Research Article

A Characterization of Some Function Classes

M. T. Karaev

Isparta Vocational School, Suleyman Demirel University, 32260 Isparta, Turkey

Correspondence should be addressed to M. T. Karaev, mubariztapdigoglu@sdu.edu.tr

Received 12 February 2009; Accepted 2 December 2011

Academic Editor: Nicolae Popa

Copyright © 2012 M. T. Karaev. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We give in terms of Berezin symbols a characterization of Hardy and Besov classes with a variable exponent.

1. **Introduction and Notations**

In his book [1, page 96], Pavlović proved the following characterization of functions belonging to the classical Hardy space:

\[H^1 = H^1(\mathbb{D}) := \left\{ f \in \text{Hol}(\mathbb{D}) : \|f\|_1 = \sup_{0 < r < 1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{it})| \, dt < \infty \right\}, \tag{1.1} \]

where \(\mathbb{D} := \{ z \in \mathbb{C} : |z| < 1 \} \) is the unit disc of the complex plain \(\mathbb{C} \).

Theorem A. For a function \(f \) analytic in \(\mathbb{D} \), the following assertions are equivalent:

(a) \(f \in H^1; \)

(b) \(\sup_n (1/a_n) \sum_{j=0}^n (1/(j+1)) \|s_j(f)\|_1 < \infty; \)

(c) \(\sup_n \|P_n f\|_1 < \infty. \)

Here, \(P_n f = (1/a_n) \sum_{j=0}^n (1/(j+1)) s_j(f), \) where \(a_n = \sum_{j=0}^n (1/(j+1)) (n = 0, 1, 2, \ldots) \) and \(s_j(f) \) are the partial sums of the Taylor series of \(f. \)

Recently, Popa [2] gave some generalization of this result by proving a similar characterization of upper triangular trace class matrices.
In the present paper, we give in terms of the so-called Berezin symbols a new characterization of analytic functions belonging to the Hardy class $H^p(\mathbb{D})$ and Besov class $B_p(\mathbb{D})$ with a variable exponent. Our results are new even for the usual Hardy and Besov spaces H^p and B_p.

Recall that the Hardy space $H^p = H^p(\mathbb{D})$ $(1 \leq p < \infty)$ is the collection of holomorphic functions in \mathbb{D} which satisfy the inequality

$$\|f\|_{H^p} := \left(\sup_{0 < r < 1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p r \, d\theta\right)^{1/p} < \infty. \quad (1.2)$$

Let $dA(z)$ be the area measure on \mathbb{D} normalized so that the area of \mathbb{D} is 1. In rectangular and polar coordinates,

$$dA(z) = \frac{1}{\pi} dx \, dy = \frac{1}{\pi} r \, dr \, d\theta. \quad (1.3)$$

For $1 < p < +\infty$, the Besov space $B_p = B_p(\mathbb{D})$ is defined to be the space of analytic functions f in such that

$$\|f\|_{B_p} := \left(\int_{\mathbb{D}} \left(1 + |z|^2\right)^p |f'(z)|^p \, d\lambda(z)\right)^{1/p} < \infty, \quad (1.4)$$

where

$$d\lambda(z) = \frac{dA(z)}{(1 - |z|^2)^2} \quad (1.5)$$

is the Möbius invariant measure on \mathbb{D}. We refer to Duren [3] and Zhu [4] for the theory of these spaces.

Let $T = \partial \mathbb{D}$, and let $p = p(t)$, $t \in T$, be a bounded, positive, measurable function defined on it. Following by Kokilashvili and Paatashvili [5, 6], we say that the analytic in the disc \mathbb{D} function f belongs to the Hardy class $H^{p(t)}$ if

$$\sup_{0 < r < 1} \int_0^{2\pi} |f(re^{i\theta})|^p r \, d\theta = C < +\infty, \quad (1.6)$$

where $p(\theta) = p(e^{i\theta})$, $\theta \in [0, 2\pi)$.

For $p(\theta) = p = \text{const} > 0$, the $H^{p(t)}$ class coincides with the classical Hardy class H^p.

Analogously, we say that the analytic in \mathbb{D} function f belongs to the Besov class $B_{p(t)}$ with a variable exponent if

$$\int_0^{2\pi} \int_0^1 \left(1 - r^2\right)^{p(t)} |f'(re^{i\theta})|^p r \, dr \frac{dt}{\pi} < +\infty, \quad (1.7)$$

where $p(t) = p(e^{i\theta})$, $t \in [0, 2\pi)$.

For $p(t) = p = \text{const} > 0$, the $B_{p(t)}$ class coincides with the Besov class B_p.
Suppose that \(p := \inf_{t \in T} p(t) \), \(\overline{p} := \sup_{t \in T} p(t) \). If \(p > 0 \), then it is obvious that

\[
H^\overline{p} \subset H^{p(\cdot)} \subset H^p,
\]

\[
B^\overline{p} \subset B_{p(\cdot)} \subset B_p.
\]

Recall that for any bounded linear operator \(A \) acting in the functional Hilbert space \(H = H(Ω) \) over some set \(Ω \) with reproducing kernel \(k_1(z) \), its Berezin symbol \(\tilde{A} \) is defined by

\[
\tilde{A}(\lambda) := \left\langle A\tilde{k}_1, \tilde{k}_1 \right\rangle \quad (\lambda \in Ω),
\]

where \(\tilde{k}_1 := k_1/\|k_1\| \) is the normalized reproducing kernel of \(H \). (We mention [4, 7–11] as references for the Berezin symbols.)

2. On the Membership of Functions in Hardy and Besov Classes with a Variable Exponent

In this section, we characterize the function classes \(H^{p(\cdot)} \) and \(B_{p(\cdot)} \) in terms of the Berezin symbols.

For any bounded sequence \(\{a_n\}_{n \geq 0} \) of complex numbers \(a_n \), let \(D_{\{a_n\}} \) denote the associate diagonal operator acting in the Hardy space \(H^2 \) by the formula

\[
D_{\{a_n\}} z^n = a_n z^n, \quad n = 0, 1, 2, \ldots
\]

(2.1)

It is known that the reproducing kernel of the Hardy space \(H^2 \) has the form \(k_1(z) = 1/(1 - \overline{\lambda}z) \quad (\lambda \in \mathbb{D}) \). Then, it is easy to show that (see [11])

\[
\tilde{D}_{\{a_n\}}(\lambda) = \left(1 - |\lambda|^2\right)^\infty \sum_{k=0}^\infty a_n |\lambda|^{2k} \quad (\lambda \in \mathbb{D}),
\]

(2.2)

that is, the Berezin symbol of the diagonal operator \(D_{\{a_n\}} \) on the Hardy space \(H^2 \) is a radial function.

Note that the inequality \(|\hat{f}(n)| \leq \text{const}, n \geq 0 \), is the necessary condition for the function \(f(z) = \sum_{n=0}^\infty \hat{f}(n) z^n \) to be in the spaces \(H^p (1 \leq p \leq \infty) \). Also note that if \(f \in B_p \), then \(\tilde{f}(n) = O(n^{-1/p}) \quad (p \geq 1) \) (see, for instance, Duren [3] and Zhu [4]).

Our main result is the following theorem.

Theorem 2.1. Let \(f(z) = \sum_{n=0}^\infty \hat{f}(n) z^n \in \text{Hol}(\mathbb{D}) \) be a function with the bounded sequence \(\{\hat{f}(n)\}_{n \geq 0} \) of Taylor coefficients \(\hat{f}(n) = f^{(n)}/n! \quad (n = 0, 1, 2, \ldots) \). Then, the following are true:

(a) \(f \in H^{p(\cdot)} \) if and only if

\[
\sup_{0 < r < 1} \frac{1}{2\pi} \int_0^{2\pi} \frac{\left| \tilde{D}_{\{f(n)e^{it}\}}(\sqrt{r}) \right|^{p(\tau)}}{(1 - r)^{p(\tau)}} \, dt < +\infty;
\]

(2.3)
(b) If, in addition, \(f(n) = O(n^{-1}) \) as \(n \to \infty \), then \(f \in B_p(\ell) \) if and only if
\[
\int_0^{2\pi} \int_0^1 |\tilde{D}_{\{(n+1)\hat{f}(n+1)e^{int}\}}(\sqrt{r})|^p(t) \frac{(1 + r)^{p(t)-2}}{(1 - r)^2} r \, dr \, dt < +\infty. \tag{2.4}
\]

Proof. Indeed, by using the concept of Berezin symbols and formula (2.2), let us rewrite the function \(f(z) = \sum_{n=0}^{\infty} \hat{f}(n) z^n \in \text{Hol}(\mathbb{D}) \) as follows:
\[
f(z) = f(re^{it}) = \sum_{n=0}^{\infty} \hat{f}(n)(re^{it})^n = \sum_{n=0}^{\infty} \hat{f}(n)e^{int}r^n
= \frac{(1 - r)\sum_{n=0}^{\infty} \hat{f}(n)e^{int}r^n}{1 - r} = \frac{\tilde{D}_{\{(n)\hat{f}(n)e^{int}\}}(\sqrt{r})}{1 - r},
\]
thus
\[
f(z) = \frac{\tilde{D}_{\{(n)\hat{f}(n)e^{int}\}}(\sqrt{r})}{1 - r} \tag{2.6}
\]
for every \(z = re^{it} \in \mathbb{D} \), where, as usual, \(r = |z| \) and \(t = \arg(z) \). Now, assertion (a) is immediate from the definition of considering space and formula (2.6).

Let us prove (b). Indeed, it follows from the condition \(\hat{f}(n) = O(n^{-1}) \) that the diagonal operator \(D_{\{(n+1)\hat{f}(n+1)e^{int}\}} \) is bounded in \(H^2 \) (and hence \(D_{\{(n+1)\hat{f}(n+1)e^{int}\}} \) is bounded for every fixed \(t \in [0,2\pi) \)). Then, we have
\[
f'(z) = \left(\sum_{n=0}^{\infty} \hat{f}(n)z^n \right)' = \sum_{n=1}^{\infty} n\hat{f}(n)z^{n-1}
= \sum_{n=0}^{\infty} (n + 1)\hat{f}(n+1)z^n = \sum_{n=0}^{\infty} (n + 1)\hat{f}(n+1)e^{int}r^n
= \frac{(1 - r)\sum_{n=0}^{\infty} (n + 1)\hat{f}(n+1)e^{int}r^n}{1 - r}
= \frac{\tilde{D}_{\{(n+1)\hat{f}(n+1)e^{int}\}}(\sqrt{r})}{1 - r},
\]
thus
\[
f'(z) = \frac{\tilde{D}_{\{(n+1)\hat{f}(n+1)e^{int}\}}(\sqrt{r})}{1 - r}. \tag{2.8}
\]
Therefore, by using formula (2.8), we have that
\[
\int_0 |1 - |z|^2|^{p(t)} |f'(z)|^{p(t)} \frac{dA(z)}{(1 - |z|^2)^2} < +\infty
\]
(2.9)
if and only if
\[
\int_0^{2\pi} \int_0^1 |\tilde{D}_{(n+1)f(n+1)e^{it}}(\sqrt{r})|^{p(t)} \frac{(1 - r^2)^{p(t)}}{(1 - r)^{p(t)}} \frac{r}{(1 - r^2)^2} dr dt < +\infty,
\]
(2.10)
that is,
\[
\int_0^{2\pi} \int_0^1 |\tilde{D}_{(n+1)f(n+1)e^{it}}(\sqrt{r})|^{p(t)} \frac{(1 + r)^{p(t) - 2}}{(1 - r)^2} r dr dt < +\infty,
\]
(2.11)
as desired. The theorem is proved. □

We remark that, in case of classical Hardy space, Theorem 2.1 shed some light on the following old problem for the Hardy space functions (see Privalov [12] and Duren [3]): how an H^p function can be recognized by the behavior of its Taylor coefficients?

References

Submit your manuscripts at http://www.hindawi.com