alpha\}$, that is,
\[
\{\alpha\} = \begin{pmatrix}
\alpha^1 & \alpha^1 & \alpha^1 & \cdots \\
0 & \alpha^2 & \alpha^2 & \cdots \\
0 & 0 & \alpha^3 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]
(12)
to be Schur multipliers. The following result was proved.
Theorem BLP 1. Let $b = (b_n)_{n \geq 1}$ be a complex sequence.

1. If $(i_n)_{n \geq 1}$ is a strictly increasing sequence of natural numbers with $i_1 = 0$, and $z_{i_n} = \max_{i_n < k \leq i_{n+1}} |b_k|$, then there is a constant $R > 0$ such that

$$
\|b\|_{M(\ell^1)} \leq R \inf_{(i_n)_{n \geq 1}} \left\{ \| (z_{i_n})_{n \geq 1} \|_2 + \| (z_{i_n} \log(i_{n+1} - i_n))_{n \geq 1} \|_\infty \right\}.
$$

(13)

2. If $b \in pms$ then

$$
\sup_{n \geq 1; \ p \geq 1} \frac{(\log n)^2}{n} \sum_{k=p}^{n+p} |b_k|^2 < \infty.
$$

(14)

3. If $(|b_k|)_{k \geq 1}$ is a decreasing sequence, then $b \in pms$ if and only if $|b_k| = O(1/ \log k)$.

As an immediate consequence we have the following.

Corollary 1. (1) One has $\ell^2 \subset ms \subset \ell_\infty$.

(2) One has $\{(b_n)_{n \geq 1} \mid |b_n| = O(1/ \log n)\} \subset ms$.

A set of sufficient conditions in order for a matrix of the type $[\alpha]$ to be a Schur multiplier is given in [6], namely, the following theorem was proved.

Theorem BLP 2. Let $b = (b_n)_{n \geq 1}$ a complex sequence. Then,

1. if $\sup_{n \geq 1} \sum_{j=1}^{n} |b_j - b_n|^2 < \infty$, then $b \in ms$;

2. if $\|b\|_{BV} = |b_1| + \sum_{n=1}^{\infty} |b_{n+1} - b_n| < \infty$ then $b \in ms$.

It is well known that $M(\ell^2)$ coincides with (S_1, S_1), the space of all Schur multipliers from S_1 into S_1, see, for example, [4]. Using this fact we give a simpler proof of the first statement of Corollary 1.

Theorem 2. Let $c = (c_n)_{n \geq 1} \in \ell^2$. Then $c \in pms$.

Proof. By using the Schmidt decomposition of a matrix A, it is enough to show that $A^* \{c\} \in S_1$ for a matrix A of rank 1. Let $A = \alpha \otimes \beta$ with $\alpha = (\alpha_n)_{n \geq 1} \in \ell^2$ and $\beta = (\beta_n)_{n \geq 1} \in \ell^2$.

We have

\[
A * \{c\} = \begin{pmatrix}
\alpha_1 \beta_1 & \alpha_1 \beta_2 & \alpha_1 \beta_3 & \cdots \\
\alpha_2 \beta_1 & \alpha_2 \beta_2 & \alpha_2 \beta_3 & \cdots \\
\alpha_3 \beta_1 & \alpha_3 \beta_2 & \alpha_3 \beta_3 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix} * \begin{pmatrix}
c_1 & c_1 & c_1 & \cdots \\
0 & c_2 & c_2 & \cdots \\
0 & 0 & c_3 & \cdots \\
0 & 0 & 0 & \ddots
\end{pmatrix}
\]

(15)

By the definition of \(S_1\) and Cauchy-Schwartz inequality we get

\[
\|A * \{c\}\|_{S_1} = \left(\sum_{j=1}^{\infty} \left(\sum_{|k|\leq j} |\alpha_j c_{j+k}| \right)^2 \right)^{1/2}
\]

(16)

\[
\leq \left(\sum_{j=1}^{\infty} |\alpha_j c_j|^2 \right)^{1/2} \leq \|\alpha\|_{\ell^2} \|\beta\|_{\ell^2} = \|c\|_{\ell^2} \|A\|_{S_1},
\]

that is, \(\|A\|_{M(\ell^2)} \leq \|c\|_{\ell^2}\) and the proof is complete.

We characterize now the upper triangular scalar matrices which are Schur multipliers, from the Hardy space \(H^2\), respectively, from the Schatten class \(S_2\) into \(B(\ell^2)\).

Theorem 3. (1) Let \(H^2\) be the Hardy space of Toeplitz matrices generated by the classical Hardy space of functions. Then an upper triangular matrix \(A = \{\alpha\}\) belongs to \((H^2, B(\ell^2))\) if and only if \(\alpha \in \ell^2\). Moreover, one has equality of the norms.

(2) Let \(T_2\) be the space of all upper triangular Hilbert-Schmidt matrices. Then \(\{\alpha\} \in (T_2, B(\ell^2))\) if and only if \(\alpha \in \ell^\infty\).

Proof. (1) We use the following identity proved in [6]:

\[
\|B\|_{B(\ell^2)} = \sup_{\|h\|_{L^1;H^2[0,1]}} \left(\sum_{k=1}^{\infty} \left(\int_0^1 \sum_{j=1}^{\infty} b_{kj} e^{2\pi i tj} h(-t) dt \right)^2 \right)^{1/2},
\]

(17)

where \(B\) is an upper triangular matrix \(B = (b_{kj})\).
Then, if \(f(t) = \sum_{k=0}^{\infty} c_k e^{2\pi i k t} \in H^2, \ t \in [0,1] \), \(F \) is the Toeplitz matrix associated to \(f \) (i.e., \(F \) is given by \((c_k)_{k \geq 0} \)), and \(\alpha \in \ell_2 \), we have

\[
F \ast \{ \alpha \} = \begin{pmatrix}
\alpha_0 c_0 & \alpha_1 c_1 & \alpha_2 c_2 & \cdots \\
0 & \alpha_1 c_0 & \alpha_1 c_1 & \cdots \\
0 & 0 & \alpha_2 c_0 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]

(18)

\[
\|F \ast \{ \alpha \}\|_{B(\ell_2)} = \sup_{\|\alpha\|_2 \leq 1} \left(\sum_{k=1}^{\infty} \left(\sum_{j=0}^{\infty} c_j e^{2\pi i j t} \right) h(-t) dt \right)^2 \]

\[
= \sup_{\|\alpha\|_2 \leq 1} \left(\sum_{k=1}^{\infty} \left| \alpha_{k-1} \right|^2 \right)^{1/2} \left| \int_0^1 \left(\sum_{j=0}^{\infty} c_j e^{2\pi i j t} \right) h(-t) dt \right| = \| \alpha \|_{\ell_2} \| f \|_{H^2}.
\]

Hence \(\| \alpha \|_{(H^2, B(\ell_2))} = \| \alpha \|_{\ell_2} \), and this completes the proof.

(2) Let \(\alpha \in \ell_{\infty} \) and

\[
C = \begin{pmatrix}
c_{11} & c_{12} & c_{13} & \cdots \\
0 & c_{22} & c_{23} & \cdots \\
0 & 0 & c_{33} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix} \in T_2.
\]

(19)

Using formula (17) and Cauchy-Schwartz inequality we get

\[
\|\{ \alpha \} \ast C\|_{B(\ell_2)} \leq \left(\sum_{k=1}^{\infty} \left| \alpha_{k-1} \right|^2 \sup_{\|\alpha\|_2 \leq 1} \left| \int_0^1 \left(\sum_{j=0}^{\infty} c_j e^{2\pi i j t} \right) h(-t) dt \right|^2 \right)^{1/2}
\]

\[
\leq \left(\sum_{k=1}^{\infty} \left| \alpha_{k-1} \right|^2 \left(\sum_{j=0}^{\infty} |c_j|^2 \right) \right)^{1/2}
\]

(20)

\[
\leq \left(\sup_{k \geq 1} |\alpha_k| \right) \left(\sum_{k=1}^{\infty} \sum_{j=0}^{\infty} |c_j|^2 \right)^{1/2}
\]

\[
= \| \alpha \|_{\ell_{\infty}} \| C \|_{T_2}.
\]

Hence \(\{ \alpha \} \in (T_2, B(\ell_2)) \), and this proves the first part of the theorem.

Conversely, let \(\{ \alpha \} \in (T_2, B(\ell_2)) \), that is, \(C \ast \{ \alpha \} \in B(\ell_2) \) for all \(C \in T_2 \) and take \(C = C_0 \), that is, the matrix \(C \) is reduced to main diagonal. It is clear that the sequence of entries of
Proof. Let first and to applications and this diagonal belongs to ℓ_2. Consequently the sequence $(a_{k-1}c_{kk})_{k\geq 1}$ belongs to ℓ_∞ for every sequence $(c_{kk})_{k\geq 1} \in \ell_2$. Hence $(a_k)_{k=0}^\infty \in \ell_\infty$, and the proof is complete. □

Next we use the important results of Bennett proved in [8], in order to characterize the Schur multipliers of scalar type for some spaces of lower triangular infinite matrices contained in the Schatten classes S_p, $0 < p < \infty$. We denote these spaces by \mathcal{LS}_p.

Next we get a general description of upper triangular Schur multipliers of scalar type for different quasi-Banach spaces.

In order to state the following result we need to recall some definitions (see [9]).

Let f be the space of all sequences with a finite number of nonzero elements. A norm Φ on f is called symmetric if $\Phi(a) = \Phi(a^*)$, for all $a \in f$, that is, if Φ is invariant to permutations and to applications $a_n \rightarrow e^{i\theta_n}a_n$, where θ_n is a sequence of real numbers. Here $a^* = (a_n^*)_{n=1}^\infty$ is the decreasing rearrangement of the sequence (a_n) which converges to 0.

We say that the sequence (a_n) belongs to the space s_{Φ}, if and only if $\lim_{n \rightarrow \infty} \Phi(a_1, \ldots, a_n, 0, 0, \ldots) = \Phi(a)$ exists.

We denote by S_Φ the space of all compact operators A on ℓ_2 with the sequence of their singular numbers $(\mu_n(A))$ belonging to s_{Φ}. For $A \in S_\Phi$ we put $\Phi(A) = \Phi((\mu_n(A)))$.

Then the following noncommutative Hölder type inequality proved in [9] holds.

Theorem AH. Let Φ_1, Φ_2, Φ_3 be symmetric norms such that if $a \in s_{\Phi_2}$, $b \in s_{\Phi_3}$ then $ab \in s_{\Phi_1}$ and

$$\Phi_1(ab) \leq \Phi_2(a)\Phi_3(b).$$

If $A \in S_{\Phi_2}$, $B \in S_{\Phi_3}$, then $AB \in S_{\Phi_1}$ and $\Phi_1(AB) \leq \Phi_2(A)\Phi_3(B)$.

Using this inequality we can state the following interesting result.

Theorem 4. Let $s_{\Phi_1} = s_{\Phi_2} s_{\Phi_3}$ (i.e., for each $\alpha \in s_{\Phi_1}$, there exist $\beta \in s_{\Phi_2}$, $\gamma \in s_{\Phi_3}$ such that $\alpha = \beta \gamma$, and $D_1(\alpha) \approx \inf_{\beta,\gamma} \Phi_2(\beta)\Phi_3(\gamma)$). Then a scalar matrix $[\alpha] \in (\mathcal{LS}_2, \mathcal{LS}_3)$ if and only if $\alpha \in s_{\Phi_1}$.

Proof. Let first $A \in \mathcal{LS}_2$, and $\alpha \in s_{\Phi_1}$. Then it is clear that

$$A \ast [\alpha] = A \cdot D_\alpha,$$

where

$$D_\alpha = \begin{pmatrix}
\alpha_1 & 0 & 0 & \cdots \\
0 & \alpha_2 & 0 & \cdots \\
0 & 0 & \alpha_3 & \cdots \\
\vdots & \ddots & \ddots & \ddots
\end{pmatrix}$$

By Theorem AH it follows that

$$\|A \ast [\alpha]\|_{s_{\Phi_1}} \leq \|A \cdot D_\alpha\|_{s_{\Phi_1}} \leq \|A\|_{s_{\Phi_2}} \|D_\alpha\|_{s_{\Phi_3}} \leq \|A\|_{s_{\Phi_2}} \|\alpha\|_{s_{\Phi_3}}.$$

Hence $[\alpha] \in (\mathcal{LS}_2, \mathcal{LS}_3)$, and this completes the first part of the proof.
For the reverse implication, take A to be the main diagonal with the entries $(a_{jj})_{j=1}^{\infty} \in s_{\Phi}$ and $[\alpha] \in (L\mathcal{S}_{\Phi}, L\mathcal{S}_{\Phi})$.

Then

$$A \ast [\alpha] = A \cdot D_\alpha = \begin{pmatrix}
 a_{11} \alpha_1 & 0 & 0 & \cdots \\
 0 & a_{22} \alpha_2 & 0 & \cdots \\
 0 & 0 & a_{33} \alpha_3 & \cdots \\
 \vdots & \vdots & \vdots & \ddots
\end{pmatrix} \in S_{\Phi_1}$$

(25)

and we get that $(a_{jj})_{j=1}^{\infty} \in s_{\Phi_1}$ for all sequences $(a_{jj})_{j=1}^{\infty} \in s_{\Phi}$. Since $s_{\Phi_1} = s_{\Phi}, s_{\Phi_1}$, it follows that $\alpha \in s_{\Phi_1}$, and this completes the proof of the theorem.

Let $w = (w_n)$ be a positive decreasing sequence of numbers. Of course the Lorentz space of sequences $\ell_{p,w}$, $0 < p \leq \infty$, is a space of the previous type s_{Φ}, see, for example, [9]. By the well-known fact that $\ell_{p,w} \cdot \ell_{q,w} = \ell_{r,w}$, for $1/p + 1/q = 1/r$, $0 < p, q, r < \infty$ we get the following result.

Corollary 2. (1) Let $1/p + 1/q = 1/r$, $0 < p, q, r < \infty$. Then $[\alpha] \in (S_p, S_r)$ if and only if $\alpha \in \ell_q$.

(2) Let w_n be a decreasing positive sequence, and let $0 < p, q < \infty$, be such that $1/p + 1/q = 1$. Then $[\alpha] \in (S_{p,w}, S_{1,w})$ if and only if $\alpha \in \ell_{q,w}$, where $\ell_{p,w}$ is the weighted Lorentz space of sequences.

We call the Bergman-Schatten space of order p, $0 < p < \infty$, and we denote by $L_a^p(\ell_2)$ the space of all upper triangular matrices A such that $\|A\|_{L_a^p(\ell_2)} = (\int_0^1 \|\sum_{k=0}^\infty A_k k^p \|_{S_p}^{p} 2rdr)^{1/p} < \infty$.

See, for example, [10] for further notations and details.

By Holder’s inequality we get the following result.

Theorem 6. Let $1 \leq p < \infty$. Then $[\alpha] \in (L_a^p(\ell_2), L_a^p(\ell_2))$ if and only if $\alpha \in \ell_q$, where $1/p + 1/q = 1$.

Proof. Let $A \in L_a^p(\ell_2)$ and $\alpha \in \ell_q$. We clearly have that $A \ast [\alpha] = D_\alpha \cdot A$. By Theorem AH we get

$$\|A \ast [\alpha]\|_{L_a^p(\ell_2)} = \int_0^1 \|D_\alpha \cdot A(r)\|_{S_p} 2rdr$$

$$\leq \left(\int_0^1 \|A(r)\|_{S_p}^{p} 2rdr \right)^{1/p} \|\alpha\|_{\ell_q} = \|A\|_{L_a^p(\ell_2)} \|\alpha\|_{\ell_q}$$

(26)

that is, $[\alpha] \in (L_a^p(\ell_2), L_a^p(\ell_2))$, and this completes the first part of the proof.
Conversely, let \([a] \in (L^p_d(e_2), L^1_d(e_2))\). By taking \(A = A_0 = (a_{ij})_{i,j=1}^{\infty} \in L^p_d(e_2)\), that is, for \((a_{ij})_j \in \ell_p\), we get

\[
A * [a] = \begin{pmatrix}
\alpha_1 a_{11} & 0 & \cdots \\
0 & \alpha_2 a_{22} & \cdots \\
& \ddots & \ddots \\
& & \ddots & \ddots
\end{pmatrix} \in L^1_d(e_2),
\] (27)

or, equivalently, \((a, a_{ij})_j \in \ell_1\). Hence by Hölder’s inequality it follows that \((a_j)_j \in \ell_q\), and the proof is complete. \(\square\)

Using the results of Bennett, proved in [8] we can also describe the Schur multipliers of scalar type also for others quasi-Banach spaces of matrices. The spaces of sequences \(d(a, p), g(a, p), \) and \(ces(p)\) were defined in [8].

We denote now by \(d^1_M(a, p), g^1_M(a, p), ces^1_M(p), \) and \(\ell^1_M(p)\) the spaces of upper triangular infinite matrices \(A = \sum_{k=0}^{\infty} A_k\), with all the sequences on the diagonals belonging to \(d(a, p)\) (resp., \(g(a, p), ces(p), \ell_p\)), and such that \(\|A\| = \left(\sum_k \|A_k\|^{q}_{d(a,p)}\right)^{1/q} < \infty\) (resp., \(\|A\| = \left(\sum_k \|A_k\|_{g(a,p)}^{q}\right)^{1/q} < \infty\) and so on) with the usual modification for \(q = \infty\).

Using Theorems 4.5 and 3.8 in [8], we have the following.

Theorem 7. (1) Let \(1 < p < \infty\). Then \(a \in g(p^*)\), where \(1/p + 1/p^* = 1\), if and only if \([a] \in (\ell^\infty_M(p), ces^\infty_M(p))\), where \(g(p^*) = g(a, p^*)\), with \(a = (1, 1, \ldots)\).

(2) Let \(0 < p < \infty\). Then \([a] \in (d^1_M(a, p), \ell^1_M(p))\) if and only if \(a \in g(a, p)\).

Theorem 8. (1) For \(1 < p < \infty\), \([a] \in (\ell^1_M(p), ces^1_M(p))\) if and only if \(a \in g(p^*)\).

(2) For \(0 < p < \infty\), \([a] \in (d^1_M(a, p), \ell^1_M(p))\) if and only if \(a \in g(a, p)\).

Acknowledgments

This paper was partially supported by the CNCSIS Grant ID-PCE 1905/2008. The author thanks the referee for his/her valuable remarks which improved considerably the presentation of this paper.

References

