Research Article

A Note on Generalized Approximation Property

Antara Bhar and Manjul Gupta

Department of Mathematics and Statistics, Indian Institute of Technology, Kanpur 208016, India

Correspondence should be addressed to Antara Bhar; antarab@iitk.ac.in

Received 31 May 2013; Accepted 27 June 2013

Academic Editor: T. S. S. R. K. Rao

Copyright © 2013 A. Bhar and M. Gupta. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We introduce a notion of generalized approximation property, which we refer to as L_p-λ-AP possessed by a Banach space X, corresponding to an arbitrary Banach sequence space λ and a convex subset $L_p(X)$ of $L_p^*(X)$, the class of bounded linear operators on X. This property includes approximation property studied by Grothendieck, p-approximation property considered by Sinha and Karn and Delgado et al., and also approximation property studied by Lissitsin et al. We characterize a Banach space having L_p-λ-AP with the help of λ-compact operators, λ-nuclear operators, and quasi-λ-nuclear operators. A particular case for $\lambda = l_p$ ($1 \leq p \leq \infty$) has also been characterized.

1. Introduction

It is well known that the identity on an infinite dimensional Banach space is never compact, though it may be approximated by finite rank operators in the pointwise convergence topology, for instance, in the case when X has a Schauder base. If the identity on X is approximated uniformly on compact sets by finite rank operators, it leads to the notion of approximation property of X, studied systematically by Grothendieck [1] in 1955. Now there are many reformulations of this property, all of them involve either subspaces or ideals of operators, for example, class of finite rank operators, compact operators, and so forth. One may refer to [2–5] and references given therein.

In our recent work, using the duality theory of sequence spaces, we considered the notion of λ-compact sets corresponding to a suitably restricted sequence space λ and studied λ-compact operators, specially their relationships with λ-summing, λ-nuclear, and quasi-λ-nuclear which were earlier considered by Ramanujan [6] in 1970. Replacing compact sets or p-compact sets by λ-compact sets, where λ is a Banach sequence space and the class of finite dimensional operators or compact operators, and so forth, by an arbitrary convex subset $L_p(X)$ of the class $L_p^*(X)$ of bounded linear operators on a Banach space, we define and study L_p-λ-AP in this paper. After giving preliminaries in the next section, we characterize this property in Section 3 and study its particular case for $\lambda = l_p$ in Section 4. This property includes, as particular cases, approximation property, p-approximation property, compact approximation property, and subspace approximation property (cf. [2–5]).

2. Preliminaries

Throughout this paper, we denote by $(X, \| \cdot \|_X)$ a Banach space equipped with the norm $\| \cdot \|_X$ and by X^* its topological dual equipped with the dual operator norm topology $\| \cdot \|_{X^*}$.

Let us begin with the basics of the sequence space theory, for which our reference is [7]. Let ω denote the family of all real or complex sequences, which is a vector space with usual pointwise addition and scalar multiplication, and let ϕ be the span of \vec{e}^n’s ($n \geq 1$), where \vec{e}^n is the nth unit vector in ω; that is, $\vec{e}^n = \{0, 0, \ldots, 1, 0, 0, \ldots\}$, where 1 is the nth coordinate of the sequence \vec{e}^n. A sequence space λ is a subspace of ω containing ϕ. Members of λ are denoted by the symbols $\vec{\alpha}, \vec{\beta}$, and so forth, where $\vec{\alpha} = \{\alpha_1, \alpha_2, \alpha_3, \ldots\}$ and $\vec{\beta} = \{\beta_1, \beta_2, \beta_3, \ldots\}$. The nth section of $\vec{\alpha}$ for $n \in \mathbb{N}$ is written as $\vec{\alpha}^{(n)}$ and is defined as $\vec{\alpha}^{(n)} = \{\alpha_1, \alpha_2, \ldots, \alpha_n, 0, 0, \ldots\}$, that is, $\vec{\alpha}^{(n)} = \sum_{i=1}^{n} \alpha_i \vec{e}^i$.

A sequence space λ is called (i) symmetric if $\vec{\alpha}_\sigma = \{\alpha_{\sigma(i)}\} \in \lambda$ whenever $\vec{\alpha} = \{\alpha_i\} \in \lambda$ and $\sigma \in \Pi$, where Π is collection of all permutations of the set of natural numbers \mathbb{N}, (ii) monotone if $m_0 \lambda \subseteq \lambda$, where $m_0 = \text{span}\{A\}$, and A is the collection of all sequences consisting of zero and one, and (iii)
normal or solid if \(\overline{\beta} = \{ \beta_i \} \in \lambda \) whenever \(|\beta_i| \leq |\alpha_i|, \ i \geq 1 \) for some \(\overline{\alpha} = \{ \alpha_i \} \in \lambda \).

The \(\alpha \)-dual, cross-dual, or Köthe-dual \(\lambda^\alpha \) or \(\lambda^\times \) of \(\lambda \) is defined as
\[
\lambda^\times \equiv \lambda^\alpha = \left\{ \overline{\beta} = \{ \beta_i \} \in \omega : \sum_{i \geq 1} |\alpha_i \beta_i| \text{ converges, } \forall \overline{\alpha} \in \lambda \right\}. \tag{1}
\]

A sequence space \(\lambda \) is said to be perfect if \(\lambda = \lambda^{**} = (\lambda^*)^* \). Every perfect sequence space is normal, and every normal sequence space is monotone.

A Banach sequence space \((\lambda, \| \cdot \|_\lambda) \) is called a BK-space provided that each of the projection maps \(P_i : \lambda \to \mathbb{K}, P_i(\overline{\alpha}) = \alpha_i \), is continuous, for \(i \geq 1 \), where \(\mathbb{K} \) is the field of scalars and \(\overline{\alpha} = \{ \alpha_1, \alpha_2, \ldots \} \). A BK-space \((\lambda, \| \cdot \|_\lambda) \) is called an AK-space if \(\overline{\alpha}(n) \to \overline{\alpha} \), for each \(\overline{\alpha} \in \lambda \).

For a BK-space \((\lambda, \| \cdot \|_\lambda) \), we define the dual norm on \(\lambda^\times \) as follows:
\[
\| \overline{\beta} \|_{\lambda^\times} = \sup \left\{ \sum_{i \geq 1} |\alpha_i \beta_i| : \overline{\alpha} \in \lambda, \| \overline{\alpha} \|_\lambda \leq 1 \right\}. \tag{2}
\]
The space \((\lambda^\times, \| \cdot \|_{\lambda^\times}) \) can easily be shown to be a BK-space provided that \(0 < \sup \| \overline{\alpha} \|_\lambda < \infty \).

The norm \(\| \cdot \|_\lambda \) is said to be (i) \(k \)-symmetric if \(\| \overline{\alpha} \|_\lambda = \| \overline{\sigma} \|_\lambda \), for all \(\sigma \in \Pi \) and (ii) monotone if \(\| \overline{\alpha} \|_\lambda \leq \| \overline{\beta} \|_\lambda \) for \(\overline{\alpha}, \overline{\beta} \in \lambda \) with \(|\alpha_i| \leq |\beta_i| \), for all \(i \geq 1 \).

An Orlicz function \(M \) is a continuous, convex function defined from \([0, \infty) \) to \(\mathbb{R} \). For a BK-space \((\lambda, \| \cdot \|_\lambda) \), we have Young’s inequality:
\[
\| e_n \|_{\lambda^\times} \leq M(\| e_n \|_{\lambda}), \quad \forall e_n \in \lambda^\times.
\]

Corresponding to an Orlicz function \(M \), the set \(\overline{I}_M \) is defined by
\[
\overline{I}_M = \left\{ \overline{\alpha} \in \omega : \sum_{i \geq 1} |\alpha_i| < \infty \right\}. \tag{5}
\]

If \(M \) and \(N \) are mutually complementary functions, the Orlicz sequence space \(I_M \) is defined as
\[
I_M = \left\{ \overline{\alpha} \in \omega : \sum_{i \geq 1} |\alpha_i| < \infty \right\}. \tag{6}
\]

An equivalent way of defining \(I_M \) is
\[
I_M = \left\{ \overline{\alpha} \in \omega : \sum_{i \geq 1} \rho |\alpha_i| < \infty \right\}. \tag{7}
\]

Two equivalent norms on \(I_M \) are given by
\[
\| \overline{\alpha} \|_{(M)} = \sup \left\{ \sum_{i \geq 1} |\beta_i| : \sum_{i \geq 1} N(|\beta_i|) \leq 1 \right\}, \tag{8}
\]
\[
\| \overline{\alpha} \|_{(M)} = \inf \left\{ \rho > 0 : \sum_{i \geq 1} M\left(\frac{|\alpha_i|}{\rho} \right) \leq 1 \right\};
\]

indeed,
\[
\| \overline{\alpha} \|_M \leq \| \overline{\alpha} \|_{(M)} \leq 2\| \overline{\alpha} \|_M \quad \text{for } \overline{\alpha} \in I_M. \tag{9}
\]

If \(M \) and \(N \) are mutually complementary Orlicz functions and \(M \) satisfies \(\Delta_2 \)-condition at \(0 \), then \(\lambda^\times = \overline{I}_N \) (cf. [7]).

Corresponding to a sequence space \(\lambda \) and a Banach space \(X \) with its topological dual \(X^* \) equipped with the operator norm topology generated by \(\| \cdot \| \), the vector-valued sequence spaces \(\lambda^\times(X) \) and \(\lambda^\times(X) \) defined below, have been introduced and studied earlier in [6], under different notations. Indeed, we have
\[
\lambda^\times(X) = \{ \overline{x} = \{ x_n \} : \| x_n \|_X \in \lambda \}, \tag{10}
\]
\[
\lambda^\times(X) = \{ \overline{x} = \{ x_n \} : \| x_n \|_X \in \lambda, \forall x \in X^* \}. \tag{11}
\]

In case \(\| \cdot \|_\lambda \) is a monotone norm, the space \(\lambda^\times(X) \) becomes a normed linear space with respect to the norm defined as
\[
\| \overline{x} \|_\lambda = \left\| \left\{ x_n \right\}_X, \overline{x} = \{ x_n \} \in \lambda^\times(X). \tag{11}
\]

However, for \(\overline{x} \in \lambda^\times(X) \), the norm on \(\lambda^\times(X) \) is defined as
\[
\| \overline{x} \|_\lambda = \sup \left\{ \left\| f(x_n) \right\|_Y : f(x_n) \in X^*, \| f \| \leq 1 \right\}, \quad \overline{x} = \{ x_n \} \in \lambda^\times(X). \tag{12}
\]

which can be proved to be finite by applying closed graph theorem. For the norm \(\| \overline{x} \|_\lambda \) on \(\lambda^\times(X) \), we assume throughout that \(0 < \sup \| e_n \|_\lambda < \infty \) so that \(\lambda^\times(X) \) equipped with this norm becomes a K-space.

Corresponding to a Banach sequence space \(\lambda \) with \(0 < \sup \| e_n \|_\lambda < \infty \) and a Banach space \(X \), we have introduced the concept of \(\lambda \)-compact sets and \(\lambda \)-compact operators in
our work [8]. A subset K of X is said to be λ-compact if there exists $\varpi = \{x_n\} \in \lambda(X)$ such that $K \subseteq \lambda - \text{co}(x_n) = \{x_n\} = B_{\lambda}$ where $\lambda = l_p$, $1 \leq p < \infty$. λ-compact sets are nothing but p-compact sets studied in [9].

Concerning the λ-compact sets, we have the following [8].

Theorem 1. Let λ be a normal sequence space equipped with a monotone norm $\| \cdot \|_\lambda$ satisfying the condition $0 < \sup p(n\in\mathbb{N}) \|e_n\|_\lambda < \infty$. Also let (\lambda, \| \cdot \|_\lambda) be an AK-BK-reflexive sequence space. Then for $\varpi = \{x_n\} \in \lambda'(X)$, the set $\{\sum_{n=1}^{\infty} \alpha_n x_n : \alpha_n = \{\alpha_n\} \in B_{\lambda}\}$ is norm closed in X.

For Banach spaces X and Y, the symbol $\mathcal{L}(X, Y)$ denotes the class of all bounded linear operators from X to Y. And \mathcal{L} denotes the collection of all bounded operators between any pair of Banach spaces. The notation $\mathfrak{F}(X, Y)$, $K(X, Y)$, and $W(X, Y)$, respectively, stand for collection of all finite rank, compact, and weakly compact operators from X to Y. For $Y = W$, we write $\mathcal{L}(X, Y) = \mathcal{L}(X, W)$, $\mathfrak{F}(X, Y) = \mathfrak{F}(X, W)$, and so forth.

The space $\mathcal{L}(X, Y)$ endowed with the locally convex topology τ_p ($1 \leq p \leq \infty$) has been studied in [10], where τ_p is the topology of uniform convergence on p-compact sets in X. Concerning the dual space $(\mathcal{L}(X, Y), \tau_p^*)$ for $1 < p < \infty$, Choi and Kim [10] have proved the following.

Theorem 2. Let $1 < p, q < \infty$, and $1/p + 1/q = 1$. Then $(\mathcal{L}(X, Y), \tau_p^*)$ consists of all linear functionals φ of the form

$$\varphi(T) = \sum_{j=1}^{\infty} \sum_{n=1}^{\infty} \alpha_n^j g_j(T x_n),$$

where $\varpi = \{x_n\} \in l_p'(X)$, $\varpi = \{\alpha_n\}^j_{n=1}$, and $\{g_j\} \subseteq Y^*$ with $\sum_{j=1}^{\infty} \|\|\|g_j\|\|_{Y^*} < \infty$.

Let λ be a normal BK-sequence space equipped with the norm $\|\cdot\|_\lambda$ satisfying $0 < \inf_{n\in\mathbb{N}} \|e_n\|_\lambda \leq \sup_{n\in\mathbb{N}} \|e_n\|_\lambda < \infty$. An operator $T \in \mathcal{L}(X, Y)$ is said to be

(i) λ-compact if $T(B_\lambda)$ is a λ-compact set in Y;

(ii) λ-nuclear if there has the representation

$$Tx = \sum_{n=1}^{\infty} \alpha_n x_n < y_n,$$

where $\{f_n\} \subseteq X^*$ with $\|f_n\|_{X^*} < 1$, for each n; $\varpi = \{y_n\} \in X^*$ with $\|y_n\|_{X^*} \leq 1$ and $\varpi = \{\alpha_n\} \in \lambda$,

(iii) quasi-λ-nuclear if there exists $\{f_n\} \subseteq X^*$ such that $\varpi^* = \{f_n\} \in \lambda^*(X^*)$ and $\|T x\| \leq \|\{f_n(x)\}\|_\lambda$, for each $x \in X$.

The symbols $K_\lambda(X, Y)$, $N_\lambda(X, Y)$, and $QN_\lambda(X, Y)$, respectively, denote the collection of all λ-compact, λ-nuclear, and quasi-λ-nuclear operators from X to Y.

For the relationships of λ-compact, λ-nuclear, and quasi-λ-nuclear operators, we have the following [8].

Theorem 3. Let $(\lambda, \|\cdot\|_\lambda)$ be a normal, symmetric, BK-sequence space with $0 < \inf_{n\in\mathbb{N}} \|e_n\|_\lambda \leq \sup_{n\in\mathbb{N}} \|e_n\|_\lambda < \infty$. Consider the following.

(i) For any pair of Banach spaces X and Y, if $T \in \mathcal{L}(X, Y)$ is a λ-nuclear operator, then $T^* \in \mathcal{L}(Y^*, X^*)$ is a λ-compact operator;

(ii) if $T \in \mathcal{L}(X, Y)$ is a λ-compact operator, then $T^* \in \mathcal{L}(Y^*, X^*)$ is a quasi-λ-nuclear operator.

For $\lambda = l_p$ ($1 \leq p < \infty$) and $T \in \mathcal{L}(X, Y)$, we quote from [11].

Proposition 4. (i) $T \in K_p(X, Y)$ if and only if $T^* \in QN_p(Y^*, X^*)$; $T \in QN_p(X, Y)$ if and only if $T^* \in K_p(Y^*, X^*)$;

(ii) $T^* \in QN_p(Y^*, X^*)$ if and only if there exists $\{y_n\} \in l_p'(Y^*)$ such that $\|T g\| \leq \|\{g(y_n)\}\|_p$ for all $g \in Y^*$.

We also make use of the following result from [6].

Theorem 5. Let λ be a symmetric normal AK-BK-sequence space equipped with a monotone norm $\|\cdot\|_\lambda$ satisfying $0 < \sup_{n\in\mathbb{N}} \|e_n\|_\lambda < \infty$. Then $T \in QN_p(X, Y)$ implies that $T \in N_p(X, Y)$ if the range space Y has extension property; that is, for every injection $J \in \mathcal{L}(X_{0}, Y)$ and every operator $S_0 \in \mathcal{L}(X_0, Y)$, there exists an extension $S \in \mathcal{L}(X, Y)$ such that $\|S_0\| = \|S\|$ and $S_0 = S | J$.

For the salient features on operator ideals, one is referred to [12].

Writing $\mathbf{A}(X, Y) = \mathbf{A} \cap \mathcal{L}(X, Y)$, a subset \mathbf{A} of \mathcal{L} is said to be an operator ideal if it satisfies the following conditions:

(i) \mathbf{A} contains all finite rank operators;

(ii) $T + S \in \mathbf{A}(X, Y)$ for $S, T \in \mathbf{A}(X, Y)$;

(iii) if $T \in \mathbf{A}(X, Y)$ and $S \in \mathcal{L}(Y, Z)$, then $ST \in \mathbf{A}(X, Z)$, and also if $T \in \mathcal{L}(X, Y)$ and $S \in \mathbf{A}(Y, Z)$, then $ST \in \mathbf{A}(X, Z)$.

The collection $\mathbf{A}(X, Y)$, for a given pair of Banach spaces X and Y, is called a component of \mathbf{A}.

It has been shown in [6, 8] that the collections of λ-compact, λ-nuclear, and quasi-λ-nuclear operators from X to Y are operator ideals for suitably chosen sequence space λ.

For an operator ideal \mathbf{A}, the dual operator ideal \mathbf{A}^d is defined as the one of which the component $\mathbf{A}^d(X, Y)$ is given by

$$\mathbf{A}^d(X, Y) = \{T \in \mathcal{L} : T^* \in \mathbf{A}(Y^*, X^*)\}. \quad (15)$$

For an operator ideal \mathbf{A}, the subspace $\mathbf{A}^{\omega^*}(X^*, Y)$ of the component $\mathbf{A}(X^*, Y)$ is defined as

$$\mathbf{A}^{\omega^*}(X^*, Y) = \{T \in \mathbf{A}(X^*, Y) : T \text{ is } \sigma(X^*, X) - \sigma(Y, Y^*) \text{ continuous}\}. \quad (16)$$
3. L-Subset λ-Approximation Property

Throughout this section we denote by X, a Banach space and by λ, a BK-sequence space equipped with a norm $\| \cdot \|_\lambda$ such that $0 < \sup_{e \in \lambda} \| e \|_\lambda < \infty$. Let $L_\lambda(X)$ be a convex subset of $\mathcal{L}(X)$. Recalling the definition of λ-compact sets in X from the previous section, we introduce the following.

Definition 6. A Banach space X is said to have L-subset λ-approximation property (L_λ-λ-AP) if given $\varepsilon > 0$ and any λ-compact set K in X, there exists $R \in L_\lambda(X)$ such that $\sup_{{x \in K}} \| Rx - x \|_X < \varepsilon$; that is, the identity map on X is approximated uniformly on a λ-compact set by a member of $L_\lambda(X)$.

If $L_\lambda(X) = \mathcal{F}(X)$ and $\lambda = c_0$, it is the approximation property studied by Grothendieck [1]. If $L_\lambda(X) = \mathcal{F}(X)$ and $\lambda = l_\infty$, it is the p-approximation property (cf. [3, 9]), if $L_\lambda(X) = K(X)$ and $\lambda = c_0$, it is the compact approximation property (cf. [4]).

Theorem 7. Let $(\lambda, \| \cdot \|_\lambda)$ be an AK-BK-reflexive sequence space such that the norm $\| \cdot \|_\lambda$ is monotone satisfying the condition $0 < \sup_{e \in \lambda} \| e \|_\lambda < \infty$. Assume that λ is also monotone. Then for a convex subset $L_\lambda(X)$ of $\mathcal{L}(X)$, the following conditions are equivalent.

(i) X has L_λ-λ-AP.

(ii) For any Banach space Y and for any $T \in K_\lambda(Y, X)$, $T \in \{ RT : R \in L_\lambda(X) \}^{\#}$, the closure being considered with respect to the norm $\| \cdot \|_\lambda$ in $\mathcal{L}(Y,X)$.

Proof. (i) \Rightarrow (ii). Let $T \in K_\lambda(Y, X)$. Then $T(B_\gamma)$ is λ-compact set in X. Since X has L_λ-λ-AP, for $\varepsilon > 0$ there exists $R_0 \in L_\lambda(X)$ such that $\sup_{x \in T(B_\gamma)} \| x - R_0 x \| < \varepsilon \Rightarrow \| T - R_0 T \| < \varepsilon$. Thus $T \in \{ RT : R \in L_\lambda(X) \}^{\#}$.

(ii) \Rightarrow (i). For proving (i), consider a λ-compact set K of the form $K = \{ x - c_0 \} \in \mathcal{F}(X).$ In view of Theorem 1, K is norm closed and so complete. Hence the space $Y = \bigcup_{n \in \mathbb{N}} nK$ is a Banach space with respect to the norm $\| \cdot \|_\lambda$ defined as $\| y \|_\lambda = \inf \{ p > 0 : y \in pK \}$ for $y \in Y$. As K is the unit ball of Y, the inclusion map I from Y to X is λ-compact; that is, $I \in K_\lambda(Y, X)$. Therefore by hypothesis, given any $\varepsilon > 0$, we can find that $R_0 \in L_\lambda(X)$ such that

$$\| I - R_0 \| = \sup_{{x \in K}} \| x - R_0 x \| < \varepsilon. \quad (17)$$

This proves that X has L_λ-λ-AP.

The above result leads us to the following.

Proposition 8. Let $(\lambda, \| \cdot \|_\lambda)$ be a sequence space as in Theorem 7, and let $L_\lambda(X)$ be a convex subset of $\mathcal{L}(X)$. Then X has L_λ-λ-AP if $T \in \{ RT : R \in L_\lambda(X) \}^{\#}$, for any Banach space Y and any $T \in \mathcal{F}(X, Y)$.

Proof. Let $T \in K_\lambda(Y, X)$, where Y is an arbitrary Banach space. Then $T^* \in \mathcal{F}(X^*, Y^*)$ by Theorem 3(ii). Hence for any $\varepsilon > 0$, there exists $R_0 \in L_\lambda(X)$ such that $\| T^* - T^* R_0 \| < \varepsilon$, by hypothesis. Thus $\| T - R_0 T \| < \varepsilon$; that is, $T \in \{ RT : R \in L_\lambda(X) \}^{\#}$. Now apply Theorem 7 to get that X has L_λ-λ-AP.

If the Banach spaces X and Y are restricted further, we get the converse of Proposition 8 in the following form.

Proposition 9. Let $(\lambda, \| \cdot \|_\lambda)$ be as in Proposition 8. Assume that X is a reflexive Banach space and Y is a Banach space having extension property. If X has L_λ-λ-AP, then $T \in \{ TR^* : R \in L_\lambda(X) \}^{\#}$, for any $T \in \mathcal{F}(X, Y)$.

Proof. Let $T \in \mathcal{F}(X, Y)$. Then $T \in \mathcal{F}(X, Y)^*$ by Theorem 5, and so $T^* \in K_\lambda(Y^*, X)$ by Theorem 3(i). By hypothesis and Theorem 7, for $\varepsilon > 0$, there exists $R_0 \in L_\lambda(X)$ such that $\| T - TR_0^* \| = \| T^* - R_0 T^* \| < \varepsilon$; that is, $T \in \{ TR^* : R \in L_\lambda(X) \}^{\#}$.

For the dual X^* of X, we introduce the following.

Definition 10. Let X be a Banach space with its topological dual X^* equipped with the operator norm topology, and let $L_\lambda(X)$ be a convex subset of $\mathcal{L}(X)$. Then X^* is said to have L_λ-λ approximation property with conjugate operator (L_λ^*-λ-AP) if, for any λ-compact set K^* of X^* and $\varepsilon > 0$, there exists $R_0 \in L_\lambda(X)$ such that $\| T^* - TR_0^* \| < \varepsilon$; that is, the identity operator on X^* is approximation by a conjugate operator of a member in $L_\lambda(X)$, uniformly on λ-compact subset of X^*.

Concerning L_λ^*-λ-AP of X^*, we prove the following.

Theorem 11. Let $(\lambda, \| \cdot \|_\lambda)$ and $L_\lambda(X)$ be as in Theorem 7.

(i) If Y is a Banach space with extension property and X^* has L_λ^*-λ-AP, then $T^* \in \{ TR : R \in L_\lambda(X) \}^{\#}$ for any $T \in \mathcal{F}(Y, X)$.

(ii) Let X be a reflexive Banach space. If, for any Banach space Y and $T \in \mathcal{F}(Y, X)$, $T \in \{ TR : R \in L_\lambda(X) \}^{\#}$, then X^* has L_λ^*-λ-AP.

Proof. Omitted as these are analogous to the proofs of Propositions 8 and 9.

Remark 12. Let us note here that the restriction on λ is such that we may include the Orlicz sequence spaces l_M, where M is an Orlicz function satisfying A_∞-condition at zero. One may call such approximation property as L_λ-l_M-AP and may be worth investigating further. However, for $L_\lambda(X) = \mathcal{F}(X)$, we illustrate l_M-AP by the following.

Example 13. We consider Orlicz functions $M_1(u) = u^\gamma / (\log(u^\gamma + 1))$ and $M_2(u) = \lambda((u^\gamma - 1))$, for $\gamma > 0$. Then $l_{M_1} = l_1 = l_{M_2}$ (cf. [13]). Therefore $l_{M_1} = l_1 = l_{M_2}$, where N_i are the complementary Orlicz functions of M_i, respectively, for $i = 1, 2$. Let K be an l_{M_1}-compact set in X. Then there exists $\exists \in \{ x_n \} \in N_1(X) \neq l_1(X)$ such that $K \subseteq \{ \sum_{n=1}^\infty \alpha_n x_n : \alpha = \{ \alpha_n \} \in B_{l_{M_1}} \}$. As $l_{M_2} \leq l_2 \leq C|l_{M_1}|$, we have

$$\| \alpha \|_{l_{M_1}} \leq \| \alpha \|_2 \leq Cl_{M_1}.$$
As K is an arbitrary p-compact set, the Banach space X has L_s^p-AP.

To prove the next result we make use of the following.

Lemma 16. The Banach space X has L_s^p-AP for $1 < p < \infty$ if and only if
\[
\inf_{R \in L_s^p (X)} \left| \sum_{j=1}^{n_0} a_j^j f_j (R x_n - x_n) \right| = 0,
\]
where $x_n = \{ x_n \} \in l_p^p (X); \overline{a} = \{ a_n \}_{n \geq 1}$ are in l_p for each $j \in \mathbb{N}$ and $\{ f_j \}$ in X^* satisfying the condition $\sum_{j=1}^{\infty} \|f_j\|_X < \infty$.

Proof. X has L_s^p-AP $\iff I \in L_s^p (X)^* \iff \inf_{R \in L_s^p (X)} | \psi (I - R)| = 0$, for ψ in $\mathcal{A}(X)$, τ_p^*. Now the result is immediate from Theorem 2.

Using the above lemma, we further characterize L_s^p-AP in the following.

Theorem 17. For $1 < p, q < \infty$, and $1/p + 1/q = 1$, the following conditions are equivalent.

(i) X has L_s^p-AP.

(ii) For any Banach space Y and any $T \in QN_{p}^{\tau} (X^*, Y)$, $T \in \{ TR^* : R \in L_s^p (X) \}^{-1}$.

(iii) For any reflexive separable Banach space Y and any $T \in QN_{p}^{\tau} (X^*, Y)$, there exists a net $\{ R_i \}_{i \in I}$ from $L_s^p (X)$ such that $TR_i^* \rightarrow T$ in weak operator topology on $\mathcal{A}(X^*, Y)$; that is, $TR_i^* f \rightarrow Tf$ in weak topology $S \gamma(Y^*)$ of each $f \in X^*$.

Proof. (i) \Rightarrow (ii) Let $T \in QN_{p}^{\tau} (X^*, Y)$. As T is $\sigma (X^*, X) - \sigma (Y^*, Y)$ continuous, $\text{range}(T^*) \subset X$ and so $T^* \in K_p (Y^*, X)$. Now for given $\varepsilon > 0$, there exists $R_0 \in L_s^p (X)$ such that $\| R_0 T^* - T^* \| < \varepsilon$ by Theorem 15. Hence $\| TR_i^* - T \| < \varepsilon$, and (ii) follows.

(iii) \Rightarrow (i). For proving that X has L_s^p-AP, we make use of Lemma 16. Hence we may assume without loss of generality that $X = \{ x_n \} \in l_p^p (X), \overline{a} = \{ a_n \}_{n \geq 1} \in B_{l_p^p}$, for each $j \geq 1$, and $\{ f_j \} \subset C$ satisfies $\sum_{j=1}^{\infty} \|f_j\|_X < \infty$. Consider the map $\psi : l_q^* \rightarrow X$ defined as $\psi (a_n) = \sum_{n \geq 1} a_n x_n$. Then ψ is a p-compact map. Hence $\psi^* : X^* \rightarrow l_p^*$ is a quasi-nuclear map by Proposition 4(i); that is, $\psi^* \in QN_{p}^{Q^*} (X^*, l_p^*)$. As l_p is a reflexive separable Banach space and $\psi^* : l_p^* \rightarrow X^{**}$, we get range($\psi^*$) $\subset X$. Consequently, $\psi^* \in QN_{p}^{Q^*} (X^*, l_p)$. Now by hypothesis, there exists a net $\{ R_i \}_{i \in I}$ from $L_s^p (X)$ such that $\psi^* R_i^* \rightarrow \psi^*$ in weak operator topology on $\mathcal{A}(X^*, l_p)$. Hence by uniform boundedness principle, there exists $M \geq 0$ such that $\| \psi^* R_i^* \| \leq M$, for all $i \in I$. Also we get that $\psi^* R_i^* (f_j) \rightarrow \psi^* (f_j)$, for each $j \geq 1$. Choose $R_0 \in \{ R_i \}_{i \in I}$ such that
\[
\left| \left(\psi^* R_i^* (f_j) - \psi^* (f_j) \right) (\overline{a}) \right| < \frac{\varepsilon}{2n_0},
\]
for $j = 1, 2, \ldots, n_0$, (20)
where n_0 is the integer satisfying
\[\sum_{j \geq n_0+1} \| f_j \| < \frac{\varepsilon}{2 (M + \| F \|_p)}. \] (21)

Now consider
\[\sum_{j \geq 1} \sum_{n=1}^{n_0} \alpha_j^n f_j \left(R_{ij} x_n - x_n \right) \]
\[= \sum_{j \geq 1} \left(\psi^* R_{ij} f_j - \psi^* f_j \right) (\overline{\alpha^n}) \]
\[\leq n_0 \sum_{j=1}^{n_0} \left(\psi^* R_{ij} f_j - \psi^* f_j \right) (\overline{\alpha^n}) \]
\[+ \sum_{j \geq n_0+1} \left(\psi^* R_{ij} f_j - \psi^* f_j \right) (\overline{\alpha^n}) \]
\[< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}. \]

since (\| R_{ij} \| + \| \psi^* \|) ≤ M + \| F \|_p and \| \overline{\alpha^n} \|_q ≤ 1, for all \(j \geq 1 \).

Hence \(\inf_{T \in L_{s, R} \setminus L_{s, R}^*} \sum_{j \geq 1} \sum_{n=1}^{n_0} \alpha_j^n f_j (R_{ij} x_n - x_n) = 0 \). Therefore \(X \) has \(L_{s, p} \)-AP by Lemma 16.

A characterization of \(L_{s, p} \)-AP of a Banach space \(X^* \) is contained in the following.

Theorem 18. \(X^* \) has \(L_{s, p} \)-AP if and only if, for every Banach space \(Y \) and every \(T \in \text{QN}_p(Y, X) \), \(T \in \{ TR : R \in L_{s, p}(X) \}^{14} \).

Proof. The proof of necessity part is omitted as it is analogous to that of (i) \(\Rightarrow \) (ii), Theorem 7.

For converse, let us consider that \(T \in K_p(Y, X^*) \), where \(Y \) is an arbitrary Banach space. Then \(T^* \in \text{QN}_p(X^*, Y^*) \) by Proposition 4(i). Using Proposition 4(ii), we get \(T^* \in \text{QN}_p(X(Y^*), Y^*) \). Now, by hypothesis, for given \(\varepsilon > 0 \), we can find that \(R_{ij} \in L_{s, p}(X) \) such that \(\| T^{ij} R_{ij} - T^* \| < \varepsilon \). Hence \(\| R_{ij}^* T - T^* \| < \varepsilon \). Now apply Theorem 15 to get that \(X^* \) has \(L_{s, p} \)-AP.

Finally, we consider a result involving operator ideals and \(p \)-compact operators, which is analogous to the one proved in [5] for compact operators.

Proposition 19. Let \(\mathcal{A} \) be an operator ideal and \(Y \) an arbitrary Banach space. If, for \(R \in L_{s, p}(X) \) and any \(T \in \mathcal{A}^{p}(X, Y) \), \(RT \) is a \(p \)-compact operator from \(X \) to \(Y \), then for \(R \in L_{s, p}(X) \) and any \(T \in \mathcal{A}^{p}(X^*, Y^*) \) the operator \(RT^* \) is also \(p \)-compact operator from \(Y^* \) to \(X \). Conversely follows when \(\mathcal{A} \subseteq \text{QN}_p \).

Proof. If \(R \in L_{s, p}(X) \) and \(T \in \mathcal{A}^{p}(X^*, Y^*) \), then \(T^* \) is a bounded linear operator from \(Y^* \) to \(X \). Then \(T^* = J_{X} T_{aa} \) where \(T_{aa} : Y^* \rightarrow X \) is the astriction map of \(T^* \). Consequently, \(T \in \mathcal{A}^{p}(X^*, Y^*) \).

By hypothesis, \(RT^* = RT_{aa} \in K_p(Y^*, X) \).

For converse, consider that \(R \in L_{s, p}(X) \) and \(T \in \mathcal{A}^{p}(Y, X) \). Then \(T^* \in \text{QN}_p(X^*, Y^*) \) by hypothesis. By Proposition 4(i) \(T \in K_p(Y, X) \subseteq K(Y, X) \subseteq W(Y, X) \). Consequently, \(\text{range}(T^*) \subseteq X \) (cf. [14], page 185) (see also [15], page 341). Hence \(T^* \in \mathcal{A}^{p}(X^*, Y^*) \). Consequently, \(RT^* \in K_p(Y^*, X) \) by hypothesis. As \(RT = RT^* T_{aa} \), the result follows.

References

Submit your manuscripts at http://www.hindawi.com