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Abstract. 
We derive a necessary condition for exponent functions 
	
		
			
				𝑝
				,
				𝛽
			

		
	
 such that the variable exponent Hardy inequality 
	
		
			
				‖
				𝑥
			

			
				𝛽
				(
				𝑥
				)
				−
				1
			

			

				∫
			

			
				𝑥
				0
			

			
				𝑓
				(
				𝑡
				)
				𝑑
				𝑡
				‖
			

			

				𝐿
			

			
				𝑝
				(
				.
				)
			

			
				(
				0
				,
				𝑙
				)
			

			
				≤
				𝐶
				‖
				𝑥
			

			
				𝛽
				(
				𝑥
				)
			

			
				𝑓
				‖
			

			

				𝐿
			

			
				𝑝
				(
				.
				)
			

			
				(
				0
				,
				𝑙
				)
			

		
	
 holds.


1. Introduction
 A sufficient condition on measurable functions 
	
		
			
				𝑝
				∶
				(
				0
				,
				𝑙
				)
				→
				[
				1
				,
				∞
				)
			

		
	
, 
	
		
			
				𝛽
				∶
				(
				0
				,
				𝑙
				)
				→
				(
				−
				∞
				,
				∞
				)
			

		
	
 for which the variable exponent Hardy inequality
	
 		
 			
				(
				1
				.
				1
				)
			
 		
	

	
		
			
				‖
				‖
				|
				𝑥
				|
			

			
				𝛽
				(
				⋅
				)
				−
				1
			

			
				‖
				‖
				𝐻
				𝑓
			

			

				𝐿
			

			
				𝑝
				(
				⋅
				)
			

			
				(
				0
				,
				𝑙
				)
			

			
				‖
				‖
				≤
				𝐶
				|
				𝑥
				|
			

			
				𝛽
				(
				⋅
				)
			

			
				𝑓
				‖
				‖
			

			

				𝐿
			

			
				𝑝
				(
				⋅
				)
			

			
				(
				0
				,
				𝑙
				)
			

			
				
				,
				𝐻
				𝑓
				(
				𝑥
				)
				=
			

			
				𝑥
				0
			

			
				𝑓
				(
				𝑡
				)
				𝑑
				𝑡
			

		
	

					holds for all 
	
		
			
				𝑓
				≥
				0
			

		
	
 have been known (see [1–3]). According to mentioned works, if 
	
		
			
				𝛽
				(
				0
				)
				<
				1
				−
				(
				1
				/
				𝑝
				(
				0
				)
				)
			

		
	
, 
	
		
			

				𝑝
			

			

				−
			

			
				∶
				=
				i
				n
				f
				{
				𝑝
				(
				𝑥
				)
				∶
				𝑥
				∈
				(
				0
				,
				𝑙
				)
				}
				>
				1
			

		
	
, then a sufficient condition is 
	
		
			
				𝑝
				,
				𝛽
				∈
				Λ
			

		
	
, where 
	
		
			

				Λ
			

		
	
 means a class of measurable functions 
	
		
			
				𝑔
				∶
				(
				0
				,
				𝑙
				)
				→
				(
				−
				∞
				,
				∞
				)
			

		
	
 such that 
	
		
			
				∃
				𝑔
				(
				0
				)
				,
				𝐶
				>
				0
			

		
	

	
 		
 			
				(
				1
				.
				2
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				1
				𝑔
				(
				𝑥
				)
				−
				𝑔
				(
				0
				)
				l
				n
			

			
				
			
			
				1
				|
				𝑥
				|
				≤
				𝐶
				,
				0
				<
				𝑥
				<
			

			
				
			
			
				2
				.
			

		
	

 The purpose of this paper is to prove that a weaker continuity condition on 
	
		
			
				𝑝
				(
				⋅
				)
			

		
	
 and 
	
		
			
				𝛽
				(
				⋅
				)
			

		
	
 is necessary for the norm inequality to hold provided that 
	
		
			
				𝑝
				(
				⋅
				)
			

		
	
 and 
	
		
			
				𝛽
				(
				⋅
				)
			

		
	
 are monotone (see Theorems 2.1 and 2.2 for a precise statement), which is the following condition:
	
 		
 			
				(
				1
				.
				3
				)
			
 		
	

	
		
			
				|
				|
				|
				|
				1
				𝑔
				(
				2
				𝑥
				)
				−
				𝑔
				(
				𝑥
				)
				l
				n
			

			
				
			
			
				𝑥
				1
				≤
				𝐶
				,
				0
				<
				𝑥
				<
			

			
				
			
			
				2
				.
			

		
	

 Note that condition (1.3) is strictly weaker than (1.2). For example, it is satisfied by 
	
		
			
				𝑝
				(
				𝑥
				)
				=
				𝐶
				/
				|
				l
				o
				g
				(
				𝑥
				)
				|
			

			
				1
				/
				2
			

		
	
. This condition is new and somewhat surprising. Since in the corresponding theorem for the maximal operator, it is known that 
	
		
			
				𝑝
				(
				⋅
				)
			

		
	
 need not be continuous, and the problem of determining which exponent conditions are necessary and/or sufficient is an open one.
 If the powers are not monotone, it follows from the results of the paper [2] that condition (1.2) is close to be sharp. Also in [2], the necessity of conditions 
	
		
			

				𝑝
			

			

				−
			

			
				>
				1
			

		
	
 and 
	
		
			
				𝛽
				(
				0
				)
				<
				1
				−
				1
				/
				𝑝
				(
				0
				)
			

		
	
 was proved. Recently, there have been quite a number of papers discussing the Hardy inequality in norms of the variable exponent Lebesgue spaces [3–11].
 For problems of boundedness of classical integral operators in variable exponent Lebesgue spaces and regularity results for nonlinear equations with nonstandard growth condition, see monograph [12] and references therein. 
2. Main Results
 As to the basic properties of spaces 
	
		
			

				𝐿
			

			
				𝑝
				(
				⋅
				)
			

		
	
, we refer to [13]. Throughout this paper it is assumed that 
	
		
			
				𝑝
				(
				𝑥
				)
			

		
	
 is a measurable function in 
	
		
			
				(
				0
				,
				𝑙
				)
			

		
	
 taking its values from the interval 
	
		
			
				[
				1
				,
				∞
				)
			

		
	
 with 
	
		
			

				𝑝
			

			

				+
			

			
				∶
				=
				s
				u
				p
				{
				𝑝
				(
				x
				)
				∶
				𝑥
				∈
				(
				0
				,
				𝑙
				)
				}
				<
				∞
			

		
	
. The space of functions 
	
		
			

				𝐿
			

			
				𝑝
				(
				⋅
				)
			

			
				(
				0
				,
				𝑙
				)
			

		
	
 is introduced as the class of measurable functions 
	
		
			
				𝑓
				(
				𝑥
				)
			

		
	
 in 
	
		
			
				(
				0
				,
				𝑙
				)
			

		
	
, which have a finite 
	
		
			

				𝐼
			

			

				𝑝
			

			
				∫
				(
				𝑓
				)
				∶
				=
			

			
				𝑙
				0
			

			
				|
				𝑓
				(
				𝑥
				)
				|
			

			
				𝑝
				(
				𝑥
				)
			

			
				𝑑
				𝑥
			

		
	
-modular. A norm in 
	
		
			

				𝐿
			

			
				𝑝
				(
				⋅
				)
			

			
				(
				0
				,
				𝑙
				)
			

		
	
 is given in the form
	
 		
 			
				(
				2
				.
				1
				)
			
 		
	

	
		
			
				‖
				𝑓
				‖
			

			

				𝐿
			

			
				𝑝
				(
				⋅
				)
			

			
				(
				0
				,
				𝑙
				)
			

			
				
				=
				i
				n
				f
				𝜆
				>
				0
				∶
				𝐼
			

			

				𝑝
			

			
				
				𝑓
			

			
				
			
			
				𝜆
				
				
				.
				≤
				1
			

		
	

					There exists a relation between modular and norm, which is expressed by the following inequalities:
	
 		
 			
				(
				2
				.
				2
				)
			
 		
	

	
		
			
				‖
				𝑓
				‖
			

			

				𝑝
			

			

				+
			

			

				𝐿
			

			
				𝑝
				(
				⋅
				)
			

			
				(
				0
				,
				𝑙
				)
			

			
				≤
				𝐼
			

			

				𝑝
			

			
				(
				𝑓
				)
				≤
				‖
				𝑓
				‖
			

			

				𝑝
			

			

				−
			

			

				𝐿
			

			
				𝑝
				(
				⋅
				)
			

			
				(
				0
				,
				𝑙
				)
			

			
				,
				1
				≥
				‖
				𝑓
				‖
			

			
				𝑝
				(
				⋅
				)
			

			

				,
			

		
	
 
	
 		
 			
				(
				2
				.
				3
				)
			
 		
	

	
		
			
				‖
				𝑓
				‖
			

			

				𝑝
			

			

				−
			

			

				𝐿
			

			
				𝑝
				(
				⋅
				)
			

			
				(
				0
				,
				𝑙
				)
			

			
				≤
				𝐼
			

			

				𝑝
			

			
				(
				𝑓
				)
				≤
				‖
				𝑓
				‖
			

			

				𝑝
			

			

				+
			

			

				𝐿
			

			
				𝑝
				(
				⋅
				)
			

			
				(
				0
				,
				𝑙
				)
			

			
				,
				1
				≤
				‖
				𝑓
				‖
			

			
				𝑝
				(
				⋅
				)
			

			

				.
			

		
	

					Such estimates allow us to perform our estimates in terms of a modular. In the following two theorems, we show that if functions 
	
		
			
				𝑝
				,
				𝛽
			

		
	
 are monotone, then condition (1.3) for them is necessary for inequality (1.1) to hold.
Theorem 2.1.  Let 
	
		
			
				𝛽
				∈
				ℝ
			

		
	
 a function 
	
		
			
				𝑝
				∶
				(
				0
				,
				𝑙
				)
				→
				[
				1
				,
				∞
				)
			

		
	
 be increasing on 
	
		
			
				(
				0
				,
				𝜀
				)
			

		
	
 and such that 
	
		
			
				𝑝
				(
				0
				)
				=
				l
				i
				m
			

			
				𝑥
				→
				0
			

			
				𝑝
				(
				𝑥
				)
			

		
	
 exists, 
	
		
			
				𝛽
				(
				0
				)
				<
				1
				−
				1
				/
				𝑝
				(
				0
				)
			

		
	
, 
	
		
			

				𝑝
			

			

				−
			

			
				>
				1
			

		
	
. Then for inequality (1.1) to hold, it is necessary that for the function 
	
		
			
				𝑝
				(
				⋅
				)
			

		
	
 condition (1.3) is satisfied.
Theorem 2.2.  Let 
	
		
			
				𝑝
				∈
				ℝ
			

		
	
, let 
	
		
			
				𝛽
				∶
				(
				0
				,
				𝑙
				)
				→
				[
				−
				∞
				,
				∞
				)
			

		
	
 be a function decreasing on 
	
		
			
				(
				0
				,
				𝜀
				)
			

		
	
 such that 
	
		
			
				𝛽
				(
				0
				)
				=
				l
				i
				m
			

			
				𝑥
				→
				0
			

			
				𝛽
				(
				𝑥
				)
			

		
	
 exists, and let the conditions 
	
		
			
				𝛽
				(
				0
				)
				<
				1
				−
				1
				/
				𝑝
				(
				0
				)
			

		
	
, 
	
		
			

				𝑝
			

			

				−
			

			
				>
				1
			

		
	
 be satisfied. Then for inequality (1.1) to hold, it is necessary that for the function 
	
		
			
				𝛽
				(
				⋅
				)
			

		
	
 condition (1.3) is satisfied.
The following two theorems show that the logarithmic regularity conditions (1.2) for the functions 
	
		
			
				𝑝
				,
				𝛽
			

		
	
 are essential for inequality (1.1) to hold.
Theorem 2.3.  Let 
	
		
			
				𝛽
				∈
				ℝ
			

		
	
, and 
	
		
			

				𝛿
			

			

				𝑛
			

			
				=
				4
			

			
				−
				𝑛
			

			
				,
				𝑛
				∈
				ℕ
			

		
	
. There exist a sequence of functions 
	
		
			
				{
				𝑓
			

			

				𝑛
			

			

				}
			

		
	
 and a function 
	
		
			
				𝑝
				∶
				(
				0
				,
				𝑙
				)
				→
				[
				1
				,
				∞
				)
			

		
	
 satisfying the conditions 
	
		
			
				𝛽
				<
				1
				−
				1
				/
				𝑝
				(
				0
				)
			

		
	
, 
	
		
			

				𝑝
			

			

				−
			

			
				>
				1
			

		
	
 such that
							
	
 		
 			
				(
				2
				.
				4
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				|
				|
				𝑝
				
				𝛿
			

			

				𝑛
			

			
				
				|
				|
				1
				−
				𝑝
				(
				0
				)
				l
				n
			

			
				
			
			

				𝛿
			

			

				𝑛
			

			
				=
				∞
				,
			

		
	

						and inequality (1.1) is violated.
Theorem 2.4.  Let 
	
		
			
				𝑝
				>
				1
			

		
	
, 
	
		
			

				𝛿
			

			

				𝑛
			

			
				=
				4
			

			
				−
				𝑛
			

			
				,
				𝑛
				∈
				ℕ
			

		
	
. Then there exist a sequence of functions 
	
		
			
				{
				𝑓
			

			

				𝑛
			

			

				}
			

		
	
 and a function 
	
		
			
				𝛽
				∶
				(
				0
				,
				𝑙
				)
				→
				(
				−
				∞
				,
				∞
				)
			

		
	
 satisfying the conditions 
	
		
			
				𝛽
				(
				0
				)
				<
				1
				−
				1
				/
				𝑝
			

		
	
,
							
	
 		
 			
				(
				2
				.
				5
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				|
				|
				𝛽
				
				𝛿
			

			

				𝑛
			

			
				
				|
				|
				1
				−
				𝛽
				(
				0
				)
				l
				n
			

			
				
			
			

				𝛿
			

			

				𝑛
			

			
				,
				=
				∞
			

		
	

						such that inequality (1.1) is violated.
3. Proofs of Main Results
Proof of Theorem 2.1. Denote 
	
		
			

				𝐼
			

			
				𝑝
				(
				⋅
				)
			

			
				∫
				(
				𝑓
				)
				=
			

			
				𝑙
				0
			

			
				|
				𝑓
				(
				𝑡
				)
				|
			

			
				𝑝
				(
				𝑡
				)
			

			
				𝑑
				𝑡
			

		
	
. By (2.2) note that the condition 
	
		
			

				𝐼
			

			

				𝑝
			

			
				(
				𝑓
				)
				≤
				1
			

		
	
 is equivalent to 
	
		
			
				‖
				𝑓
				‖
			

			

				𝐿
			

			
				𝑝
				(
				.
				)
			

			
				(
				0
				,
				𝑙
				)
			

			
				≤
				1
			

		
	
. Put 
	
		
			

				𝛿
			

			

				𝑘
			

			
				=
				𝜀
				4
			

			
				−
				𝑘
			

			
				,
				𝑘
				∈
				ℕ
			

		
	
, and 
	
		
			

				𝑓
			

			

				𝑘
			

			
				(
				𝑥
				)
				=
				𝑥
			

			
				−
				1
				/
				𝑝
				(
				𝑥
				)
				−
				𝛽
			

			

				𝜒
			

			
				(
				𝛿
			

			

				𝑘
			

			
				,
				2
				𝛿
			

			

				𝑘
			

			

				)
			

			
				(
				𝑥
				)
				,
				𝑥
				∈
				(
				0
				,
				𝑙
				)
			

		
	
. Then for sufficiently large 
	
		
			

				𝑘
			

		
	
,
							
	
 		
 			
				(
				3
				.
				1
				)
			
 		
	

	
		
			

				𝐼
			

			
				𝑝
				(
				⋅
				)
			

			
				
				𝑥
			

			
				𝛽
				(
				𝑥
				)
			

			

				𝑓
			

			

				𝑘
			

			
				
				=
				
				(
				𝑥
				)
			

			
				2
				𝛿
			

			

				𝑘
			

			

				𝛿
			

			

				𝑘
			

			
				
				𝑡
			

			

				𝛽
			

			

				𝑡
			

			
				−
				1
				/
				𝑝
				(
				𝑡
				)
				−
				𝛽
			

			

				
			

			
				𝑝
				(
				𝑡
				)
			

			
				=
				
				𝑑
				𝑡
			

			
				2
				𝛿
			

			

				𝑘
			

			

				𝛿
			

			

				𝑘
			

			

				𝑡
			

			
				−
				1
			

			
				𝑑
				𝑡
				=
				l
				n
				2
				.
			

		
	

						Also
							
	
 		
 			
				(
				3
				.
				2
				)
			
 		
	

	
		
			

				𝐼
			

			
				𝑝
				(
				⋅
				)
			

			
				
				𝑥
			

			
				𝛽
				(
				𝑥
				)
				−
				1
			

			
				𝐻
				
				𝑓
			

			

				𝑘
			

			
				(
				≥
				
				𝑥
				)
				
				
			

			
				4
				𝛿
			

			

				𝑘
			

			
				3
				𝛿
			

			

				𝑘
			

			
				
				𝑥
			

			
				(
				𝛽
				−
				1
				)
			

			

				
			

			
				2
				𝛿
			

			

				𝑘
			

			

				𝛿
			

			

				𝑘
			

			

				𝑡
			

			
				−
				(
				1
				/
				𝑝
				(
				𝑡
				)
				)
				−
				𝛽
			

			
				
				𝑑
				𝑡
			

			
				𝑝
				(
				𝑥
				)
			

			
				
				𝑑
				𝑥
				≥
				𝐶
			

			
				4
				𝛿
			

			

				𝑘
			

			
				3
				𝛿
			

			

				𝑘
			

			

				𝛿
			

			
				(
				1
				−
				1
				/
				𝑝
				(
				2
				𝛿
			

			

				𝑘
			

			
				𝑘
				)
				−
				𝛽
				)
			

			

				𝑥
			

			
				(
				𝛽
				−
				1
				)
				𝑝
				(
				2
				𝛿
			

			

				𝑘
			

			

				)
			

			
				𝑑
				𝑥
				≥
				𝐶
				𝛿
			

			
				1
				−
				𝑝
				(
				3
				𝛿
			

			

				𝑘
			

			
				)
				/
				𝑝
				(
				2
				𝛿
			

			

				𝑘
			

			
				)
				𝑘
			

			
				=
				𝐶
				𝑒
			

			
				(
				1
				/
				𝑝
			

			

				+
			

			
				)
				[
				𝑝
				(
				3
				𝛿
			

			

				𝑘
			

			
				)
				−
				𝑝
				(
				2
				𝛿
			

			

				k
			

			
				)
				]
				l
				n
				(
				1
				/
				2
				𝛿
			

			

				𝑘
			

			

				)
			

			

				.
			

		
	

						Applying inequality (1.1), we have
							
	
 		
 			
				(
				3
				.
				3
				)
			
 		
	

	
		
			
				|
				|
				𝑝
				
				3
				𝛿
			

			

				𝑘
			

			
				
				
				−
				𝑝
				2
				𝛿
			

			

				𝑘
			

			
				
				|
				|
				1
				l
				n
			

			
				
			
			
				2
				𝛿
			

			

				𝑘
			

			
				,
				≤
				𝐶
				,
				𝑘
				∈
				ℕ
			

		
	

						which by using of monotony of 
	
		
			

				𝑝
			

		
	
 and its boundedness implies (1.3). This completes the proof of Theorem 2.1.
Proof of Theorem 2.2. Put 
	
		
			

				𝛿
			

			

				𝑘
			

			
				=
				𝜀
				4
			

			
				−
				𝑘
			

			
				,
				𝑘
				∈
				ℕ
			

		
	
 and 
	
		
			

				𝑓
			

			

				𝑘
			

			
				(
				𝑥
				)
				=
				𝑥
			

			
				−
				1
				/
				𝑝
				−
				𝛽
				(
				𝑥
				)
			

			

				𝜒
			

			
				(
				𝛿
			

			

				𝑘
			

			
				,
				2
				𝛿
			

			

				𝑘
			

			

				)
			

			
				(
				𝑥
				)
				,
				𝑥
				∈
				(
				0
				,
				𝑙
				)
			

		
	
. Then
							
	
 		
 			
				(
				3
				.
				4
				)
			
 		
	

	
		
			

				𝐼
			

			
				𝑝
				(
				⋅
				)
			

			
				
				𝑥
			

			
				𝛽
				(
				𝑥
				)
			

			

				𝑓
			

			

				𝑘
			

			
				
				=
				
				(
				𝑥
				)
			

			
				2
				𝛿
			

			

				𝑘
			

			

				𝛿
			

			

				𝑘
			

			
				
				𝑡
			

			
				𝛽
				(
				𝑡
				)
			

			

				𝑡
			

			
				−
				1
				/
				𝑝
				−
				𝛽
				(
				𝑡
				)
			

			

				
			

			
				𝑝
				(
				𝑡
				)
			

			
				=
				
				𝑑
				𝑡
			

			
				2
				𝛿
			

			

				𝑘
			

			

				𝛿
			

			

				𝑘
			

			

				𝑡
			

			
				−
				1
			

			
				𝑑
				𝑡
				=
				l
				n
				2
				.
			

		
	

						Also
							
	
 		
 			
				(
				3
				.
				5
				)
			
 		
	

	
		
			

				𝐼
			

			
				𝑝
				(
				⋅
				)
			

			
				
				𝑥
			

			
				𝛽
				(
				𝑥
				)
				−
				1
			

			
				𝐻
				
				𝑓
			

			

				𝑘
			

			
				(
				≥
				
				𝑥
				)
				
				
			

			
				4
				𝛿
			

			

				𝑘
			

			
				3
				𝛿
			

			

				𝑘
			

			
				
				𝑥
			

			
				𝛽
				(
				𝑥
				)
				−
				1
			

			

				
			

			
				2
				𝛿
			

			

				𝑘
			

			

				𝛿
			

			

				𝑘
			

			

				𝑡
			

			
				−
				1
				/
				𝑝
				−
				𝛽
				(
				𝑡
				)
			

			
				
				𝑑
				𝑡
			

			
				𝑝
				(
				𝑥
				)
			

			
				𝑑
				𝑥
				≥
				𝐶
				𝛿
			

			
				[
				𝛽
				(
				3
				𝛿
			

			

				𝑘
			

			
				)
				−
				𝛽
				(
				2
				𝛿
			

			

				𝑘
			

			
				𝑘
				)
				]
				𝑝
			

			
				≥
				𝐶
				𝑒
			

			
				𝑝
				[
				𝛽
				(
				3
				𝛿
			

			

				𝑘
			

			
				)
				−
				𝛽
				(
				2
				𝛿
			

			

				𝑘
			

			
				)
				]
				l
				n
				(
				1
				/
				𝛿
			

			

				𝑘
			

			

				)
			

			

				.
			

		
	

						Applying inequality (1.1), we have
							
	
 		
 			
				(
				3
				.
				6
				)
			
 		
	

	
		
			
				|
				|
				𝛽
				
				2
				𝛿
			

			

				𝑘
			

			
				
				
				−
				𝛽
				3
				𝛿
			

			

				𝑘
			

			
				
				|
				|
				1
				l
				n
			

			
				
			
			

				𝛿
			

			

				𝑘
			

			
				≤
				𝐶
				,
				𝑘
				∈
				ℕ
			

		
	

						which by using monotony of 
	
		
			

				𝛽
			

		
	
 implies (1.3). This completes the proof of Theorem 2.2.
Proof of Theorem 2.3. Let us assume that 
	
		
			

				𝑓
			

			

				𝑘
			

			
				(
				𝑥
				)
				=
				𝑥
			

			
				−
				1
				/
				𝑝
				(
				𝑥
				)
				−
				𝛽
			

			

				𝜒
			

			
				(
				𝛿
			

			

				𝑘
			

			
				,
				2
				𝛿
			

			

				𝑘
			

			

				)
			

			
				(
				𝑥
				)
			

		
	
, 
	
		
			
				𝑥
				∈
				(
				0
				,
				𝑙
				)
			

		
	
. Fix 
	
		
			
				𝑘
				∈
				ℕ
			

		
	
. We define the step function
							
	
 		
 			
				(
				3
				.
				7
				)
			
 		
	

	
		
			
				
				𝑝
				𝑝
				(
				𝑥
				)
				=
			

			

				0
			

			
				+
				𝛼
			

			

				𝑛
			

			
				
				i
				f
				𝑥
				∈
				2
				𝛿
			

			

				𝑛
			

			
				,
				4
				𝛿
			

			

				𝑛
			

			
				
				,
				𝑝
			

			

				0
			

			
				
				𝛿
				i
				f
				𝑥
				∈
			

			

				𝑛
			

			
				,
				2
				𝛿
			

			

				𝑛
			

			
				
				,
				𝑛
				∈
				ℕ
				.
			

		
	

						Here 
	
		
			
				{
				𝛼
			

			

				𝑛
			

			

				}
			

		
	
is a sequence of positive numbers that satisfies the condition
							
	
 		
 			
				(
				3
				.
				8
				)
			
 		
	

	
		
			
				𝑛
				𝛼
			

			

				𝑛
			

			
				⟶
				∞
				a
				s
				𝑛
				⟶
				∞
				.
			

		
	

						Then 
	
		
			

				𝛼
			

			

				𝑛
			

			
				l
				n
				(
				1
				/
				𝛿
			

			

				𝑛
			

			
				)
				→
				∞
			

		
	
 as 
	
		
			
				𝑛
				→
				∞
			

		
	
; that is, condition (1.2) is not satisfied for the function 
	
		
			
				𝑝
				(
				𝑥
				)
			

		
	
. Also note that this function 
	
		
			
				𝑝
				(
				⋅
				)
			

		
	
 is not monotone. We have
							
	
 		
 			
				(
				3
				.
				9
				)
			
 			
				(
				3
				.
				1
				0
				)
			
 		
	

	
		
			

				𝐼
			

			
				𝑝
				(
				⋅
				)
			

			
				
				𝑥
			

			

				𝛽
			

			

				𝑓
			

			

				𝑘
			

			
				
				=
				
				(
				𝑥
				)
			

			
				2
				𝛿
			

			

				𝑘
			

			

				𝛿
			

			

				𝑘
			

			
				
				𝑡
			

			

				𝛽
			

			

				𝑡
			

			
				−
				1
				/
				𝑝
				(
				𝑡
				)
				−
				𝛽
			

			

				
			

			
				𝑝
				(
				𝑡
				)
			

			
				=
				
				𝑑
				𝑡
			

			
				2
				𝛿
			

			

				𝑘
			

			

				𝛿
			

			

				𝑘
			

			

				𝑡
			

			
				−
				1
			

			
				𝐼
				𝑑
				𝑡
				=
				l
				n
				2
				,
			

			
				𝑝
				(
				⋅
				)
			

			
				
				𝑥
			

			
				𝛽
				−
				1
			

			
				𝐻
				
				𝑓
			

			

				𝑘
			

			
				≥
				
				(
				𝑥
				)
				
				
			

			
				4
				𝛿
			

			

				𝑘
			

			
				2
				𝛿
			

			

				𝑘
			

			
				
				
			

			
				2
				𝛿
			

			

				𝑘
			

			

				𝛿
			

			

				𝑘
			

			

				𝑡
			

			
				−
				1
				/
				𝑝
				(
				𝑡
				)
				−
				𝛽
			

			
				
				𝑑
				𝑡
			

			
				(
				𝑝
			

			

				0
			

			
				+
				𝛼
			

			

				𝑘
			

			

				)
			

			

				𝑥
			

			
				(
				𝛽
				−
				1
				)
				(
				𝑝
			

			

				0
			

			
				+
				𝛼
			

			

				𝑘
			

			

				)
			

			
				
				𝑑
				𝑥
				≥
				𝐶
			

			
				4
				𝛿
			

			

				𝑘
			

			
				2
				𝛿
			

			

				𝑘
			

			

				𝛿
			

			
				(
				1
				−
				1
				/
				𝑝
			

			

				0
			

			
				−
				𝛽
				)
				(
				𝑝
			

			

				0
			

			
				+
				𝛼
			

			

				𝑘
			

			
				)
				𝑘
			

			

				𝑥
			

			
				(
				𝛽
				−
				1
				)
				(
				𝑝
			

			

				0
			

			
				+
				𝛼
			

			

				𝑘
			

			

				)
			

			
				𝑑
				𝑥
				≥
				𝐶
				𝛿
			

			
				−
				𝛼
			

			

				𝑘
			

			
				/
				𝑝
			

			

				0
			

			

				𝑘
			

			
				=
				𝐶
				𝑒
			

			

				𝛼
			

			

				𝑘
			

			
				/
				𝑝
			

			

				0
			

			
				l
				n
				(
				1
				/
				𝛿
			

			

				𝑘
			

			

				)
			

			
				⟶
				∞
				a
				s
				𝑘
				⟶
				∞
				.
			

		
	

						The last relation shows violating of inequality (1.1) for sufficiently large 
	
		
			

				𝑘
			

		
	
.
Proof of Theorem 2.4. Let us assume that 
	
		
			

				𝑓
			

			

				𝑘
			

			
				(
				𝑥
				)
				=
				𝑥
			

			
				−
				1
				/
				𝑝
				−
				𝛽
				(
				𝑥
				)
			

			

				𝜒
			

			
				(
				𝛿
			

			

				𝑛
			

			
				,
				2
				𝛿
			

			

				𝑛
			

			

				)
			

			
				(
				𝑥
				)
			

		
	
, 
	
		
			
				𝑥
				∈
				(
				0
				,
				𝑙
				)
			

		
	
, 
	
		
			
				𝑛
				∈
				ℕ
			

		
	
. Fix 
	
		
			
				𝑛
				∈
				ℕ
			

		
	
. We define the step function 
	
		
			

				𝛽
			

		
	
 as
							
	
 		
 			
				(
				3
				.
				1
				1
				)
			
 		
	

	
		
			
				
				𝛽
				𝛽
				(
				𝑥
				)
				=
			

			

				0
			

			
				+
				𝛼
			

			

				𝑛
			

			
				
				𝛿
				i
				f
				𝑥
				∈
			

			

				𝑛
			

			
				,
				2
				𝛿
			

			

				𝑛
			

			
				
				,
				𝛽
			

			

				0
			

			
				
				i
				f
				𝑥
				∈
				2
				𝛿
			

			

				𝑛
			

			
				,
				4
				𝛿
			

			

				𝑛
			

			
				
				,
				𝑛
				∈
				ℕ
				,
			

		
	

						where 
	
		
			

				𝛼
			

			

				𝑛
			

			
				l
				n
				(
				1
				/
				𝛿
			

			

				𝑛
			

			
				)
				→
				∞
			

		
	
; that is, condition (1.2) is not satisfied for the function 
	
		
			

				𝛽
			

		
	
. Note that this function 
	
		
			

				𝛽
			

		
	
 is not monotone.We have
							
	
 		
 			
				(
				3
				.
				1
				2
				)
			
 			
				(
				3
				.
				1
				3
				)
			
 		
	

	
		
			

				𝐼
			

			
				𝑝
				(
				⋅
				)
			

			
				
				𝑥
			

			
				𝛽
				(
				𝑥
				)
				−
				1
			

			

				𝑓
			

			

				𝑛
			

			
				
				(
				𝑥
				)
				≥
				𝐶
				𝛿
			

			
				−
				𝑝
				𝛼
			

			

				𝑛
			

			

				𝑛
			

			
				𝐼
				⟶
				∞
				a
				s
				𝑛
				⟶
				∞
				,
			

			
				𝑝
				(
				⋅
				)
			

			
				
				𝑥
			

			
				𝛽
				(
				𝑥
				)
			

			

				𝑓
			

			

				𝑛
			

			
				
				(
				𝑥
				)
				≤
				𝐶
			

			

				0
			

			
				l
				n
				2
				.
			

		
	

						The last relation contradicts to inequality (1.1) for sufficiently large 
	
		
			

				𝑘
			

		
	
.
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