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Abstract. 
We examine some properties of the invariant mean, define the concepts of strong 
	
		
			

				𝜎
			

		
	
-convergence and absolute 
	
		
			

				𝜎
			

		
	
-convergence for double sequences, and determine the associated sublinear functionals. We also define the absolute invariant mean through which the space of absolutely 
	
		
			

				𝜎
			

		
	
-convergent double sequences is characterized.


1. Introduction and Preliminaries
For the following notions, we refer to [1, 2].
A double sequence 
	
		
			
				𝑥
				=
				(
				𝑥
			

			
				𝑗
				𝑘
			

			

				)
			

		
	
 of real or complex numbers is said to be bounded if
	
 		
 			
				(
				1
				.
				1
				)
			
 		
	

	
		
			
				‖
				𝑥
				‖
			

			

				∞
			

			
				=
				s
				u
				p
			

			
				𝑗
				,
				𝑘
			

			
				|
				|
				𝑥
			

			
				𝑗
				𝑘
			

			
				|
				|
				<
				∞
				.
			

		
	

					The space of all bounded double sequences is denoted by 
	
		
			

				ℳ
			

			

				𝑢
			

		
	
.
 A double sequence 
	
		
			
				𝑥
				=
				(
				𝑥
			

			
				𝑗
				𝑘
			

			

				)
			

		
	
 is said to converge to the limit L  in Pringsheim’s sense (shortly, p-convergent to L) if for every 
	
		
			
				𝜀
				>
				0
			

		
	
 there exists an integer 
	
		
			

				𝑁
			

		
	
 such that 
	
		
			
				|
				𝑥
			

			
				𝑗
				𝑘
			

			
				−
				𝐿
				|
				<
				𝜀
			

		
	
 whenever 
	
		
			
				𝑗
				,
				𝑘
				>
				𝑁
			

		
	
. In this case 
	
		
			

				𝐿
			

		
	
 is called the 
	
		
			

				𝑝
			

		
	
-limit of 
	
		
			

				𝑥
			

		
	
. If in addition 
	
		
			
				𝑥
				∈
				ℳ
			

			

				𝑢
			

		
	
, then 
	
		
			

				𝑥
			

		
	
 is said to be boundedly convergent to L in Pringsheim’s sense (shortly, bp-convergent to L).
 A double sequence 
	
		
			
				𝑥
				=
				(
				𝑥
			

			
				𝑗
				𝑘
			

			

				)
			

		
	
 is said to converge regularly to L (shortly, r-convergent to L) if 
	
		
			

				𝑥
			

		
	
 is 
	
		
			

				𝑝
			

		
	
-convergent and the limits 
	
		
			

				𝑥
			

			

				𝑗
			

			
				∶
				=
				l
				i
				m
			

			

				𝑘
			

			

				𝑥
			

			
				𝑗
				𝑘
			

			
				(
				𝑗
				∈
				ℕ
				)
			

		
	
 and 
	
		
			

				𝑥
			

			

				𝑘
			

			
				∶
				=
				l
				i
				m
			

			

				𝑗
			

			

				𝑥
			

			
				𝑗
				𝑘
			

			
				(
				𝑘
				∈
				ℕ
				)
			

		
	
 exist. Note that in this case the limits 
	
		
			
				l
				i
				m
			

			

				𝑗
			

			
				l
				i
				m
			

			

				𝑘
			

			

				𝑥
			

			
				𝑗
				𝑘
			

		
	
 and 
	
		
			
				l
				i
				m
			

			

				𝑘
			

			
				l
				i
				m
			

			

				𝑗
			

			

				𝑥
			

			
				𝑗
				𝑘
			

		
	
 exist and are equal to the 
	
		
			

				𝑝
			

		
	
-limit of 
	
		
			

				𝑥
			

		
	
.
 In general, for any notion of convergence 
	
		
			

				𝜈
			

		
	
, the space of all 
	
		
			

				𝜈
			

		
	
-convergent double sequences will be denoted by 
	
		
			

				𝒞
			

			

				𝜈
			

		
	
 and the limit of a 
	
		
			

				𝜈
			

		
	
-convergent double sequence 
	
		
			

				𝑥
			

		
	
 by 
	
		
			
				𝜈
				-
				l
				i
				m
			

			
				𝑗
				,
				𝑘
			

			

				𝑥
			

			
				𝑗
				𝑘
			

		
	
, where 
	
		
			
				𝜈
				∈
				{
				𝑝
				,
				𝑏
				𝑝
				,
				𝑟
				}
			

		
	
.
 Let 
	
		
			

				Ω
			

		
	
 denote the vector space of all double sequences with the vector space operations defined coordinatewise. Vector subspaces of 
	
		
			

				Ω
			

		
	
 are called double sequence spaces.
All considered double sequence spaces are supposed to contain
	
 		
 			
				(
				1
				.
				2
				)
			
 		
	

	
		
			
				
				𝐞
				s
				p
				a
				n
			

			
				𝐣
				𝐤
			

			
				
				,
				∣
				𝑗
				,
				𝑘
				∈
				ℕ
			

		
	

					where
	
 		
 			
				(
				1
				.
				3
				)
			
 		
	

	
		
			

				𝐞
			

			
				𝐣
				𝐤
				𝐢
				𝐥
			

			
				=
				
				1
				,
				i
				f
				(
				𝑗
				,
				𝑘
				)
				=
				(
				𝑖
				,
				ℓ
				)
				,
				0
				,
				o
				t
				h
				e
				r
				w
				i
				s
				e
				.
			

		
	

 We denote the pointwise sums 
	
		
			

				∑
			

			
				𝑗
				,
				𝑘
			

			

				𝐞
			

			
				𝐣
				𝐤
			

		
	
, 
	
		
			

				∑
			

			

				𝑗
			

			

				𝐞
			

			
				𝐣
				𝐤
			

			
				(
				𝑘
				∈
				ℕ
				)
			

		
	
, and 
	
		
			

				∑
			

			

				𝑘
			

			

				𝐞
			

			
				𝐣
				𝐤
			

		
	
, 
	
		
			
				(
				𝑗
				∈
				ℕ
				)
			

		
	
 by 
	
		
			

				𝐞
			

		
	
, 
	
		
			

				𝐞
			

			

				𝐤
			

		
	
 and 
	
		
			

				𝐞
			

			

				𝐣
			

		
	
, respectively.
 Let 
	
		
			

				𝐸
			

		
	
 be the space of double sequences converging with respect to a convergence notion 
	
		
			

				𝜈
			

		
	
, 
	
		
			

				𝐹
			

		
	
 a double sequence space, and 
	
		
			
				𝐴
				=
				(
				𝑎
			

			
				𝑚
				𝑛
				𝑗
				𝑘
			

			

				)
			

		
	
 a 4-dimensional matrix of scalars. Define the set
	
 		
 			
				(
				1
				.
				4
				)
			
 		
	

	
		
			

				𝐹
			

			
				𝐴
				(
				𝜈
				)
			

			
				
				[
				]
				∶
				=
				𝑥
				∈
				Ω
				∣
				𝐴
				𝑥
			

			
				𝑚
				𝑛
			

			
				
				∶
				=
				𝜈
				-
			

			
				𝑗
				,
				𝑘
			

			

				𝑎
			

			
				𝑚
				𝑛
				𝑗
				𝑘
			

			

				𝑥
			

			
				𝑗
				𝑘
			

			
				
				[
				]
				e
				x
				i
				s
				t
				s
				a
				n
				d
				𝐴
				𝑥
				∶
				=
				𝐴
				𝑥
			

			
				𝑚
				𝑛
			

			

				
			

			
				𝑚
				,
				𝑛
			

			
				
				.
				∈
				𝐹
			

		
	

					Then we say that 
	
		
			

				𝐴
			

		
	
 maps the space 
	
		
			

				𝐸
			

		
	
 into the space 
	
		
			

				𝐹
			

		
	
 if 
	
		
			
				𝐸
				⊂
				𝐹
			

			
				𝐴
				(
				𝜈
				)
			

		
	
 and denote by 
	
		
			
				(
				𝐸
				,
				𝐹
				)
			

		
	
 the set of all 4-dimensional matrices 
	
		
			

				𝐴
			

		
	
 which map 
	
		
			

				𝐸
			

		
	
 into 
	
		
			

				𝐹
			

		
	
.
 We say that a 4-dimensional matrix 
	
		
			

				𝐴
			

		
	
 is 
	
		
			

				𝒞
			

			

				𝜈
			

		
	
-conservative if 
	
		
			

				𝒞
			

			

				𝜈
			

			
				⊂
				𝒞
			

			
				(
				𝜈
				)
				𝜈
				𝐴
			

		
	
, and 
	
		
			

				𝒞
			

			

				𝜈
			

		
	
-regular if in addition
	
 		
 			
				(
				1
				.
				5
				)
			
 		
	

	
		
			
				𝜈
				-
				l
				i
				m
				𝐴
				𝑥
				∶
				=
				𝜈
				-
				l
				i
				m
			

			
				𝑚
				,
				𝑛
			

			
				[
				]
				𝐴
				𝑥
			

			
				𝑚
				𝑛
			

			
				=
				𝜈
				-
				l
				i
				m
			

			
				𝑚
				,
				𝑛
			

			

				𝑥
			

			
				𝑚
				𝑛
			

			
				
				𝑥
				∈
				𝒞
			

			

				𝜈
			

			
				
				,
			

		
	

					where
	
 		
 			
				(
				1
				.
				6
				)
			
 		
	

	
		
			

				𝒞
			

			
				(
				𝜈
				)
				𝜈
				𝐴
			

			
				
				[
				]
				∶
				=
				𝑥
				∈
				Ω
				∣
				𝐴
				𝑥
			

			
				𝑚
				𝑛
			

			
				
				∶
				=
				𝜈
				-
			

			
				𝑗
				,
				𝑘
			

			

				𝑎
			

			
				𝑚
				𝑛
				𝑗
				𝑘
			

			

				𝑥
			

			
				𝑗
				𝑘
			

			
				
				[
				]
				e
				x
				i
				s
				t
				s
				a
				n
				d
				𝐴
				𝑥
				∶
				=
				𝐴
				𝑥
			

			
				𝑚
				𝑛
			

			

				
			

			
				𝑚
				,
				𝑛
			

			
				∈
				𝒞
			

			

				𝜈
			

			
				
				.
			

		
	

Matrix transformations for double sequences are considered by various authors, namely, [3–5].
 Let 
	
		
			

				𝜎
			

		
	
 be a one-to-one mapping from the set 
	
		
			

				ℕ
			

			

				0
			

			
				=
				{
				0
				,
				1
				,
				2
				,
				…
				.
				}
			

		
	
 into itself. A continuous linear functional 
	
		
			

				𝜑
			

		
	
 on 
	
		
			

				𝑙
			

			

				∞
			

		
	
 is said to be an invariant mean or a 
	
		
			

				𝜎
			

		
	
-mean (see [6, 7]) if and only if (i) 
	
		
			
				𝜑
				(
				𝑥
				)
				≥
				0
			

		
	
 when the sequence 
	
		
			
				𝑥
				=
				(
				𝑥
			

			

				𝑘
			

			

				)
			

		
	
 has 
	
		
			

				𝑥
			

			

				𝑘
			

			
				≥
				0
			

		
	
 for all 
	
		
			

				𝑘
			

		
	
, (ii) 
	
		
			
				𝜑
				(
				𝑒
				)
				=
				1
			

		
	
, where 
	
		
			
				𝑒
				=
				(
				1
				,
				1
				,
				1
				,
				…
				)
			

		
	
, and (iii) 
	
		
			
				𝜑
				(
				𝑥
				)
				=
				𝜑
				(
				𝑥
			

			
				𝜎
				(
				𝑘
				)
			

			

				)
			

		
	
 for all 
	
		
			
				𝑥
				∈
				𝑙
			

			

				∞
			

		
	
.
We say that a sequence 
	
		
			
				𝑥
				=
				(
				𝑥
			

			

				𝑘
			

			

				)
			

		
	
 is 
	
		
			

				𝜎
			

		
	
-convergent to the limit 
	
		
			

				𝐿
			

		
	
 if 
	
		
			
				𝜑
				(
				𝑥
				)
				=
				𝐿
			

		
	
 for all 
	
		
			

				𝜎
			

		
	
-means 
	
		
			

				𝜑
			

		
	
. We denote by 
	
		
			

				𝑉
			

			

				𝜎
			

		
	
 the set of all 
	
		
			

				𝜎
			

		
	
-convergent sequences 
	
		
			
				𝑥
				=
				(
				𝑥
			

			

				𝑘
			

			

				)
			

		
	
. Clearly 
	
		
			
				𝑐
				⊂
				𝑉
			

			

				𝜎
			

		
	
.  Note that a 
	
		
			

				𝜎
			

		
	
-mean extends the limit functional on 
	
		
			

				𝑐
			

		
	
 in the sense that 
	
		
			
				𝜑
				(
				𝑥
				)
				=
				l
				i
				m
				𝑥
			

		
	
 for all 
	
		
			
				𝑥
				∈
				𝑐
			

		
	
 if and only if 
	
		
			

				𝜎
			

		
	
 has no finite orbits, that is to say, if and only if 
	
		
			

				𝜎
			

			

				𝑘
			

			
				(
				𝑛
				)
				≠
				𝑛
			

		
	
, for all 
	
		
			
				𝑛
				≥
				0
				,
				𝑘
				≥
				1
			

		
	
 (see [8]).
Recently, the concept of invariant mean for double sequences was defined in [9].
Let 
	
		
			

				𝜎
			

		
	
 be a one-to-one mapping from the set 
	
		
			

				ℕ
			

		
	
 of natural numbers into itself. A continuous linear functional 
	
		
			

				𝜑
			

			

				2
			

		
	
 on 
	
		
			

				ℳ
			

			

				𝑢
			

		
	
 is said to be an invariant mean or a 
	
		
			

				𝜎
			

		
	
-mean if and only if (i) 
	
		
			

				𝜑
			

			

				2
			

			
				(
				𝑥
				)
				≥
				0
			

		
	
 if 
	
		
			
				𝑥
				≥
				0
			

		
	
 (i.e., 
	
		
			

				𝑥
			

			
				𝑗
				𝑘
			

			
				≥
				0
			

		
	
 for all 
	
		
			
				𝑗
				,
				𝑘
			

		
	
); (ii) 
	
		
			

				𝜑
			

			

				2
			

			
				(
				𝐸
				)
				=
				1
			

		
	
, where 
	
		
			
				𝐸
				=
				(
				𝑒
			

			
				𝑗
				𝑘
			

			

				)
			

		
	
, 
	
		
			

				𝑒
			

			
				𝑗
				𝑘
			

			
				=
				1
			

		
	
 for all 
	
		
			
				𝑗
				,
				𝑘
			

		
	
, and (iii) 
	
		
			

				𝜑
			

			

				2
			

			
				(
				𝑥
				)
				=
				𝜑
			

			

				2
			

			
				(
				(
				𝑥
			

			
				𝜎
				(
				𝑗
				)
				,
				𝜎
				(
				𝑘
				)
			

			
				)
				)
				=
				𝜑
			

			

				2
			

			
				(
				(
				𝑥
			

			
				𝜎
				(
				𝑗
				)
				,
				𝑘
			

			
				)
				)
				=
				𝜑
			

			

				2
			

			
				(
				(
				𝑥
			

			
				𝑗
				,
				𝜎
				(
				𝑘
				)
			

			
				)
				)
			

		
	
.
If 
	
		
			
				𝜎
				(
				𝑛
				)
				=
				𝑛
				+
				1
			

		
	
 then 
	
		
			

				𝜎
			

		
	
-mean is reduced to the Banach limit for double sequences [10].
 The idea of 
	
		
			

				𝜎
			

		
	
-convergence for double sequences has recently been introduced in [11] and further studied in [9, 12–16].
 A double sequence 
	
		
			
				𝑥
				=
				(
				𝑥
			

			
				𝑗
				𝑘
			

			

				)
			

		
	
 of real numbers is said to be 
	
		
			

				𝜎
			

		
	
-convergent to a number 
	
		
			

				𝐿
			

		
	
 if and only if 
	
		
			
				𝑥
				∈
				𝒱
			

			

				𝜎
			

		
	
, where
	
 		
 			
				(
				1
				.
				7
				)
			
 		
	

	
		
			

				𝒱
			

			

				𝜎
			

			
				=
				
				𝑥
				∈
				ℳ
			

			

				𝑢
			

			
				∶
				l
				i
				m
			

			
				𝑝
				,
				𝑞
				→
				∞
			

			

				𝜏
			

			
				𝑝
				𝑞
				𝑠
				𝑡
			

			
				
				,
				𝜏
				(
				𝑥
				)
				=
				𝐿
				u
				n
				i
				f
				o
				r
				m
				l
				y
				i
				n
				𝑠
				,
				𝑡
				;
				𝐿
				=
				𝜎
				−
				l
				i
				m
				𝑥
			

			
				𝑝
				𝑞
				𝑠
				𝑡
			

			
				∶
				=
				𝜏
			

			
				𝑝
				𝑞
				𝑠
				𝑡
			

			
				1
				(
				𝑥
				)
				=
			

			
				
			
			
				(
				𝑝
				+
				1
				)
				(
				𝑞
				+
				1
				)
			

			

				𝑝
			

			

				
			

			
				𝑞
				𝑗
				=
				0
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝑥
			

			

				𝜎
			

			

				𝑗
			

			
				(
				𝑠
				)
				,
				𝜎
			

			

				𝑘
			

			
				(
				𝑡
				)
				.
			

			

				𝜏
			

			
				0
				𝑞
				𝑠
				𝑡
			

			
				∶
				=
				𝜏
			

			
				0
				𝑞
				𝑠
				𝑡
			

			
				1
				(
				𝑥
				)
				=
			

			
				
			
			
				(
				𝑞
				+
				1
				)
			

			

				𝑞
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝑥
			

			
				𝑠
				,
				𝜎
			

			

				𝑘
			

			
				(
				𝑡
				)
			

			
				,
				𝜏
			

			
				𝑝
				0
				𝑠
				𝑡
			

			
				∶
				=
				𝜏
			

			
				𝑝
				0
				𝑠
				𝑡
			

			
				1
				(
				𝑥
				)
				=
			

			
				
			
			
				(
				𝑝
				+
				1
				)
			

			

				𝑝
			

			

				∑
			

			
				𝑗
				=
				0
			

			

				𝑥
			

			

				𝜎
			

			

				𝑗
			

			
				(
				𝑠
				)
				,
				𝑡
			

			

				,
			

		
	

	
		
			

				𝜏
			

			
				0
				,
				0
				,
				𝑠
				,
				𝑡
			

			
				=
				𝑥
			

			
				𝑠
				𝑡
			

		
	
 and 
	
		
			

				𝜏
			

			
				−
				1
				,
				𝑞
				,
				𝑠
				,
				𝑡
			

			
				=
				𝜏
			

			
				𝑝
				,
				−
				1
				,
				𝑠
				,
				𝑡
			

			
				=
				𝜏
			

			
				−
				1
				,
				−
				1
				,
				𝑠
				,
				𝑡
			

			
				=
				0
			

		
	
.
Note that 
	
		
			

				𝒞
			

			
				𝑏
				𝑝
			

			
				⊂
				𝒱
			

			

				𝜎
			

			
				⊂
				ℳ
			

			

				𝑢
			

		
	
.
Throughout this paper limit of a double sequence means 
	
		
			
				𝑏
				𝑝
			

		
	
-limit.
For 
	
		
			
				𝜎
				(
				𝑛
				)
				=
				𝑛
				+
				1
			

		
	
, the set 
	
		
			

				𝒱
			

			

				𝜎
			

		
	
 is reduced to the set 
	
		
			

				𝑓
			

			

				2
			

		
	
 of almost convergent double sequences [17]. A double sequence 
	
		
			
				𝑥
				=
				(
				𝑥
			

			
				𝑗
				𝑘
			

			

				)
			

		
	
 of real numbers is said to be almost convergent to a number 
	
		
			

				𝐿
			

		
	
 if and only if
	
 		
 			
				(
				1
				.
				8
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑝
				,
				𝑞
				→
				∞
			

			

				1
			

			
				
			
			
				(
				𝑝
				+
				1
				)
				(
				𝑞
				+
				1
				)
			

			

				𝑝
			

			

				
			

			
				𝑞
				𝑗
				=
				0
			

			

				
			

			
				𝑘
				=
				0
			

			

				𝑥
			

			
				𝑗
				+
				𝑠
				,
				𝑘
				+
				𝑡
			

			
				=
				𝐿
				u
				n
				i
				f
				o
				r
				m
				l
				y
				i
				n
				𝑠
				,
				𝑡
				.
			

		
	

					The concept of almost convergence for single sequences was introduced by Lorentz [18].
Remark 1.1. In view of the following example, it may be remarked that this does not exclude the possibility that every boundedly convergent double sequence might have a uniquely determined 
	
		
			

				𝜎
			

		
	
-mean not necessarily equal to its 
	
		
			
				𝑏
				𝑝
			

		
	
-limit.For example, let 
	
		
			
				𝜎
				(
				𝑛
				)
				=
				0
			

		
	
 for all 
	
		
			

				𝑛
			

		
	
. Then it is easily seen that any bounded double sequence (and hence, in particular, any boundedly convergent double sequence) has 
	
		
			

				𝜎
			

		
	
-mean 
	
		
			

				𝑥
			

			
				0
				0
			

		
	
.In this paper we examine some properties of the invariant mean and define the concepts of absolute 
	
		
			

				𝜎
			

		
	
-convergence and strong 
	
		
			

				𝜎
			

		
	
-convergence for double sequences analogous to the case of single sequences [8, 19]. We further define the absolute invariant mean through which the space of absolutely 
	
		
			

				𝜎
			

		
	
-convergent double sequences is characterized.
2. Strong and Absolute 
	
		
			

				𝜎
			

		
	
-Convergence
 In this section we define the concepts of strong 
	
		
			

				𝜎
			

		
	
-convergence and absolute 
	
		
			

				𝜎
			

		
	
-convergence for double sequences. These concepts for single sequences were studied in [8, 19–21].
Remark 2.1. In [9], it was shown that the sublinear functional 
	
		
			

				𝑉
			

		
	
 defined on 
	
		
			

				ℳ
			

			

				𝑢
			

		
	
 dominates and generates the 
	
		
			

				𝜎
			

		
	
-means, where 
	
		
			
				𝑉
				∶
				ℳ
			

			

				𝑢
			

			
				→
				ℝ
			

		
	
 is defined by
							
	
 		
 			
				(
				2
				.
				1
				)
			
 		
	

	
		
			
				𝑉
				(
				𝑥
				)
				=
				i
				n
				f
			

			
				
				𝑝
				𝑝
				=
			

			
				𝑗
				𝑘
			

			
				
				∈
				𝒱
			

			
				0
				𝜎
			

			
				l
				i
				m
				s
				u
				p
			

			
				𝑗
				,
				𝑘
			

			
				
				𝑥
			

			
				𝑗
				𝑘
			

			
				+
				𝑝
			

			
				𝑗
				𝑘
			

			
				
				.
			

		
	
Now we investigate the sublinear functional which generates the space 
	
		
			
				[
				𝒱
			

			

				𝜎
			

			

				]
			

		
	
 of strongly 
	
		
			

				𝜎
			

		
	
-convergent double sequences defined in [22] as
							
	
 		
 			
				(
				2
				.
				2
				)
			
 		
	

	
		
			
				
				𝒱
			

			

				𝜎
			

			
				
				=
				
				
				𝑥
				𝑥
				=
			

			
				𝑗
				𝑘
			

			
				
				∈
				ℳ
			

			

				𝑢
			

			
				∶
				l
				i
				m
			

			
				𝑝
				,
				𝑞
				→
				∞
			

			

				1
			

			
				
			
			
				(
				𝑝
				+
				1
				)
				(
				𝑞
				+
				1
				)
			

			

				𝑝
			

			

				
			

			
				𝑞
				𝑗
				=
				0
			

			

				
			

			
				𝑘
				=
				0
			

			
				|
				|
				𝑥
			

			

				𝜎
			

			

				𝑗
			

			
				(
				𝑠
				)
				,
				𝜎
			

			

				𝑘
			

			
				(
				𝑡
				)
			

			
				|
				|
				
				.
				−
				𝐿
				=
				0
				,
				u
				n
				i
				f
				o
				r
				m
				l
				y
				i
				n
				𝑠
				,
				𝑡
			

		
	

Definition 2.2. We define 
	
		
			
				Ψ
				∶
				ℳ
			

			

				𝑢
			

			
				→
				ℝ
			

		
	
 by
							
	
 		
 			
				(
				2
				.
				3
				)
			
 		
	

	
		
			
				Ψ
				(
				𝑥
				)
				=
				l
				i
				m
				s
				u
				p
			

			
				𝑝
				,
				𝑞
			

			
				s
				u
				p
			

			
				𝑠
				,
				𝑡
			

			

				1
			

			
				
			
			
				(
				𝑝
				+
				1
				)
				(
				𝑞
				+
				1
				)
			

			

				𝑝
			

			

				
			

			
				𝑞
				𝑗
				=
				0
			

			

				
			

			
				𝑘
				=
				0
			

			
				|
				|
				𝑥
			

			

				𝜎
			

			

				𝑗
			

			
				(
				𝑠
				)
				,
				𝜎
			

			

				𝑘
			

			
				(
				𝑡
				)
			

			
				|
				|
				.
			

		
	
Let 
	
		
			
				{
				ℳ
			

			

				𝑢
			

			
				,
				Ψ
				}
			

		
	
 denote the set of all linear functionals 
	
		
			

				Φ
			

		
	
 on 
	
		
			

				ℳ
			

			

				𝑢
			

		
	
 such that 
	
		
			
				Φ
				(
				𝑥
				)
				≤
				Ψ
				(
				𝑥
				)
			

		
	
 for all 
	
		
			
				𝑥
				=
				(
				𝑥
			

			
				𝑗
				𝑘
			

			
				)
				∈
				ℳ
			

			

				𝑢
			

		
	
. By Hahn-Banach Theorem, the set 
	
		
			
				{
				ℳ
			

			

				𝑢
			

			
				,
				Ψ
				}
			

		
	
 is nonempty.If there exists 
	
		
			
				𝐿
				∈
				ℝ
			

		
	
 such that
							
	
 		
 			
				(
				∗
				)
			
 		
	

	
		
			
				
				ℳ
				Φ
				(
				𝑥
				−
				𝐿
				𝐞
				)
				=
				0
				∀
				Φ
				∈
			

			

				𝑢
			

			
				
				,
				,
				Ψ
			

		
	

						then we say that 
	
		
			

				𝑥
			

		
	
 is 
	
		
			
				{
				ℳ
			

			

				𝑢
			

			
				,
				Ψ
				}
			

		
	
-convergent to 
	
		
			

				𝐿
			

		
	
 and in this case we write 
	
		
			
				{
				ℳ
			

			

				𝑢
			

			
				,
				Ψ
				}
			

		
	
-
	
		
			
				l
				i
				m
				𝑥
				=
				𝐿
			

		
	
.
We are now ready to prove the following result.
Theorem 2.3.  
	
		
			
				[
				𝒱
			

			

				𝜎
			

			

				]
			

		
	
 is the set of all 
	
		
			
				{
				ℳ
			

			

				𝑢
			

			
				,
				Ψ
				}
			

		
	
-convergent sequences.
Proof. Let 
	
		
			
				𝑥
				∈
				[
				𝒱
			

			

				𝜎
			

			

				]
			

		
	
. Then for each 
	
		
			
				𝜖
				>
				0
			

		
	
, there exist 
	
		
			

				𝑝
			

			

				0
			

			
				,
				𝑞
			

			

				0
			

		
	
 such that for 
	
		
			
				𝑝
				>
				𝑝
			

			

				0
			

			
				,
				𝑞
				>
				𝑞
			

			

				0
			

		
	
 and all 
	
		
			
				𝑠
				,
				𝑡
			

		
	
,
							
	
 		
 			
				(
				2
				.
				4
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				(
				𝑝
				+
				1
				)
				(
				𝑞
				+
				1
				)
			

			

				𝑝
			

			

				
			

			
				𝑞
				𝑗
				=
				0
			

			

				
			

			
				𝑘
				=
				0
			

			
				|
				|
				𝑥
			

			

				𝜎
			

			

				𝑗
			

			
				(
				𝑠
				)
				,
				𝜎
			

			

				𝑘
			

			
				(
				𝑡
				)
			

			
				|
				|
				−
				𝐿
				<
				𝜖
				,
			

		
	

						and this implies that 
	
		
			
				Ψ
				(
				𝑥
				−
				𝐿
				𝐞
				)
				≤
				𝜖
			

		
	
. In a similar manner, we can prove that 
	
		
			
				Ψ
				(
				𝐿
				𝐞
				−
				𝑥
				)
				≤
				𝜖
			

		
	
. Hence 
	
		
			
				|
				Φ
				(
				𝑥
				−
				𝐿
				𝐞
				)
				|
				≤
				Ψ
				(
				𝑥
				−
				𝐿
				𝐞
				)
				≤
				𝜖
			

		
	
 for all 
	
		
			
				Φ
				∈
				{
				ℳ
			

			

				𝑢
			

			
				,
				Ψ
				}
			

		
	
. Therefore 
	
		
			
				Φ
				(
				𝑥
				−
				𝐿
				𝐞
				)
				=
				0
			

		
	
for all 
	
		
			
				Φ
				∈
				{
				ℳ
			

			

				𝑢
			

			
				,
				Ψ
				}
			

		
	
 and this implies that by (2.6) 
	
		
			
				𝑥
				∈
				[
				𝒱
			

			

				𝜎
			

			

				]
			

		
	
 implies that 
	
		
			

				𝑥
			

		
	
 is 
	
		
			
				{
				ℳ
			

			

				𝑢
			

			
				,
				Ψ
				}
			

		
	
-convergent. Conversely, suppose that 
	
		
			

				𝑥
			

		
	
 is 
	
		
			
				{
				ℳ
			

			

				𝑢
			

			
				,
				Ψ
				}
			

		
	
-convergent, that is,
							
	
 		
 			
				(
				2
				.
				5
				)
			
 		
	

	
		
			
				
				ℳ
				Φ
				(
				𝑥
				−
				𝐿
				𝐞
				)
				=
				0
				∀
				Φ
				∈
			

			

				𝑢
			

			
				
				.
				,
				Ψ
			

		
	
Since 
	
		
			

				Ψ
			

		
	
 is sublinear functional on 
	
		
			

				ℳ
			

			

				𝑢
			

		
	
, by Hahn-Banach Theorem, there exists 
	
		
			

				Φ
			

			

				0
			

			
				∈
				{
				ℳ
			

			

				𝑢
			

			
				,
				Ψ
				}
			

		
	
 such that 
	
		
			

				Φ
			

			

				0
			

			
				(
				𝑥
				−
				𝐿
				𝐞
				)
				=
				Ψ
				(
				𝑥
				−
				𝐿
				𝐞
				)
			

		
	
. Hence 
	
		
			
				Ψ
				(
				𝑥
				−
				𝐿
				𝐞
				)
				=
				0
			

		
	
; since 
	
		
			
				Ψ
				(
				𝑥
				)
				=
				Ψ
				(
				−
				𝑥
				)
			

		
	
, it follows that 
	
		
			
				𝑥
				∈
				[
				𝒱
			

			

				𝜎
			

			

				]
			

		
	
. This completes the proof of the theorem.
 Now we define the concept of absolute 
	
		
			

				𝜎
			

		
	
-convergence for double sequences.
Put
	
 		
 			
				(
				2
				.
				6
				)
			
 		
	

	
		
			

				𝜙
			

			
				𝑝
				𝑞
				𝑠
				𝑡
			

			
				(
				𝑥
				)
				=
				𝜏
			

			
				𝑝
				𝑞
				𝑠
				𝑡
			

			
				(
				𝑥
				)
				−
				𝜏
			

			
				𝑝
				−
				1
				,
				𝑞
				,
				𝑠
				,
				𝑡
			

			
				(
				𝑥
				)
				−
				𝜏
			

			
				𝑝
				,
				𝑞
				−
				1
				,
				𝑠
				,
				𝑡
			

			
				(
				𝑥
				)
				+
				𝜏
			

			
				𝑝
				−
				1
				,
				𝑞
				−
				1
				,
				𝑠
				,
				𝑡
			

			
				(
				𝑥
				)
				.
			

		
	

					Thus simplifying further, we get
	
 		
 			
				(
				2
				.
				7
				)
			
 		
	

	
		
			

				𝜙
			

			
				𝑝
				𝑞
				𝑠
				𝑡
			

			
				1
				(
				𝑥
				)
				=
			

			
				
			
			
				𝑝
				(
				𝑝
				+
				1
				)
			

			

				𝑝
			

			

				
			

			
				𝑚
				=
				1
			

			
				𝑚
				
				1
			

			
				
			
			
				𝑞
				(
				𝑞
				+
				1
				)
			

			

				𝑞
			

			

				
			

			
				𝑛
				=
				1
			

			
				𝑛
				
				𝑥
			

			

				𝜎
			

			

				𝑚
			

			
				(
				𝑠
				)
				,
				𝜎
			

			

				𝑛
			

			
				(
				𝑡
				)
			

			
				−
				𝑥
			

			

				𝜎
			

			

				𝑚
			

			
				(
				𝑠
				)
				,
				𝜎
			

			
				𝑛
				−
				1
			

			
				(
				𝑡
				)
			

			
				
				
				=
				1
			

			
				
			
			
				×
				𝑝
				(
				𝑝
				+
				1
				)
				𝑞
				(
				𝑞
				+
				1
				)
			

			

				𝑝
			

			

				
			

			
				𝑞
				𝑚
				=
				1
			

			

				
			

			
				𝑛
				=
				1
			

			
				
				𝑥
				𝑚
				𝑛
			

			

				𝜎
			

			

				𝑚
			

			
				(
				𝑠
				)
				,
				𝜎
			

			

				𝑛
			

			
				(
				𝑡
				)
			

			
				−
				𝑥
			

			

				𝜎
			

			
				𝑚
				−
				1
			

			
				(
				𝑠
				)
				,
				𝜎
			

			

				𝑛
			

			
				(
				𝑡
				)
			

			
				−
				𝑥
			

			

				𝜎
			

			

				𝑚
			

			
				(
				𝑠
				)
				,
				𝜎
			

			
				𝑛
				−
				1
			

			
				(
				𝑡
				)
			

			
				+
				𝑥
			

			

				𝜎
			

			
				𝑚
				−
				1
			

			
				(
				𝑠
				)
				,
				𝜎
			

			
				𝑛
				−
				1
			

			
				(
				𝑡
				)
			

			
				
				.
			

		
	

					Now we write
	
 		
 			
				(
				2
				.
				8
				)
			
 		
	

	
		
			

				𝜙
			

			
				𝑝
				𝑞
				𝑠
				𝑡
			

			
				⎧
				⎪
				⎪
				⎪
				⎪
				⎪
				⎨
				⎪
				⎪
				⎪
				⎪
				⎪
				⎩
				1
				(
				𝑥
				)
				=
			

			
				
			
			
				×
				𝑝
				(
				𝑝
				+
				1
				)
				𝑞
				(
				𝑞
				+
				1
				)
			

			

				𝑝
			

			

				
			

			
				𝑞
				𝑚
				=
				1
			

			

				
			

			
				𝑛
				=
				1
			

			
				
				𝑥
				𝑚
				𝑛
			

			

				𝜎
			

			

				𝑚
			

			
				(
				𝑠
				)
				,
				𝜎
			

			

				𝑛
			

			
				(
				𝑡
				)
			

			
				−
				𝑥
			

			

				𝜎
			

			
				𝑚
				−
				1
			

			
				(
				𝑠
				)
				,
				𝜎
			

			

				𝑛
			

			
				(
				𝑡
				)
			

			
				−
				𝑥
			

			

				𝜎
			

			

				𝑚
			

			
				(
				𝑠
				)
				,
				𝜎
			

			
				𝑛
				−
				1
			

			
				(
				𝑡
				)
			

			
				+
				𝑥
			

			

				𝜎
			

			
				𝑚
				−
				1
			

			
				(
				𝑠
				)
				,
				𝜎
			

			
				𝑛
				−
				1
			

			
				(
				𝑡
				)
			

			
				
				1
				,
				𝑝
				,
				𝑞
				≥
				1
				,
			

			
				
			
			
				𝑞
				(
				𝑞
				+
				1
				)
			

			

				𝑞
			

			

				
			

			
				𝑛
				=
				1
			

			
				𝑛
				
				𝑥
			

			
				𝑠
				,
				𝜎
			

			

				𝑛
			

			
				(
				𝑡
				)
			

			
				−
				𝑥
			

			
				𝑠
				,
				𝜎
			

			
				𝑛
				−
				1
			

			
				(
				𝑡
				)
			

			
				
				1
				,
				𝑝
				=
				0
				,
				𝑞
				≥
				1
				,
			

			
				
			
			
				𝑝
				(
				𝑝
				+
				1
				)
			

			

				𝑝
			

			

				
			

			
				𝑛
				=
				1
			

			
				𝑚
				
				𝑥
			

			

				𝜎
			

			

				𝑚
			

			
				(
				𝑠
				)
				,
				𝑡
			

			
				−
				𝑥
			

			

				𝜎
			

			

				𝑚
			

			
				(
				𝑠
				)
				,
				𝑡
			

			
				
				,
				𝑝
				≥
				1
				,
				𝑞
				=
				0
				,
			

		
	

					and 
	
		
			

				𝜙
			

			
				0
				0
				𝑠
				𝑡
			

			
				(
				𝑥
				)
				=
				𝑥
			

			
				𝑠
				𝑡
			

		
	
.
In [9], the following was defined.
Definition 2.4. A double sequence 
	
		
			
				𝑥
				=
				(
				𝑥
			

			
				𝑗
				𝑘
			

			
				)
				∈
				ℳ
			

			

				𝑢
			

		
	
 is said to be absolutelyσ-almost convergent if and only if
							
	
 		
 			
				(
				2
				.
				9
				)
			
 		
	

	
		
			

				∞
			

			

				
			

			
				∞
				𝑝
				=
				0
			

			

				
			

			
				𝑞
				=
				0
			

			
				|
				|
				𝜙
			

			
				𝑝
				𝑞
				𝑠
				𝑡
			

			
				|
				|
				(
				𝑥
				)
				c
				o
				n
				v
				e
				r
				g
				e
				s
				u
				n
				i
				f
				o
				r
				m
				l
				y
				i
				n
				𝑠
				,
				𝑡
				.
			

		
	
By 
	
		
			

				𝒲
			

			

				𝜎
			

		
	
, we denote the space of all absolutely 
	
		
			

				𝜎
			

		
	
-almost convergent double sequences.
Now we define the following.
Definition 2.5. A double sequence 
	
		
			
				𝑥
				=
				(
				𝑥
			

			
				𝑗
				𝑘
			

			
				)
				∈
				ℳ
			

			

				𝑢
			

		
	
 is said to be absolutely σ-convergent if and only if(i)
	
		
			

				∑
			

			
				∞
				𝑝
				=
				0
			

			

				∑
			

			
				∞
				𝑞
				=
				0
			

			
				|
				𝜙
			

			
				𝑝
				𝑞
				𝑠
				𝑡
			

			
				(
				𝑥
				)
				|
			

		
	
 converges uniformly in 
	
		
			
				𝑠
				,
				𝑡
			

		
	
;(ii)
	
		
			
				l
				i
				m
			

			
				𝑝
				,
				𝑞
				→
				∞
			

			

				𝜏
			

			
				𝑝
				𝑞
				𝑠
				𝑡
			

			
				(
				𝑥
				)
			

		
	
, which must exist, should take the same value for all 
	
		
			
				𝑠
				,
				𝑡
			

		
	
.By 
	
		
			
				ℬ
				𝒱
			

			

				𝜎
			

		
	
, we denote the space of all absolutely 
	
		
			

				𝜎
			

		
	
-convergent double sequences. It is easy to prove that both 
	
		
			

				𝒲
			

			

				𝜎
			

		
	
 and 
	
		
			
				ℬ
				𝒱
			

			

				𝜎
			

		
	
 are Banach spaces with the norm
							
	
 		
 			
				(
				2
				.
				1
				0
				)
			
 		
	

	
		
			
				‖
				𝑥
				‖
				=
				s
				u
				p
			

			
				∞
				𝑠
				,
				𝑡
			

			

				
			

			
				∞
				𝑝
				=
				0
			

			

				
			

			
				𝑞
				=
				0
			

			
				|
				|
				𝜙
			

			
				𝑝
				𝑞
				𝑠
				𝑡
			

			
				|
				|
				.
				(
				𝑥
				)
			

		
	

Note that 
	
		
			
				ℬ
				𝒱
			

			

				𝜎
			

			
				⊂
				𝒲
			

			

				𝜎
			

			
				⊂
				𝒱
			

			

				𝜎
			

		
	
.
Remark 2.6. It is easy to see that the assertion (i) implies that 
	
		
			
				(
				𝜏
			

			
				𝑝
				𝑞
				𝑠
				𝑡
			

			
				(
				𝑥
				)
				)
			

		
	
 (as a double sequence in 
	
		
			
				𝑝
				,
				𝑞
			

		
	
) converges uniformly in 
	
		
			
				𝑠
				,
				𝑡
			

		
	
, but it may converge to a different limit for different values of 
	
		
			
				𝑠
				,
				𝑡
			

		
	
. This point did not arise in Banach limit case in which 
	
		
			
				𝜎
				(
				𝑛
				)
				=
				𝑛
				+
				1
			

		
	
. In this case if we assume only that 
	
		
			
				l
				i
				m
			

			
				𝑝
				,
				𝑞
				→
				∞
			

			

				𝜏
			

			
				𝑝
				𝑞
				𝑠
				𝑡
			

			
				(
				𝑥
				)
				=
				ℓ
			

		
	
 for some value of 
	
		
			
				𝑠
				,
				𝑡
			

		
	
; then we must have 
	
		
			
				l
				i
				m
			

			
				𝑝
				,
				𝑞
				→
				∞
			

			

				𝜏
			

			
				𝑝
				𝑞
				𝑠
				𝑡
			

			
				(
				𝑥
				)
				=
				ℓ
			

		
	
 for any other 
	
		
			
				𝑠
				,
				𝑡
			

		
	
 (but not necessarily uniformly in 
	
		
			
				𝑠
				,
				𝑡
			

		
	
). So if, as a special case, we assume uniform convergence, the value to 
	
		
			

				𝜏
			

			
				𝑝
				𝑞
				𝑠
				𝑡
			

			
				(
				𝑥
				)
			

		
	
 converges must be same for all 
	
		
			
				𝑠
				,
				𝑡
			

		
	
. This need not be in the general case. For example, consider 
	
		
			
				𝜎
				(
				𝑛
				)
				=
				𝑛
				+
				2
			

		
	
. Define the sequence 
	
		
			
				𝑥
				=
				(
				𝑥
			

			
				𝑗
				𝑘
			

			

				)
			

		
	
 by
							
	
 		
 			
				(
				2
				.
				1
				1
				)
			
 		
	

	
		
			

				𝑥
			

			
				𝑗
				𝑘
			

			
				=
				
				1
				,
				i
				f
				𝑗
				i
				s
				o
				d
				d
				,
				∀
				𝑘
				,
				0
				,
				i
				f
				𝑗
				i
				s
				e
				v
				e
				n
				,
				∀
				𝑘
				.
			

		
	

						Then for all 
	
		
			
				𝑝
				,
				𝑞
				≥
				0
			

		
	

	
 		
 			
				(
				2
				.
				1
				2
				)
			
 		
	

	
		
			

				𝜏
			

			
				𝑝
				𝑞
				𝑠
				𝑡
			

			
				⎧
				⎪
				⎨
				⎪
				⎩
				(
				𝑥
				)
				=
				1
				,
				i
				f
				𝑠
				i
				s
				o
				d
				d
				,
				∀
				𝑡
				,
				0
				,
				i
				f
				𝑠
				i
				s
				e
				v
				e
				n
				,
				∀
				𝑡
				,
				0
				,
				o
				t
				h
				e
				r
				w
				i
				s
				e
				,
			

		
	

						so that 
	
		
			

				𝜙
			

			
				𝑝
				𝑞
				𝑠
				𝑡
			

			
				(
				𝑥
				)
				=
				0
			

		
	
 for all 
	
		
			
				𝑝
				,
				𝑞
				≥
				1
			

		
	
 (in particular, 
	
		
			

				𝜙
			

			
				1
				1
				1
				1
			

			
				(
				𝑥
				)
				=
				𝑥
			

			
				𝜎
				(
				1
				)
				,
				𝜎
				(
				1
				)
			

			
				−
				𝑥
			

			
				1
				1
			

			
				=
				𝑥
			

			
				3
				,
				3
			

			
				−
				𝑥
			

			
				1
				1
			

			
				=
				1
				−
				1
				=
				0
			

		
	
, since 
	
		
			
				𝜎
				(
				1
				)
				=
				1
				+
				2
				=
				3
				)
			

		
	
. Thus (i) certainly holds, but the value of 
	
		
			
				l
				i
				m
			

			
				𝑝
				,
				𝑞
				→
				∞
			

			

				𝜏
			

			
				𝑝
				𝑞
				𝑠
				𝑡
			

			
				(
				𝑥
				)
			

		
	
 is 1 when 
	
		
			

				𝑠
			

		
	
 is odd and 0 when 
	
		
			

				𝑠
			

		
	
 is even (for all 
	
		
			

				𝑡
			

		
	
). Moreover, it shows that the inclusion 
	
		
			
				ℬ
				𝒱
			

			

				𝜎
			

			
				⊂
				𝒲
			

			

				𝜎
			

		
	
 is proper.
3. Absolute Invariant Mean
Remark 3.1. It may be remarked that we have a class of linear continuous functionals 
	
		
			

				𝜑
			

			

				2
			

		
	
 on 
	
		
			

				ℳ
			

			

				𝑢
			

		
	
 (which we call the set of invariant means) such that 
	
		
			

				𝜑
			

			

				2
			

		
	
 is uniquely determined if and only if 
	
		
			
				𝑥
				∈
				𝒱
			

			

				𝜎
			

		
	
, that is, the largest set which determines 
	
		
			

				𝜑
			

			

				2
			

		
	
 uniquely is 
	
		
			

				𝒱
			

			

				𝜎
			

		
	
. Now we are going to deal with the similar situation which prevails for 
	
		
			
				ℬ
				𝒱
			

			

				𝜎
			

		
	
.
As an immediate consequence, we have the following.
Theorem 3.2.  
          There does not exist a class of continuous linear functionals 
	
		
			

				𝜑
			

			

				2
			

		
	
 on 
	
		
			

				ℳ
			

			

				𝑢
			

		
	
 such that 
	
		
			

				𝜑
			

			

				2
			

		
	
 is uniquely determined if and only if 
	
		
			
				𝑥
				∈
				ℬ
				𝒱
			

			

				𝜎
			

		
	
.
Proof. We first note that 
	
		
			
				ℬ
				𝒱
			

			

				𝜎
			

		
	
 is not closed in 
	
		
			

				ℳ
			

			

				𝑢
			

		
	
 (which follows from the case 
	
		
			
				𝜎
				(
				𝑛
				)
				=
				𝑛
				+
				1
			

		
	
 for single sequences which is proved in [23]). Given the value of 
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, its value for 
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 is determined by continuity. So if 
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 is unique for 
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, it must be unique in the set 
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, which is larger than 
	
		
			
				ℬ
				𝒱
			

			

				𝜎
			

		
	
.
Remark 3.3. As in Remark 2.1, it is easy to see that the sublinear functional
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				𝑥
				)
			

		
	

						both dominates and generates the functional 
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 which is a 
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-mean if and only if
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				)
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						It follows from (3.2) that 
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 is unique 
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-mean if and only if
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				𝜆
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In the same vein, we seek a characterization of a class of linear functionals 
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 on 
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 to define absolute invariant mean in terms of a suitable sublinear functional 
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 on 
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.
Definition 3.4. A linear functional 
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