Research Article

Novel Identities for q-Genocchi Numbers and Polynomials

Serkan Araci

Department of Mathematics, Faculty of Science and Arts, University of Gaziantep, 27310 Gaziantep, Turkey

Correspondence should be addressed to Serkan Araci, mtsrkn@hotmail.com

Received 26 February 2012; Revised 25 April 2012; Accepted 9 May 2012

Academic Editor: Gestur Ólafsson

Copyright © 2012 Serkan Araci. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The essential aim of this paper is to introduce novel identities for q-Genocchi numbers and polynomials by using the method by T. Kim et al. (article in press). We show that these polynomials are related to p-adic analogue of Bernstein polynomials. Also, we derive relations between q-Genocchi and q-Bernoulli numbers.

1. Preliminaries

Imagine that p be a fixed odd prime number. We now start with definition of the following notations. Let \mathbb{Q}_p be the field p-adic rational numbers and let \mathbb{C}_p be the completion of algebraic closure of \mathbb{Q}_p.

Thus,

$$\mathbb{Q}_p = \left\{ x = \sum_{n=-k}^{\infty} a_n p^n : 0 \leq a_n < p \right\}.$$ \hspace{1cm} (1.1)

Then \mathbb{Z}_p is integral domain, which is defined by

$$\mathbb{Z}_p = \left\{ x = \sum_{n=0}^{\infty} a_n p^n : 0 \leq a_n < p \right\},$$ \hspace{1cm} (1.2)

or

$$\mathbb{Z}_p = \left\{ x \in \mathbb{Q}_p : |x|_p \leq 1 \right\}.$$ \hspace{1cm} (1.3)
We assume that $q \in \mathbb{C}_p$ with $|1-q|_p < 1$ as an indeterminate. The p-adic absolute value $|\cdot|_p$, is normally defined by
\begin{equation}
|x|_p = p^{-r},
\end{equation}
where $x = p^r (s/t)$ with $(p, s) = (p, t) = (s, t) = 1$, and $r \in \mathbb{Q}$.

$[x]_q$ is a q-extension of x, which is defined by
\begin{equation}
[x]_q = \frac{1 - q^x}{1 - q},
\end{equation}
we note that $\lim_{q \rightarrow 1}[x]_q = x$ (see [1–17]).

Throughout this paper, we use notation of $\mathbb{N}^* := \mathbb{N} \cup \{0\}$, where \mathbb{N} denotes set of Natural numbers.

We say that f is a uniformly differentiable function at a point $a \in \mathbb{Z}_p$, if the difference quotient,
\begin{equation}
F_f(x, y) = \frac{f(x) - f(y)}{x - y},
\end{equation}
has a limit $f'(a)$ as $(x, y) \rightarrow (a, a)$, and we denote this by $f \in UD(\mathbb{Z}_p)$. Then, for $f \in UD(\mathbb{Z}_p)$, we can start with the following expression:
\begin{equation}
\frac{1}{[p]^N} \sum_{0 \leq \xi < p^N} f(\xi)q^\xi = \sum_{0 \leq \xi < p^N} f(\xi)\mu_q(\xi + p^N\mathbb{Z}_p),
\end{equation}
which represents a p-adic q-analogue of Riemann sums for f. The integral of f on \mathbb{Z}_p will be defined as the limit $(N \rightarrow \infty)$ of these sums, when it exists. The p-adic q-integral of function $f \in UD(\mathbb{Z}_p)$ is defined by Kim in [7, 12] as
\begin{equation}
I_q(f) = \int_{\mathbb{Z}_p} f(\xi)d\mu_q(\xi) = \lim_{N \rightarrow \infty} \frac{1}{[p]^N} \sum_{\xi=0}^{p^N-1} f(\xi)q^\xi.
\end{equation}

The bosonic integral is considered as a bosonic limit $q \rightarrow 1$, $I_1(f) = \lim_{q \rightarrow 1}I_q(f)$. Similarly, the fermionic p-adic integral on \mathbb{Z}_p is introduced by Kim as follows:
\begin{equation}
I_{-q}(f) = \int_{\mathbb{Z}_p} f(\xi)d\mu_{-q}(\xi)
\end{equation}
(for more details, see [13–16]).

From (1.9), it is well-known equality that
\begin{equation}
qI_{-q}(f_1) + I_{-q}(f) = [2]_q f(0),
\end{equation}
where $f_1(x) = f(x + 1)$ (for details, see [2, 3, 8, 9, 12, 13, 15–17]).
The q-Genocchi polynomials with weight 0 are introduced as
\[
\tilde{G}_{n+1,q}(x) = \frac{1}{n+1} \int_{\mathbb{Z}_p} (x + \xi)^n d\mu_q(\xi).
\] (1.11)

From (1.11), we have
\[
\tilde{G}_{n,q}(x) = \sum_{l=0}^{n} \binom{n}{l} x^l \tilde{G}_{n-l,q},
\] (1.12)

where $\tilde{G}_{n,q}(0) := \tilde{G}_{n,q}$ are called q-Genocchi numbers with weight 0. Then, q-Genocchi numbers are defined as
\[
\tilde{G}_{0,q} = 0, \quad q(\tilde{G}_{q} + 1)^n + \tilde{G}_{n,q} = \begin{cases} [2]_q, & \text{if } n = 1, \\ 0, & \text{if } n \neq 1, \end{cases}
\] (1.13)

with the usual convention about replacing $(\tilde{G}_q)^n$ by $\tilde{G}_{n,q}$ is used (for details, see [3]).

Let $UD(\mathbb{Z}_p)$ be the space of continuous functions on \mathbb{Z}_p. For $f \in UD(\mathbb{Z}_p)$, p-adic analogue of Bernstein operator for f is defined by
\[
B_n(f, x) = \sum_{k=0}^{n} f\left(\frac{k}{n}\right) B_{k,n}(x) = \sum_{k=0}^{n} f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k},
\] (1.14)

where $n, k \in \mathbb{N}^*$. Here, $B_{k,n}(x)$ is called p-adic Bernstein polynomials, which are defined by
\[
B_{k,n}(x) = \binom{n}{k} x^k (1-x)^{n-k}, \quad x \in [0,1]
\] (1.15)

(for details, see [1, 4, 5, 7]).

The q-Bernoulli polynomials and numbers with weight 0 are defined by Kim et al., respectively,
\[
c \tilde{B}_{n,q}(x) = \lim_{n \to \infty} \frac{1}{[p^n]_q} \sum_{y=0}^{p^n-1} (x + y)^n q^y = \int_{\mathbb{Z}_p} (x + \xi)^n d\mu_q(\xi),
\] (1.16)

\[
\tilde{B}_{n,q} = \int_{\mathbb{Z}_p} \xi^n d\mu_q(\xi)
\]

(for more information, see [10]).

The author, by using derivative operator, will investigate some interesting identities on the q-Genocchi numbers and polynomials arising from their generating function. Also, the author derives some relations between q-Genocchi numbers and q-Bernoulli numbers by using Kim’s q-Volkenborn integral and fermionic p-adic q-integral on \mathbb{Z}_p.
2. Novel Properties of \(q \)-Genocchi Numbers and Polynomials with Weight 0

Let \(f(x) = e^{t(x+t)} \). Then, by using (1.10), we easily procure the following:

\[
\int_{\mathbb{R}} e^{t(x+t)} d\mu_{-q}(\xi) = \frac{[2]_q e^{xt}}{qe^t + 1}. \tag{2.1}
\]

From the last equality, by (1.11), we get Araci, Acikgoz, and Qi’s \(q \)-Genocchi polynomials with weight 0 in [3] as follows:

\[
\frac{[2]_q e^{xt}}{qe^t + 1} = \sum_{n=0}^{\infty} \bar{c}_{n,q}(x) \frac{t^n}{n!} \quad |\log q + t| < \pi. \tag{2.2}
\]

Here, we assume that \(x \) is a fixed parameter. Let

\[
\tilde{F}_q(x,t) = \frac{[2]_q e^{xt}}{qe^t + 1} = \sum_{n=0}^{\infty} \bar{c}_{n,q}(x) \frac{t^n}{n!}. \tag{2.3}
\]

Thus, by expression of (2.3), we can readily see the following:

\[
qe^t \tilde{F}_q(x,t) + \tilde{F}_q(x,t) = [2]_q e^{xt}. \tag{2.4}
\]

Last from equality, taking derivative operator \(D \) as \(D = d/dt \) on the both sides of (2.4), then, we easily see that

\[
qe^{t(D + I)^k \tilde{F}_q(x,t)} + D^k \tilde{F}_q(x,t) = [2]_q e^{x(t)} x^k \tag{2.5}
\]

where \(k \in \mathbb{N}^* \) and \(I \) is identity operator. By multiplying \(e^{-t} \) on both sides of (2.5), we get

\[
q(D + I)^k \tilde{F}_q(x,t) + e^{-t} D^k \tilde{F}_q(x,t) = [2]_q e^{x(t-1)}. \tag{2.6}
\]

Let us take \(D^m \) (\(m \in \mathbb{N} \)) on the both sides of (2.6). Then, we get

\[
qe^{D^m(D + I)^k \tilde{F}_q(x,t)} + D^k (D - I)^m \tilde{F}_q(x,t) = [2]_q e^{x(t-1)} x^m. \tag{2.7}
\]

Let \(G[0] \) (not \(G(0) \)) be the constant term in a Laurent series of \(G(t) \) in (2.3). Then, we get

\[
\sum_{j=0}^{k} \binom{k}{j} \left(qe^t D^{k+m-j} \tilde{F}_q(x,t)[0] + \sum_{j=0}^{m} \binom{m}{j} (-1)^j (D^{k+m-j} \tilde{F}_q(x,t))[0] = [2]_q x^k (x-1)^m. \tag{2.8}
\]

By (2.3), we easily see

\[\left(D^N \tilde{F}_q(x,t) \right)[0] = \frac{\tilde{G}_{N+1,q}(x)}{N+1}, \quad \left(e^t D^N \tilde{F}_q(x,t) \right)[0] = \frac{\tilde{G}_{N+1,q}(x)}{N+1}. \]

(2.9)

We see that the members of (2.11) are proportional to the Bernstein polynomials with the following theorem.

Theorem 2.1. For \(k, m \in \mathbb{N} \), one has

\[[2]_q(-1)^m B_{k,m+k}(x) = \sum_{j=0}^{\max\{k,m\}} \frac{q^j}{k^j} (-1)^j \binom{m}{j} \tilde{G}_{k+m-j+1,q}(x). \]

(2.10)

Proof. By expressions of (2.8) and (2.9), we see that

\[\sum_{j=0}^{\max\{k,m\}} \frac{q^j}{k^j} (-1)^j \binom{m}{j} \tilde{G}_{k+m-j+1,q}(x) = [2]_q x^k (x-1)^m. \]

(2.11)

By applying basic operations to above equality, we can easily reach to the desired result.

As a special case, we derive the following.

Corollary 2.2. For \(k \in \mathbb{N} \), one has

\[[2]_q(-1)^k B_{2k}(x) = [2]_q \sum_{j=0}^{[k/2]} \frac{\binom{k}{2j}}{2k-2j+1} \tilde{G}_{2k-2j+1,q}(x) + \binom{2k}{k} (q-1)^{[k/2]} \sum_{j=0}^{[k/2]} \frac{\binom{k}{2j+1}}{2k-2j} \tilde{G}_{2k-2j,q}(x). \]

(2.12)

Proof. When \(k = m \) into (2.10), we derive the following identity:

\[(-1)^k B_{k,2k}(x) = \frac{2k^2}{1+q} \sum_{j=0}^{k} \frac{q^j}{2k-2j+1} \frac{\tilde{G}_{2k-2j+1,q}(x)}{2k-2j+1} \]

\[= \frac{2k}{k} \sum_{j=0}^{[k/2]} \frac{\binom{k}{2j}}{2k-2j+1} \tilde{G}_{2k-2j+1,q}(x) \]

\[+ \frac{2k}{k} \frac{q-1}{q+1} \sum_{j=0}^{[k/2]} \frac{\binom{k}{2j+1}}{2k-2j} \tilde{G}_{2k-2j,q}(x). \]

(2.13)

Here, \([x]\) is greatest integer \(\leq x \). Then, we complete the proof of Theorem.
From (2.2), we note that
\[
\frac{d}{dx}(\tilde{G}_{n,q}(x)) = n \sum_{i=0}^{n-1} \binom{n-1}{i} \tilde{G}_{i,q} x^{n-1-i} = n \tilde{G}_{n-1,q}(x). \quad (2.14)
\]

By (2.14) and (1.11), we easily see that
\[
\int_0^1 \tilde{G}_{n,q}(x) dx = \frac{\tilde{G}_{n+1,q}(1) - \tilde{G}_{n+1,q}}{n+1} = -[2]_q^{-1} \tilde{G}_{n+1,q} = -[2]_q^{-1} \int_{\mathbb{Z}_q} \xi^n d\mu_q(\xi). \quad (2.15)
\]

Now, let us consider definition of integral from 0 to 1 in (2.11), then we have
\[
-[2]_q^{-1} \sum_{j=0}^{\max[k,m]} q^j \binom{m}{j} \tilde{G}_{k+m-j+2,q} = [2]_q (-1)^m B(k+1,m+1) = [2]_q (-1)^m \frac{\Gamma(k+1) \Gamma(m+1)}{\Gamma(k+m+2)},
\]

where \(B(k+1,m+1)\) is beta function which is defined by
\[
B(k+1,m+1) = \int_0^1 x^k (1-x)^m dx = \frac{1}{(k+m+1) \binom{k+m}{m}}, \quad k > 0, \ m > 0. \quad (2.17)
\]

As a result, we obtain the following theorem.

Theorem 2.3. For \(m, k \in \mathbb{N}\), one has
\[
\sum_{j=1}^{\max[k,m]} q^j \binom{m}{j} \frac{\tilde{G}_{k+m-j+2,q}}{k+m-j+1} = q^k \frac{(-1)^{m+1}}{(k+m+1) \binom{k+m}{k}} - [2]_q \tilde{G}_{k+m+2,q}. \quad (2.18)
\]

Proof. By taking integral from 0 to 1 in (2.11), we easily reach to desired result. \(\square\)

Substituting \(m = k + 1\) into Theorem 2.1, we readily get
\[
\sum_{j=1}^{k+1} q^j \binom{k+1}{j} \frac{\tilde{G}_{2k-j+3,q}}{2k-j+3} = q^k \frac{(-1)^k}{(2k+2) \binom{2k+1}{k}} - [2]_q \tilde{G}_{2k+3,q}. \quad (2.19)
\]

By differentiating both sides of (2.11) with respect to \(t\), we have the following:
\[
\sum_{j=0}^{\max[k,m]} \{ q^j \binom{m}{j} \} \tilde{G}_{k+m-j,q}(x) = [2]_q x^{k-1}(x-1)^{m-1}((k+m)x - k). \quad (2.20)
\]

We now give interesting theorem for \(q\)-Genocchi numbers with weight 0 as follows.
For Theorem 2.5. For Theorem 2.4. Journal of Function Spaces and Applications 7

\[
[k/2]_q \sum_{j=0}^{[k/2]} \left(\frac{k}{2j} \right) \tilde{G}_{2k-2j+2,q} + (q-1) \sum_{j=1}^{[(k-1)/2]} \left(\frac{k}{2j+1} \right) \tilde{G}_{2k-2j+1,q} = \frac{q(-1)^{k+1}}{(2k+1)\left(\frac{2}{k} \right)}. \tag{2.21}
\]

Proof. It is proved by using definition of integral on the both sides in the following equality, that is,

\[
\sum_{j=0}^{k} \frac{q\left(\frac{1}{j} \right) + (-1)^j\left(\frac{1}{j} \right)}{2k-j+1} \left\{ \int_0^1 \tilde{G}_{2k-j+1,q}(x) dx \right\} = [2]_q \left\{ \int_0^1 x^k(x-1)^k dx \right\}. \tag{2.22}
\]

Last from equality, we discover the following:

\[
[2]_q \sum_{j=0}^{[k/2]} \left(\frac{k}{2j} \right) \tilde{G}_{2k-2j+2,q} + (q-1) \sum_{j=1}^{[(k-1)/2]} \left(\frac{k}{2j+1} \right) \tilde{G}_{2k-2j+1,q} = \frac{q(-1)^k}{(2k+1)\left(\frac{2}{k} \right)}. \tag{2.23}
\]

Then, taking integral from 0 to 1 both sides of last equality, we get

\[
- [2]_q \sum_{j=0}^{[k/2]} \left(\frac{k}{2j} \right) \tilde{G}_{2k-2j+2,q} + [2]_q \left(1-q \right) \sum_{j=1}^{[(k-1)/2]} \left(\frac{k}{2j+1} \right) \tilde{G}_{2k-2j+1,q}
\]

\[
= [2]_q (-1)^k B(k+1, k+1) = \frac{[2]_q (-1)^k}{(2k+1)\left(\frac{2}{k} \right)}. \tag{2.24}
\]

Thus, we complete the proof of the theorem. \qed

Theorem 2.5. For \(k \in \mathbb{N} \), one has

\[
[2]_q \sum_{j=0}^{[(k+1)/2]} \left(\frac{k}{2j} \right) \tilde{G}_{2k-2j+1,q}(x) + [2]_q \sum_{j=1}^{[k/2]} \left(\frac{k}{2j+1} \right) \tilde{G}_{2k-2j+1,q}(x) - \sum_{j=0}^{[k/2]} \left(\frac{k}{2j+1} \right) \tilde{G}_{2k-2j,q}(x)
\]

\[
+ (q-1) \sum_{j=0}^{[k/2]} \left(\frac{k}{2j+1} \right) \left\{ \tilde{G}_{2k-2j,q}(x) \left[\frac{1}{[2]_q(2k-2j)} + \frac{\tilde{G}_{2k-2j+1,q}(x)}{[2]_q(2k-2j+1)} \right] \right\} = x^k(x-1)^k \left[2]_q x - q \right). \tag{2.25}
\]
Proof. In view of (2.2) and (2.23), we discover the following applications:

\[
\sum_{j=0}^{[k/2]} \left\{ \sum_{j=0}^{[(k+1)/2]} q \binom{k}{2j} \tilde{G}_{2k-2j+1,q}(x) - 1 \right\} + q \sum_{j=0}^{[k/2]} \frac{\tilde{G}_{2k-2j+1,q}(x)}{2k-2j+1}
\]

\[
+ \sum_{j=0}^{[k/2]} \left\{ \sum_{j=0}^{[(k+1)/2]} q \binom{k}{2j+1} \tilde{G}_{2k-2j+1,q}(x) - 1 \right\} + q \sum_{j=0}^{[k/2]} \frac{\tilde{G}_{2k-2j+1,q}(x)}{2k-2j+1}
\]

\[
= - \frac{\tilde{G}_{2k-2j+1,q}(x)}{2k-2j+1} + \sum_{j=0}^{[(k+1)/2]} q \binom{k}{2j} \tilde{G}_{2k-2j+1,q}(x) + q \sum_{j=0}^{[k/2]} \frac{\tilde{G}_{2k-2j+1,q}(x)}{2k-2j+1}
\]

(2.26)

Thus, we give evidence of the theorem.

As \(q \to 1 \) into Theorem 2.5, it leads to the following interesting property.

Corollary 2.6. For \(k \in \mathbb{N} \), one has

\[
\sum_{j=0}^{[(k+1)/2]} \frac{\binom{k}{2j}}{2k+1-2j} \tilde{G}_{2k-2j+1,q}(x) + \sum_{j=1}^{[k/2]} \frac{\binom{k}{2j-1}}{4k-4j+2} \tilde{G}_{2k-2j,q}(x) - \sum_{j=0}^{[k/2]} \frac{k \binom{k}{2j}}{4k-4j} \tilde{G}_{2k-2j+1,q}(x)
\]

\[
= x^k (x-1)^k \left(x - \frac{1}{2} \right),
\]

(2.27)

where \(G_n(x) \) is ordinary Genocchi polynomials, which is defined by the means of the following generating function [9]:

\[
\sum_{n=0}^{\infty} G_n(x) \frac{t^n}{n!} = \frac{2t}{e^t + 1} e^{xt}, \quad |t| < \pi.
\]

(2.28)

3. Some Identities \(q \)-Genocchi Numbers and \(q \)-Bernoulli Numbers by Using Kim’s \(p \)-Adic \(q \)-Integrals on \(\mathbb{Z}_p \)

In this section, we consider \(q \)-Genocchi numbers and \(q \)-Bernoulli numbers by means of \(p \)-adic \(q \)-integral on \(\mathbb{Z}_p \). Now, we start with the following theorem.
Theorem 3.1. For $m,k \in \mathbb{N}$, one has

$$\max_{j=0}^{\max\{k,m\}} q\binom{k}{j} \frac{(-1)^j}{k+m-j+1} \sum_{l=0}^{k+m-j+1} \binom{k+m-j+1}{l} \tilde{G}_{k+m-j-l+1,q} \tilde{G}_{l+1,q} = [2]^m \sum_{l=0}^{m} \binom{m}{l} (-1)^{m-l} \tilde{G}_{l+1,q} \frac{l+k+1}{l+1}.$$

(3.1)

Proof. For $m,k \in \mathbb{N}$, then by (2.11),

$$I_1 = [2^q \int_{\mathbb{R}^d} x^k (x-1)^m d\mu_q(x) = [2^q \sum_{l=0}^{m} \binom{m}{l} (-1)^{m-l} \int_{\mathbb{R}^d} x^l d\mu_q(x)$$

$$= [2^q \sum_{l=0}^{m} \binom{m}{l} (-1)^{m-l} \tilde{G}_{l+1,q} \frac{l+k+1}{l+1}.$$

(3.2)

On the other hand, the right hand side of (2.11),

$$I_2 = \max_{j=0}^{\max\{k,m\}} q\binom{k}{j} \frac{(-1)^j}{k+m-j+1} \sum_{l=0}^{k+m-j+1} \binom{k+m-j+1}{l} \tilde{G}_{k+m-j-l+1,q} \int_{\mathbb{R}^d} x^l d\mu_q(x)$$

$$= \max_{j=0}^{\max\{k,m\}} q\binom{k}{j} \frac{(-1)^j}{k+m-j+1} \sum_{l=0}^{k+m-j+1} \binom{k+m-j+1}{l} \tilde{G}_{k+m-j-l+1,q} \tilde{G}_{l+1,q}.$$

(3.3)

Combining I_1 and I_2, we arrive to the proof of the theorem. \[\square\]

Theorem 3.2. For $k \in \mathbb{N}$, one has

$$\sum_{j=0}^{k} \binom{k}{j} (-1)^{k-j} \left\{ [2]^q \frac{\tilde{G}_{k+1+2,q}}{k+1+2} - q \frac{\tilde{G}_{k+1,q}}{k+1+1} \right\}$$

$$= [2]^q \sum_{j=1}^{\lfloor k/2 \rfloor} \binom{k}{2j} \frac{2k-2j+1}{2k-2j+1} \sum_{l=0}^{2k-2j+1} \binom{2k-2j+1}{l} \tilde{G}_{2k+1-2j-l,q} \tilde{G}_{l+1,q}$$

$$+ \sum_{j=1}^{\lfloor k/2 \rfloor} \binom{k}{2j-1} \frac{2k-2j+1}{2k-2j+1} \sum_{l=0}^{2k-2j+1} \binom{2k-2j+1}{l} \tilde{G}_{2k+1-2j-l,q} \tilde{G}_{l+1,q} + \frac{q-1}{1+q} \sum_{j=0}^{\lfloor k/2 \rfloor} \binom{k}{2j+1} T_{k,j}.$$

(3.4)

Here $T_{k,j} = [2]^q \sum_{l=0}^{2k-2j} \binom{2k-2j}{l} (2k-2j-l) \frac{\tilde{G}_{l+1,q} \tilde{G}_{2k-2j-l,q}}{(l+1)} + \sum_{l=0}^{2k-2j+1} \binom{2k-2j+1}{l} \tilde{G}_{l+1,q} \tilde{G}_{2k-2j-l,q} \frac{2k-2j+1}{(l+1)}$.

Proof. Let us take fermionic p-adic q-integral on \mathbb{Z}_p left-hand side of Theorem 2.5, we get

$$I_3 = \int_{\mathbb{Z}_p} x^k(x - 1)^k \left[[2]_q x - q \right] d\mu_q(x)$$

$$= [2]_q \sum_{j=0}^{[k/2]} \binom{k}{j} (-1)^{k-j-1} \int_{\mathbb{Z}_p} x^{k+j+1} d\mu_q(x) - q \sum_{l=0}^{k} \binom{k}{l} (-1)^{k-l} \int_{\mathbb{Z}_p} x^{k+l} d\mu_q(x)$$

$$= [2]_q \sum_{j=0}^{[k/2]} \binom{k}{j} (-1)^{k-j} \tilde{G}_{k+j+2,q} \frac{k!}{k+j+2} - q \sum_{l=0}^{k} \binom{k}{l} (-1)^{k-l} \tilde{G}_{k+l+1,q} \frac{k!}{k+l+1}$$

In other word, we consider the right-hand side of Theorem 2.5 as follows:

$$I_4 = [2]_q \sum_{j=0}^{[k/2]} \binom{k}{2j} \left(\frac{1}{2j+1} \right) 2^{k-2j+1} \sum_{l=0}^{k-2j+1} \binom{2k-2j+1}{l} \tilde{G}_{2k+1-2j-l,q} \int_{\mathbb{Z}_p} x^l d\mu_q(x)$$

$$+ \sum_{j=1}^{[k/2]} \binom{k}{2j-1} \left(\frac{1}{2j} \right) 2^{k-2j+1} \sum_{l=0}^{k-2j+1} \binom{2k-2j+1}{l} \tilde{G}_{2k+1-2j-l,q} \int_{\mathbb{Z}_p} x^l d\mu_q(x)$$

$$+ \sum_{j=0}^{[k/2]} \left(\frac{k}{2j+1} \right) \left\{ (q-1) \sum_{j=0}^{2k-2j} \binom{2k-2j-l}{l} \tilde{G}_{2k-2j-l,q} \int_{\mathbb{Z}_p} x^l d\mu_q(x) \right\}$$

$$+ \sum_{j=1}^{[k/2]} \left(\frac{k}{2j} \right) \left\{ \frac{q-1}{1+q} \sum_{l=0}^{2k-2j-1} \binom{2k-2j-1-l}{l} \tilde{G}_{2k-2j-1-l,q} \int_{\mathbb{Z}_p} x^l d\mu_q(x) \right\}$$

$$= [2]_q \sum_{j=0}^{[k/2]} \binom{k}{2j} \left(\frac{1}{2j+1} \right) 2^{k-2j+1} \sum_{l=0}^{k-2j+1} \binom{2k-2j+1}{l} \tilde{G}_{2k+1-2j-l,q} \tilde{G}_{l+1,q}$$

$$+ \sum_{j=1}^{[k/2]} \binom{k}{2j-1} \left(\frac{1}{2j} \right) 2^{k-2j+1} \sum_{l=0}^{k-2j+1} \binom{2k-2j+1}{l} \tilde{G}_{2k+1-2j-l,q} \tilde{G}_{l+1,q}$$

$$+ \sum_{j=0}^{[k/2]} \left(\frac{k}{2j+1} \right) \left\{ (q-1) \sum_{j=0}^{2k-2j} \binom{2k-2j-l}{l} \tilde{G}_{2k-2j-l,q} \frac{l}{l+1} \right\}$$

$$+ \sum_{j=1}^{[k/2]} \left(\frac{k}{2j} \right) \left\{ \frac{q-1}{1+q} \sum_{l=0}^{2k-2j-1} \binom{2k-2j-1-l}{l} \tilde{G}_{2k-2j-1-l,q} \frac{l}{l+1} \right\}$$

Equating I_3 and I_4, we complete the proof of the theorem. \qed

As $q \to 1$ in the above theorem, we reach interesting property in Analytic Numbers Theory concerning ordinary Genocchi polynomials.
Corollary 3.3. For $k \in \mathbb{N}$, one has
\[
\sum_{l=0}^{k} \binom{k}{l} (-1)^{k-l} \left\{ 2 \frac{G_{k+l+2}}{k+l+2} - G_{k+l+1} \right\} = 2 \sum_{j=0}^{[k/2]} \frac{\binom{k/2}{j}}{2k - 2j + 1} \sum_{l=0}^{2k-2j+1} \frac{\binom{2k-2j+1}{l}}{l+1} G_{2k+1-2j-l} G_{l+1}
\]
\[+ \sum_{j=1}^{[k/2]} \frac{\binom{k}{2j-1}}{2k - 2j + 1} \sum_{l=0}^{2k-2j+1} \frac{\binom{2k-2j+1}{l}}{l+1} G_{2k+1-2j-l} G_{l+1}.
\]
(3.7)

Theorem 3.4. For $m, k \in \mathbb{N}$, one has
\[
[2]_{q} \sum_{l=0}^{m} \binom{m}{l} (-1)^{m-l} B_{l+k,q} = \sum_{l=0}^{\max(k,m)} \frac{q^{(k)}}{k+m-j+1} \sum_{j=0}^{l} \frac{\binom{k+m-j+1}{l}}{l} G_{k+m+1-j-l} B_{l,q}.
\]
(3.8)

Proof. We consider (2.11) and (2.2) by means of q-Volkenborn integral. Then, by (2.11), we see
\[
[2]_{q} \int_{\mathbb{Z}} x^{k} (x-1)^{m} d\mu_{q}(x) = [2]_{q} \sum_{l=0}^{m} \binom{m}{l} (-1)^{m-l} \int_{\mathbb{Z}} x^{l+k} d\mu_{q}(x) = [2]_{q} \sum_{l=0}^{m} \binom{m}{l} (-1)^{m-l} B_{l+k,q}.
\]
(3.9)

On the other hand,
\[
\sum_{j=0}^{\max(k,m)} \frac{q^{(k)}}{k+m-j+1} \sum_{l=0}^{j} \frac{\binom{k+m-j+1}{l}}{l} G_{k+m+1-j-l} B_{l,q} = \sum_{j=0}^{\max(k,m)} \frac{q^{(k)}}{k+m-j+1} \sum_{l=0}^{j} \frac{\binom{k+m-j+1}{l}}{l} G_{k+m+1-j-l} B_{l,q}.
\]
(3.10)

Therefore, we get the proof of theorem. \hfill \Box

Corollary 3.5. For $k \in \mathbb{N}$, one gets
\[
\sum_{l=0}^{k} \binom{k}{l} (-1)^{k-l} \left\{ [2]_{q} B_{k+l+1,q} - q B_{k+l,q} \right\}
\]
\[= [2]_{q} \sum_{j=0}^{[k/2]} \frac{\binom{k}{j}}{2k - 2j + 1} \sum_{l=0}^{2k-2j+1} \frac{\binom{2k-2j+1}{l}}{l} G_{2k+1-2j-l} B_{l,q} + \sum_{j=1}^{[k/2]} \frac{\binom{2j-1}{j}}{2k - 2j + 1}
\]
\[\times \sum_{l=0}^{2k-2j+1} \frac{\binom{2k-2j+1}{l}}{l} G_{2k+1-2j-l} B_{l,q} + \left(\frac{q-1}{q+1} \right) \sum_{j=0}^{[k/2]} \frac{k}{2j+1} S_{k,j}^{q}
\]
(3.11)

where
\[S_{k,j}^{q} = [2]_{q} \sum_{j=0}^{2k-2j} \frac{1}{l(2k-2j)} \left(\frac{2k-2j}{l} \right) G_{2k-2j-l} B_{l,q} + \sum_{l=0}^{2k-2j} \frac{1}{l(2k-2j+1)} \left(\frac{2k-2j+1}{l} \right) G_{2k-2j-l} B_{l,q}.
\]
Proof. By using \(p \)-adic \(q \)-integral on \(\mathbb{Z}_p \) left-hand side of Theorem 2.5, we get

\[
I_5 = [2]_q \int_{\mathbb{Z}_p} x^k(x - 1)^k ([2]x - q) \, d\mu_q(x) \\
= [2]_q \sum_{l=0}^{k} \binom{k}{l} (-1)^{k-l} \int_{\mathbb{Z}_p} x^{k+l} \, d\mu_q(x) - q \sum_{l=0}^{k} \binom{k}{l} (-1)^{k-l} \int_{\mathbb{Z}_p} x^{k+l} \, d\mu_q(x) \\
= [2]_q \sum_{l=0}^{k} \binom{k}{l} (-1)^{k-l} \tilde{B}_{k+l,1,q} - q \sum_{l=0}^{k} \binom{k}{l} (-1)^{k-l} \tilde{B}_{k+l,1,q}. \\
\tag{3.12}
\]

Also, we compute the right-hand side of Theorem 2.5 as follows:

\[
I_6 = [2]_q \sum_{j=0}^{[k/2]} \frac{1}{2k - 2j + 1} \binom{k}{2j} \sum_{l=0}^{2k-2j+1} \binom{2k-2j+1}{l} \tilde{G}_{2k-2j-1,q} \int_{\mathbb{Z}_p} x^l \, d\mu_q(x) \\
+ \sum_{j=1}^{[k/2]} \frac{1}{2k - 2j + 1} \binom{k}{2j} \sum_{l=0}^{2k-2j+1} \binom{2k-2j+1}{l} \tilde{G}_{2k-2j-1,q} \int_{\mathbb{Z}_p} x^l \, d\mu_q(x) \\
+ \sum_{j=0}^{[k/2]} \binom{k}{2j+1} \left\{ \begin{array}{l}
\frac{q-1}{1+q} \sum_{l=0}^{2k-2j+1} \frac{1}{2k - 2j + 1} \binom{2k-2j+1}{l} \tilde{G}_{2k-2j-1,q} \int_{\mathbb{Z}_p} x^l \, d\mu_q(x) \\
\end{array} \right\} \\
= [2]_q \sum_{j=0}^{[k/2]} \frac{1}{2k - 2j + 1} \binom{k}{2j} \sum_{l=0}^{2k-2j+1} \binom{2k-2j+1}{l} \tilde{G}_{2k+1-2j-1,q} \tilde{B}_{l,q} \\
+ \sum_{j=1}^{[k/2]} \frac{1}{2k - 2j + 1} \binom{k}{2j-1} \sum_{l=0}^{2k-2j+1} \binom{2k-2j+1}{l} \tilde{G}_{2k+1-2j-1,q} \tilde{B}_{l,q} \\
+ \sum_{j=0}^{[k/2]} \binom{k}{2j+1} \left\{ \begin{array}{l}
\frac{q-1}{1+q} \sum_{l=0}^{2k-2j+1} \frac{1}{2k - 2j + 1} \binom{2k-2j+1}{l} \tilde{G}_{2k-2j-1,q} \tilde{B}_{l,q} \\
\end{array} \right\}. \\
\tag{3.13}
\]

Equating \(I_5 \) and \(I_6 \), we get the proof of Corollary. \qed

As \(q \to 1 \) in the above theorem, we easily derive the following corollary.
Corollary 3.6. For \(k \in \mathbb{N} \), one has
\[
\sum_{l=0}^{k} \binom{k}{l} (-1)^{k-l} [2B_{k+l+1} - B_{k+l}] = 2 \sum_{j=0}^{[k/2]} \binom{k}{2j} \sum_{l=0}^{2k-2j+1} \binom{2k-2j+1}{l} G_{2k+1-2j-l} B_l^{(l)} + \sum_{j=1}^{[k/2]} \binom{k}{2j-1} \sum_{l=0}^{2k-2j+1} \binom{2k-2j+1}{l} G_{2k+1-2j-l} B_l^{(l)}
\]

Acknowledgment

The author would like to express his sincere gratitude to the referee for his/her valuable comments and suggestions which have improved the presentation of the paper.

References

