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Abstract. 
Let 
	
		
			
				𝐶
				[
				0
				,
				𝑡
				]
			

		
	
 denote a generalized Wiener space, the space of real-valued continuous functions on the interval 
	
		
			
				[
				0
				,
				𝑡
				]
			

		
	
 and define a stochastic process 
	
		
			
				𝑌
				∶
				𝐶
				[
				0
				,
				𝑡
				]
				×
				[
				0
				,
				𝑡
				]
				→
				ℝ
			

		
	
 by 
	
		
			
				∫
				𝑌
				(
				𝑥
				,
				𝑠
				)
				=
			

			
				𝑠
				0
			

			
				ℎ
				(
				𝑢
				)
				𝑑
				𝑥
				(
				𝑢
				)
				+
				𝑎
				(
				𝑠
				)
			

		
	
 for 
	
		
			
				𝑥
				∈
				𝐶
				[
				0
				,
				𝑡
				]
			

		
	
 and 
	
		
			
				𝑠
				∈
				[
				0
				,
				𝑡
				]
			

		
	
, where 
	
		
			
				ℎ
				∈
				𝐿
			

			

				2
			

			
				[
				0
				,
				𝑡
				]
			

		
	
 with 
	
		
			
				ℎ
				≠
				0
			

		
	
 a.e. and 
	
		
			

				𝑎
			

		
	
 is continuous on 
	
		
			
				[
				0
				,
				𝑡
				]
			

		
	
. Let random vectors 
	
		
			

				𝑌
			

			

				𝑛
			

			
				∶
				𝐶
				[
				0
				,
				𝑡
				]
				→
				ℝ
			

			

				𝑛
			

		
	
 and 
	
		
			

				𝑌
			

			
				𝑛
				+
				1
			

			
				∶
				𝐶
				[
				0
				,
				𝑡
				]
				→
				ℝ
			

			
				𝑛
				+
				1
			

		
	
 be given by 
	
		
			

				𝑌
			

			

				𝑛
			

			
				(
				𝑥
				)
				=
				(
				𝑌
				(
				𝑥
				,
				𝑡
			

			

				1
			

			
				)
				,
				…
				,
				𝑌
				(
				𝑥
				,
				𝑡
			

			

				𝑛
			

			
				)
				)
			

		
	
 and 
	
		
			

				𝑌
			

			
				𝑛
				+
				1
			

			
				(
				𝑥
				)
				=
				(
				𝑌
				(
				𝑥
				,
				𝑡
			

			

				1
			

			
				)
				,
				…
				,
				𝑌
				(
				𝑥
				,
				𝑡
			

			

				𝑛
			

			
				)
				,
				𝑌
				(
				𝑥
				,
				𝑡
			

			
				𝑛
				+
				1
			

			
				)
				)
			

		
	
, where 
	
		
			
				0
				<
				𝑡
			

			

				1
			

			
				<
				⋯
				<
				𝑡
			

			

				𝑛
			

			
				<
				𝑡
			

			
				𝑛
				+
				1
			

			
				=
				𝑡
			

		
	
 is a partition of 
	
		
			
				[
				0
				,
				𝑡
				]
			

		
	
. In this paper we derive a translation theorem for a generalized Wiener integral and then prove that 
	
		
			

				𝑌
			

		
	
 is a generalized Brownian motion process with drift 
	
		
			

				𝑎
			

		
	
. Furthermore, we derive two simple formulas for generalized conditional Wiener integrals of functions on 
	
		
			
				𝐶
				[
				0
				,
				𝑡
				]
			

		
	
 with the drift and the conditioning functions 
	
		
			

				𝑌
			

			

				𝑛
			

		
	
 and 
	
		
			

				𝑌
			

			
				𝑛
				+
				1
			

		
	
. As applications of these simple formulas, we evaluate the generalized conditional Wiener integrals of various functions on 
	
		
			
				𝐶
				[
				0
				,
				𝑡
				]
			

		
	
.


1. Introduction
Let 
	
		
			

				𝐶
			

			

				0
			

			
				[
				0
				,
				𝑡
				]
			

		
	
 denote the Wiener space, the space of real-valued continuous functions 
	
		
			

				𝑥
			

		
	
 on 
	
		
			
				[
				0
				,
				𝑡
				]
			

		
	
 with 
	
		
			
				𝑥
				(
				0
				)
				=
				0
			

		
	
. On the space, Yeh [1] introduced an inversion formula that a conditional expectation can be found by a Fourier-transform. But Yeh’s inversion formula is very complicated in its application when the conditioning function is vector-valued. In [2], Park and Skoug derived a simple formula for conditional Wiener integrals on 
	
		
			

				𝐶
			

			

				0
			

			
				[
				0
				,
				𝑡
				]
			

		
	
 with a vector-valued conditioning function 
	
		
			
				𝑋
				∶
				𝐶
			

			

				0
			

			
				[
				0
				,
				𝑡
				]
				→
				ℝ
			

			

				𝑛
			

		
	
 given by 
	
		
			
				𝑋
				(
				𝑥
				)
				=
				(
				𝑥
				(
				𝑡
			

			

				1
			

			
				)
				,
				…
				,
				𝑥
				(
				𝑡
			

			
				𝑛
				+
				1
			

			
				)
				)
			

		
	
, where 
	
		
			
				0
				=
				𝑡
			

			

				0
			

			
				<
				𝑡
			

			

				1
			

			
				<
				⋯
				<
				𝑡
			

			

				𝑛
			

			
				<
				𝑡
			

			
				𝑛
				+
				1
			

			
				=
				𝑡
			

		
	
 is a partition of the interval 
	
		
			
				[
				0
				,
				𝑡
				]
			

		
	
. In their simple formula, they expressed the conditional Wiener integral directly in terms of an ordinary Wiener integral. Using the simple formula in [2], Chang and Skoug [3] investigated the effect that drift has on the conditional Fourier-Feynman transform, the conditional convolution product, and various relationships that occur between them.
On the other hand, let 
	
		
			
				𝐶
				[
				0
				,
				𝑡
				]
			

		
	
 denote the space of real-valued continuous functions on the interval 
	
		
			
				[
				0
				,
				𝑡
				]
			

		
	
. Im and Ryu [4] introduced a probability measure 
	
		
			

				𝑤
			

			

				𝜑
			

		
	
 on 
	
		
			
				𝐶
				[
				0
				,
				𝑡
				]
			

		
	
, where 
	
		
			

				𝜑
			

		
	
 is a probability measure on the Borel class of 
	
		
			

				ℝ
			

		
	
. When 
	
		
			
				𝜑
				=
				𝛿
			

			

				0
			

		
	
, the Dirac measure concentrated at 
	
		
			

				0
			

		
	
, 
	
		
			

				𝑤
			

			

				𝜑
			

		
	
 is exactly the Wiener measure on 
	
		
			

				𝐶
			

			

				0
			

			
				[
				0
				,
				𝑡
				]
			

		
	
. On the space 
	
		
			
				𝐶
				[
				0
				,
				𝑡
				]
			

		
	
, the author [5, 6] derived two simple formulas for the conditional Wiener 
	
		
			

				𝑤
			

			

				𝜑
			

		
	
-integral of functions on 
	
		
			
				𝐶
				[
				0
				,
				𝑡
				]
			

		
	
 with the vector-valued conditioning functions 
	
		
			

				𝑋
			

			

				𝑛
			

			
				∶
				𝐶
				[
				0
				,
				𝑡
				]
				→
				ℝ
			

			
				𝑛
				+
				1
			

		
	
 and 
	
		
			

				𝑋
			

			
				𝑛
				+
				1
			

			
				∶
				𝐶
				[
				0
				,
				𝑡
				]
				→
				ℝ
			

			
				𝑛
				+
				2
			

		
	
 given by 
	
		
			

				𝑋
			

			

				𝑛
			

			
				(
				𝑥
				)
				=
				(
				𝑥
				(
				𝑡
			

			

				0
			

			
				)
				,
				𝑥
				(
				𝑡
			

			

				1
			

			
				)
				,
				…
				,
				𝑥
				(
				𝑡
			

			

				𝑛
			

			
				)
				)
			

		
	
 and 
	
		
			

				𝑋
			

			
				𝑛
				+
				1
			

			
				(
				𝑥
				)
				=
				(
				𝑥
				(
				𝑡
			

			

				0
			

			
				)
				,
				𝑥
				(
				𝑡
			

			

				1
			

			
				)
				,
				…
				,
				𝑥
				(
				𝑡
			

			

				𝑛
			

			
				)
				,
				𝑥
				(
				𝑡
			

			
				𝑛
				+
				1
			

			
				)
				)
			

		
	
 which generalize the Park and Skoug’s formula in [2]. Using these formulas with the conditioning functions 
	
		
			

				𝑋
			

			

				𝑛
			

		
	
 and 
	
		
			

				𝑋
			

			
				𝑛
				+
				1
			

		
	
, he evaluated the conditional Wiener 
	
		
			

				𝑤
			

			

				𝜑
			

		
	
-integral of function of the form 
	
		
			

				𝐹
			

			

				𝑚
			

			
				∫
				(
				𝑥
				)
				=
			

			
				𝑡
				0
			

			
				(
				𝑥
				(
				𝑠
				)
				)
			

			

				𝑚
			

			
				𝑑
				𝑠
			

		
	
 for any positive integer 
	
		
			

				𝑚
			

		
	
.
Let 
	
		
			
				ℎ
				∈
				𝐿
			

			

				2
			

			
				[
				0
				,
				𝑡
				]
			

		
	
 with 
	
		
			
				ℎ
				≠
				0
			

		
	
 a.e. on 
	
		
			
				[
				0
				,
				𝑡
				]
			

		
	
, and let 
	
		
			

				𝑎
			

		
	
 be a continuous function on 
	
		
			
				[
				0
				,
				𝑡
				]
			

		
	
. Define a stochastic process 
	
		
			
				𝑌
				∶
				𝐶
				[
				0
				,
				𝑡
				]
				×
				[
				0
				,
				𝑡
				]
				→
				ℝ
			

		
	
 by  
	
		
			
				∫
				𝑌
				(
				𝑥
				,
				𝑠
				)
				=
			

			
				𝑠
				0
			

			
				ℎ
				(
				𝑢
				)
				𝑑
				𝑥
				(
				𝑢
				)
				+
				𝑎
				(
				𝑠
				)
			

		
	
 for 
	
		
			
				𝑥
				∈
				𝐶
				[
				0
				,
				𝑡
				]
			

		
	
 and 
	
		
			
				𝑠
				∈
				[
				0
				,
				𝑡
				]
			

		
	
. Let 
	
		
			

				𝑌
			

			

				𝑛
			

			
				∶
				𝐶
				[
				0
				,
				𝑡
				]
				→
				ℝ
			

			

				𝑛
			

		
	
 and 
	
		
			

				𝑌
			

			
				𝑛
				+
				1
			

			
				∶
				𝐶
				[
				0
				,
				𝑡
				]
				→
				ℝ
			

			
				𝑛
				+
				1
			

		
	
 be given by
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			

				𝑌
			

			

				𝑛
			

			
				
				𝑌
				
				(
				𝑥
				)
				=
				𝑥
				,
				𝑡
			

			

				1
			

			
				
				
				,
				…
				,
				𝑌
				𝑥
				,
				𝑡
			

			

				𝑛
			

			
				,
				𝑌
				
				
			

			
				𝑛
				+
				1
			

			
				
				𝑌
				
				(
				𝑥
				)
				=
				𝑥
				,
				𝑡
			

			

				1
			

			
				
				
				,
				…
				,
				𝑌
				𝑥
				,
				𝑡
			

			

				𝑛
			

			
				
				
				,
				𝑌
				𝑥
				,
				𝑡
			

			
				𝑛
				+
				1
			

			
				.
				
				
			

		
	

					In this paper, we derive a translation theorem for a generalized Wiener 
	
		
			

				𝑤
			

			

				𝜑
			

		
	
-integral, and then prove that 
	
		
			

				𝑌
			

		
	
 is a generalized Brownian motion process with drift 
	
		
			

				𝑎
			

		
	
 and variance 
	
		
			

				∫
			

			
				𝑠
				0
			

			
				(
				ℎ
				(
				𝑢
				)
				)
			

			

				2
			

			
				𝑑
				𝑢
			

		
	
 for 
	
		
			
				𝑠
				∈
				[
				0
				,
				𝑡
				]
			

		
	
. Furthermore, we derive two simple formulas for generalized conditional Wiener integrals of functions on 
	
		
			
				𝐶
				[
				0
				,
				𝑡
				]
			

		
	
 with the drift and the conditioning functions 
	
		
			

				𝑌
			

			

				𝑛
			

		
	
 and 
	
		
			

				𝑌
			

			
				𝑛
				+
				1
			

		
	
. As applications of these simple formulas, we evaluate the generalized conditional Wiener integrals of functions of the forms 
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			

				𝐹
			

			

				𝑚
			

			
				
				(
				𝑌
				(
				𝑥
				,
				⋅
				)
				)
				,
				𝑌
				𝑥
				,
				𝑠
			

			

				1
			

			
				
				𝑌
				
				𝑥
				,
				𝑠
			

			

				2
			

			
				
				,
				
			

			

				𝐿
			

			

				2
			

			
				[
				0
				,
				𝑡
				]
			

			
				e
				x
				p
				{
				𝑖
				(
				𝑣
				,
				𝑌
				(
				𝑥
				,
				⋅
				)
				)
				}
				𝑑
				𝜎
				(
				𝑣
				)
			

		
	

					for 
	
		
			
				𝑥
				∈
				𝐶
				[
				0
				,
				𝑡
				]
			

		
	
, where 
	
		
			
				0
				<
				𝑠
			

			

				1
			

			
				<
				𝑠
			

			

				2
			

			
				≤
				𝑡
			

		
	
 and 
	
		
			

				𝜎
			

		
	
 is a complex Borel measure on 
	
		
			

				𝐿
			

			

				2
			

			
				[
				0
				,
				𝑡
				]
			

		
	
.
2. A Generalized Brownian Motion Process with Drift
In this section, we introduce a generalized Brownian motion process with drift which generalizes the generalized Wiener space 
	
		
			

				𝐶
			

			
				𝑎
				,
				𝑏
			

			
				[
				0
				,
				𝑇
				]
			

		
	
 as given in [7].
Let 
	
		
			

				ℂ
			

		
	
 and 
	
		
			

				ℂ
			

			

				+
			

		
	
 denote the sets of complex numbers and complex numbers with positive real parts, respectively. Let 
	
		
			
				(
				𝐶
				[
				0
				,
				𝑡
				]
				,
				ℬ
				(
				𝐶
				[
				0
				,
				𝑡
				]
				)
				,
				𝑤
			

			

				𝜑
			

			

				)
			

		
	
 be the analogue of Wiener space associated with a probability measure 
	
		
			

				𝜑
			

		
	
 on the Borel class of 
	
		
			

				ℝ
			

		
	
, where 
	
		
			
				ℬ
				(
				𝐶
				[
				0
				,
				𝑡
				]
				)
			

		
	
 denotes the Borel class of 
	
		
			
				𝐶
				[
				0
				,
				𝑡
				]
			

		
	
 [4]. Let 
	
		
			
				𝛼
				∈
				ℝ
			

		
	
, and let 
	
		
			

				𝜑
			

			

				𝛼
			

		
	
 be a measure on 
	
		
			
				(
				ℝ
				,
				ℬ
				(
				ℝ
				)
				)
			

		
	
 such that 
	
		
			

				𝜑
			

			

				𝛼
			

			
				(
				𝐵
				)
				=
				𝜑
				(
				𝐵
				+
				𝛼
				)
			

		
	
 for 
	
		
			
				𝐵
				∈
				ℬ
				(
				ℝ
				)
			

		
	
. For 
	
		
			

				𝑣
			

		
	
 in 
	
		
			

				𝐿
			

			

				2
			

			
				[
				0
				,
				𝑡
				]
			

		
	
 and 
	
		
			

				𝑥
			

		
	
 in 
	
		
			
				𝐶
				[
				0
				,
				𝑡
				]
			

		
	
, let 
	
		
			
				∫
				(
				𝑣
				,
				𝑥
				)
				=
			

			
				𝑡
				0
			

			
				𝑣
				(
				𝑠
				)
				𝑑
				𝑥
				(
				𝑠
				)
			

		
	
 denote the Paley-Wiener-Zygmund integral of 
	
		
			

				𝑣
			

		
	
 according to 
	
		
			

				𝑥
			

		
	
 [4]. Let 
	
		
			
				ℎ
				∈
				𝐿
			

			

				2
			

			
				[
				0
				,
				𝑡
				]
			

		
	
 with 
	
		
			
				ℎ
				≠
				0
			

		
	
 a.e. on 
	
		
			
				[
				0
				,
				𝑡
				]
			

		
	
, and let 
	
		
			

				𝑎
			

		
	
 be a continuous function on 
	
		
			
				[
				0
				,
				𝑡
				]
			

		
	
. Define stochastic processes 
	
		
			
				𝑍
				,
				𝑌
				∶
				𝐶
				[
				0
				,
				𝑡
				]
				×
				[
				0
				,
				𝑡
				]
				→
				ℝ
			

		
	
 by 
	
		
			
				∫
				𝑍
				(
				𝑥
				,
				𝑠
				)
				=
			

			
				𝑠
				0
			

			
				ℎ
				(
				𝑢
				)
				𝑑
				𝑥
				(
				𝑢
				)
			

		
	
 and 
	
		
			
				∫
				𝑌
				(
				𝑥
				,
				𝑠
				)
				=
			

			
				𝑠
				0
			

			
				ℎ
				(
				𝑢
				)
				𝑑
				𝑥
				(
				𝑢
				)
				+
				𝑎
				(
				𝑠
				)
			

		
	
 for 
	
		
			
				𝑥
				∈
				𝐶
				[
				0
				,
				𝑡
				]
			

		
	
 and 
	
		
			
				𝑠
				∈
				[
				0
				,
				𝑡
				]
			

		
	
. Let 
	
		
			
				∫
				𝑏
				(
				𝑠
				)
				=
			

			
				𝑠
				0
			

			
				(
				ℎ
				(
				𝑢
				)
				)
			

			

				2
			

			
				𝑑
				𝑢
			

		
	
 for 
	
		
			
				0
				≤
				𝑠
				≤
				𝑡
			

		
	
.
By (3.1) in [4, Theorem 3.1], we have the following translation theorem for a generalized Wiener integral on the analogue of Wiener space.
Theorem 1.  Let 
	
		
			

				𝑔
			

		
	
 be of bounded variation on 
	
		
			
				[
				0
				,
				𝑡
				]
			

		
	
, let 
	
		
			

				𝑔
			

			

				0
			

			
				∫
				(
				𝑠
				)
				=
			

			
				𝑠
				0
			

			
				ℎ
				(
				𝑢
				)
				𝑔
				(
				𝑢
				)
				𝑑
				𝑢
			

		
	
 for 
	
		
			
				𝑠
				∈
				[
				0
				,
				𝑡
				]
			

		
	
, and let 
	
		
			

				𝐹
			

		
	
 be a measurable function on 
	
		
			
				𝐶
				[
				0
				,
				𝑡
				]
			

		
	
. Then, 
	
		
			
				𝐹
				(
				𝑌
				(
				𝑥
				,
				⋅
				)
				+
				𝑔
			

			

				0
			

			

				)
			

		
	
 is also measurable function of 
	
		
			

				𝑥
			

		
	
 on 
	
		
			
				𝐶
				[
				0
				,
				𝑡
				]
			

		
	
 and
							
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			

				
			

			
				𝐶
				[
				0
				,
				𝑡
				]
			

			
				𝐹
				(
				𝑌
				(
				𝑥
				,
				⋅
				)
				)
				𝑑
				𝑤
			

			

				𝜑
			

			
				(
				𝑥
				)
			

			

				∗
			

			
				=
				𝑒
			

			
				−
				‖
				𝑔
				‖
			

			

				2
			

			
				/
				2
			

			

				
			

			
				𝐶
				[
				0
				,
				𝑡
				]
			

			
				𝐹
				
				𝑌
				(
				𝑥
				,
				⋅
				)
				+
				𝑔
			

			

				0
			

			
				
				e
				x
				p
				{
				−
				(
				𝑔
				,
				𝑥
				)
				}
				𝑑
				𝑤
			

			

				𝜑
			

			

				𝛼
			

			
				(
				𝑥
				)
				,
			

		
	

						where 
	
		
			

				∗
			

			

				=
			

		
	
 means that if one side exists then both sides exist, and they are equal.
Letting 
	
		
			
				𝑔
				=
				𝜒
			

			
				[
				0
				,
				𝑠
				]
			

			

				ℎ
			

		
	
, we have the following corollary by Theorem 1.
Corollary 2.  Let 
	
		
			

				ℎ
			

		
	
 be of bounded variation on 
	
		
			
				[
				0
				,
				𝑡
				]
			

		
	
 and 
	
		
			

				𝐹
			

		
	
 a measurable function on 
	
		
			
				𝐶
				[
				0
				,
				𝑡
				]
			

		
	
. Then, for 
	
		
			
				𝑠
				∈
				[
				0
				,
				𝑡
				]
				𝐹
				(
				𝑌
				(
				𝑥
				,
				⋅
				)
				+
				𝑏
				(
				m
				i
				n
				{
				𝑠
				,
				⋅
				}
				)
				)
			

		
	
 is also measurable on 
	
		
			
				𝐶
				[
				0
				,
				𝑡
				]
			

		
	
 and 
							
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			

				
			

			
				𝐶
				[
				0
				,
				𝑡
				]
			

			
				𝐹
				(
				𝑌
				(
				𝑥
				,
				⋅
				)
				)
				𝑑
				𝑤
			

			

				𝜑
			

			
				(
				𝑥
				)
			

			

				∗
			

			
				
				−
				1
				=
				e
				x
				p
			

			
				
			
			
				2
				
				
				𝑏
				(
				𝑠
				)
			

			
				𝐶
				[
				0
				,
				𝑡
				]
			

			
				𝐹
				(
				𝑌
				(
				𝑥
				,
				⋅
				)
				+
				𝑏
				(
				m
				i
				n
				{
				𝑠
				,
				⋅
				}
				)
				)
				×
				e
				x
				p
				{
				−
				𝑍
				(
				𝑥
				,
				𝑠
				)
				}
				𝑑
				𝑤
			

			

				𝜑
			

			

				𝛼
			

			
				(
				𝑥
				)
				.
			

		
	

Letting 
	
		
			
				𝐹
				≡
				1
			

		
	
 in Theorem 1 and Corollary 2, we have the following corollary.
Corollary 3.  Under the assumptions as given in Theorem 1 and Corollary 2 
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			

				
			

			
				𝐶
				[
				0
				,
				𝑡
				]
			

			
				e
				x
				p
				{
				−
				(
				𝑔
				,
				𝑥
				)
				}
				𝑑
				𝑤
			

			

				𝜑
			

			

				𝛼
			

			
				
				1
				(
				𝑥
				)
				=
				e
				x
				p
			

			
				
			
			
				2
				‖
				𝑔
				‖
			

			

				2
			

			
				
				.
			

		
	

						In particular for 
	
		
			
				𝑠
				∈
				[
				0
				,
				𝑡
				]
			

		
	
 
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			

				
			

			
				𝐶
				[
				0
				,
				𝑡
				]
			

			
				e
				x
				p
				{
				−
				𝑍
				(
				𝑥
				,
				𝑠
				)
				}
				𝑑
				𝑤
			

			

				𝜑
			

			

				𝛼
			

			
				
				1
				(
				𝑥
				)
				=
				e
				x
				p
			

			
				
			
			
				2
				
				.
				𝑏
				(
				𝑠
				)
			

		
	

Using the same method as used in the proof of Corollary 3.3 in [4], we have the following corollary.
Corollary 4.  Under the assumptions as given in Theorem 1, one has for 
	
		
			
				𝜆
				∈
				ℂ
			

		
	
 
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			

				
			

			
				𝐶
				[
				0
				,
				𝑡
				]
			

			
				e
				x
				p
				{
				−
				𝜆
				(
				𝑔
				,
				𝑥
				)
				}
				𝑑
				𝑤
			

			

				𝜑
			

			

				𝛼
			

			
				
				𝜆
				(
				𝑥
				)
				=
				e
				x
				p
			

			

				2
			

			
				
			
			
				2
				‖
				𝑔
				‖
			

			

				2
			

			
				
				.
			

		
	

						In particular for 
	
		
			
				𝑠
				∈
				[
				0
				,
				𝑡
				]
			

		
	
 
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			

				
			

			
				𝐶
				[
				0
				,
				𝑡
				]
			

			
				e
				x
				p
				{
				−
				𝜆
				𝑍
				(
				𝑥
				,
				𝑠
				)
				}
				𝑑
				𝑤
			

			

				𝜑
			

			

				𝛼
			

			
				
				𝜆
				(
				𝑥
				)
				=
				e
				x
				p
			

			

				2
			

			
				
			
			
				2
				
				.
				𝑏
				(
				𝑠
				)
			

		
	

Letting 
	
		
			
				𝜆
				=
				−
				𝑖
				𝜉
				(
				𝜉
				∈
				ℝ
				)
			

		
	
 in the equations of Corollary 4, we have the following corollary by Fourier transforms on 
	
		
			
				(
				𝐶
				[
				0
				,
				𝑡
				]
				,
				𝑤
			

			

				𝜑
			

			

				𝛼
			

			

				)
			

		
	
.
Corollary 5.  Under the assumptions as given in Theorem 1, let 
	
		
			
				𝑋
				(
				𝑥
				)
				=
				(
				𝑔
				,
				𝑥
				)
			

		
	
. Then, 
	
		
			

				𝑋
			

		
	
 is normally distributed with mean zero and variance 
	
		
			
				‖
				𝑔
				‖
			

			

				2
			

		
	
 on 
	
		
			
				(
				𝐶
				[
				0
				,
				𝑡
				]
				,
				𝑤
			

			

				𝜑
			

			

				𝛼
			

			

				)
			

		
	
 if 
	
		
			
				‖
				𝑔
				‖
				>
				0
			

		
	
. Moreover, for 
	
		
			
				𝑠
				∈
				(
				0
				,
				𝑡
				]
				𝑌
				(
				⋅
				,
				𝑠
				)
			

		
	
 is normally distributed with mean 
	
		
			
				𝑎
				(
				𝑠
				)
			

		
	
 and variance 
	
		
			
				𝑏
				(
				𝑠
				)
			

		
	
 on 
	
		
			
				(
				𝐶
				[
				0
				,
				𝑡
				]
				,
				𝑤
			

			

				𝜑
			

			

				𝛼
			

			

				)
			

		
	
. In particular, 
	
		
			
				𝑍
				(
				⋅
				,
				𝑠
				)
			

		
	
 is normally distributed on 
	
		
			
				(
				𝐶
				[
				0
				,
				𝑡
				]
				,
				𝑤
			

			

				𝜑
			

			

				𝛼
			

			

				)
			

		
	
 with mean 
	
		
			

				0
			

		
	
 and variance 
	
		
			
				𝑏
				(
				𝑠
				)
			

		
	
.
Using the same method as used in the proof of Theorem 3.5 in [4], we have the following theorem.
Theorem 6.  Let 
	
		
			
				{
				𝑔
			

			

				1
			

			
				,
				…
				,
				𝑔
			

			

				𝑚
			

			

				}
			

		
	
 be an orthonormal subset of 
	
		
			

				𝐿
			

			

				2
			

			
				[
				0
				,
				𝑡
				]
			

		
	
 such that each 
	
		
			

				𝑔
			

			

				𝑗
			

		
	
 is of bounded variation. For 
	
		
			
				𝑗
				=
				1
				,
				…
				,
				𝑚
			

		
	
, let 
	
		
			

				𝑋
			

			

				𝑗
			

			
				(
				𝑥
				)
				=
				(
				𝑔
			

			

				𝑗
			

			
				,
				𝑥
				)
			

		
	
. Then, 
	
		
			

				𝑋
			

			

				1
			

			
				,
				…
				,
				𝑋
			

			

				𝑚
			

		
	
 are independent, and each 
	
		
			

				𝑋
			

			

				𝑗
			

		
	
 has the standard normal distribution. Moreover if, 
	
		
			
				𝑓
				∶
				ℝ
			

			

				𝑚
			

			
				→
				ℂ
			

		
	
 is Borel measurable, then 
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			

				
			

			
				𝐶
				[
				0
				,
				𝑡
				]
			

			
				𝑓
				
				𝑋
			

			

				1
			

			
				(
				𝑥
				)
				,
				…
				,
				𝑋
			

			

				𝑚
			

			
				
				(
				𝑥
				)
				𝑑
				𝑤
			

			

				𝜑
			

			

				𝛼
			

			
				(
				𝑥
				)
			

			

				∗
			

			
				=
				
				1
			

			
				
			
			
				
				2
				𝜋
			

			
				𝑚
				/
				2
			

			

				
			

			

				ℝ
			

			

				𝑚
			

			
				𝑓
				
				𝑢
			

			

				1
			

			
				,
				𝑢
			

			

				2
			

			
				,
				…
				,
				𝑢
			

			

				𝑚
			

			
				
				
				−
				1
				×
				e
				x
				p
			

			
				
			
			

				2
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑢
			

			
				2
				𝑗
			

			
				
				𝑑
				
				𝑢
			

			

				1
			

			
				,
				𝑢
			

			

				2
			

			
				,
				…
				,
				𝑢
			

			

				𝑚
			

			
				
				.
			

		
	

Theorem 7.  Let 
	
		
			

				ℎ
			

		
	
 be of bounded variation on 
	
		
			
				[
				0
				,
				𝑡
				]
			

		
	
, and let 
	
		
			
				0
				=
				𝑠
			

			

				0
			

			
				<
				𝑠
			

			

				1
			

			
				<
				⋯
				<
				𝑠
			

			

				𝑚
			

			
				≤
				𝑡
			

		
	
. Then, the random vector 
	
		
			
				(
				𝑌
				(
				⋅
				,
				𝑠
			

			

				1
			

			
				)
				,
				…
				,
				𝑌
				(
				⋅
				,
				𝑠
			

			

				𝑚
			

			
				)
				)
			

		
	
 has a joint density function 
	
		
			

				𝑊
			

			

				𝑚
			

		
	
 with respect to 
	
		
			

				𝑤
			

			

				𝜑
			

			

				𝛼
			

		
	
 given by
							
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			

				𝑊
			

			

				𝑚
			

			
				
				𝑠
			

			

				1
			

			
				,
				…
				,
				𝑠
			

			

				𝑚
			

			
				;
				𝑢
			

			

				1
			

			
				,
				…
				,
				𝑢
			

			

				𝑚
			

			
				
				=
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			
				
				1
			

			
				
			
			
				
				𝑏
				
				𝑠
				2
				𝜋
			

			

				𝑗
			

			
				
				
				𝑠
				−
				𝑏
			

			
				𝑗
				−
				1
			

			
				
				
				
			

			
				1
				/
				2
			

			
				
				−
				×
				e
				x
				p
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			
				
				𝑢
			

			

				𝑗
			

			
				
				𝑠
				−
				𝑎
			

			

				𝑗
			

			
				
				−
				
				𝑢
			

			
				𝑗
				−
				1
			

			
				
				𝑠
				−
				𝑎
			

			
				𝑗
				−
				1
			

			
				
				
				
			

			

				2
			

			
				
			
			
				2
				
				𝑏
				
				𝑠
			

			

				𝑗
			

			
				
				
				𝑠
				−
				𝑏
			

			
				𝑗
				−
				1
			

			
				
				,
				
				
			

		
	

						where 
	
		
			

				𝑢
			

			

				0
			

			
				=
				0
			

		
	
, 
	
		
			
				𝑎
				(
				0
				)
				=
				0
			

		
	
, and 
	
		
			
				(
				𝑢
			

			

				1
			

			
				,
				…
				,
				𝑢
			

			

				𝑚
			

			
				)
				∈
				ℝ
			

			

				𝑚
			

		
	
.
Proof. For 
	
		
			
				𝑗
				=
				1
				,
				…
				,
				𝑚
			

		
	
, let 
	
		
			

				ℎ
			

			

				𝑗
			

			
				=
				𝜒
			

			
				[
				𝑠
			

			
				𝑗
				−
				1
			

			
				,
				𝑠
			

			

				𝑗
			

			

				]
			

			

				ℎ
			

		
	
, where 
	
		
			

				𝜒
			

			
				[
				𝑠
			

			
				𝑗
				−
				1
			

			
				,
				𝑠
			

			

				𝑗
			

			

				]
			

		
	
 denotes the indicator function on 
	
		
			
				[
				𝑠
			

			
				𝑗
				−
				1
			

			
				,
				𝑠
			

			

				𝑗
			

			

				]
			

		
	
. Let 
	
		
			

				𝑔
			

			

				𝑗
			

			
				√
				=
				(
				1
				/
			

			
				
			
			
				𝑏
				(
				𝑠
			

			

				𝑗
			

			
				)
				−
				𝑏
				(
				𝑠
			

			
				𝑗
				−
				1
			

			
				)
				)
				ℎ
			

			

				𝑗
			

		
	
. Then, 
	
		
			

				𝑔
			

			

				1
			

			
				,
				…
				,
				𝑔
			

			

				𝑚
			

		
	
 are orthonormal, and 
	
		
			
				𝑌
				(
				⋅
				,
				𝑠
			

			

				𝑗
			

			
				∑
				)
				=
			

			
				𝑗
				𝑙
				=
				1
			

			
				(
				ℎ
			

			

				𝑙
			

			
				,
				⋅
				)
				+
				𝑎
				(
				𝑠
			

			

				𝑗
			

			
				∑
				)
				=
			

			
				𝑗
				𝑙
				=
				1
			

			

				√
			

			
				
			
			
				𝑏
				(
				𝑠
			

			

				𝑙
			

			
				)
				−
				𝑏
				(
				𝑠
			

			
				𝑙
				−
				1
			

			
				)
				(
				𝑔
			

			

				𝑙
			

			
				,
				⋅
				)
				+
				𝑎
				(
				𝑠
			

			

				𝑗
			

			

				)
			

		
	
. Let 
	
		
			

				𝐵
			

		
	
 be a Borel subset of 
	
		
			

				ℝ
			

			

				𝑚
			

		
	
. By Theorem 6,
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			

				𝑤
			

			

				𝜑
			

			

				𝛼
			

			
				𝑌
				
				
				
				⋅
				,
				𝑠
			

			

				1
			

			
				
				
				,
				…
				,
				𝑌
				⋅
				,
				𝑠
			

			

				𝑚
			

			
				
				=
				
				1
				
				
				∈
				𝐵
			

			
				
			
			
				
				2
				𝜋
			

			
				𝑚
				/
				2
			

			

				
			

			

				ℝ
			

			

				𝑚
			

			

				𝜒
			

			

				𝐵
			

			
				
				
			

			
				
			
			
				𝑏
				
				𝑠
			

			

				1
			

			
				
				
				𝑠
				−
				𝑏
			

			

				0
			

			
				
				𝑤
			

			

				1
			

			
				
				𝑠
				+
				𝑎
			

			

				1
			

			
				
				,
				…
				,
			

			

				𝑚
			

			

				
			

			
				𝑙
				=
				1
			

			

				
			

			
				
			
			
				𝑏
				
				𝑠
			

			

				𝑙
			

			
				
				
				𝑠
				−
				𝑏
			

			
				𝑙
				−
				1
			

			
				
				𝑤
			

			

				𝑙
			

			
				
				𝑠
				+
				𝑎
			

			

				𝑚
			

			
				
				
				
				−
				1
				×
				e
				x
				p
			

			
				
			
			

				2
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑤
			

			
				2
				𝑗
			

			
				
				𝑑
				
				𝑤
			

			

				1
			

			
				,
				…
				,
				𝑤
			

			

				𝑚
			

			
				
				.
			

		
	

						For 
	
		
			
				𝑗
				=
				1
				,
				…
				,
				𝑚
			

		
	
, let 
	
		
			

				𝑢
			

			

				𝑗
			

			
				=
				∑
			

			
				𝑗
				𝑙
				=
				1
			

			

				√
			

			
				
			
			
				𝑏
				(
				𝑠
			

			

				𝑙
			

			
				)
				−
				𝑏
				(
				𝑠
			

			
				𝑙
				−
				1
			

			
				)
				𝑤
			

			

				𝑙
			

			
				+
				𝑎
				(
				𝑠
			

			

				𝑗
			

			

				)
			

		
	
. Then, by the change of variable theorem,
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			

				𝑤
			

			

				𝜑
			

			

				𝛼
			

			
				𝑌
				
				
				
				⋅
				,
				𝑠
			

			

				1
			

			
				
				
				,
				…
				,
				𝑌
				⋅
				,
				𝑠
			

			

				𝑚
			

			
				
				=
				
				
				
				∈
				𝐵
			

			

				𝐵
			

			

				𝑤
			

			

				𝑚
			

			
				
				𝑠
			

			

				1
			

			
				,
				…
				,
				𝑠
			

			

				𝑚
			

			
				;
				𝑢
			

			

				1
			

			
				,
				…
				,
				𝑢
			

			

				𝑚
			

			
				
				𝑑
				
				𝑢
			

			

				1
			

			
				,
				…
				,
				𝑢
			

			

				𝑚
			

			

				
			

		
	

						which completes the proof.
Remark 8. The condition 
	
		
			
				𝑎
				(
				0
				)
				=
				0
			

		
	
 in Theorem 7 does not mean that the mean function 
	
		
			

				𝑎
			

		
	
 is continuous on 
	
		
			
				[
				0
				,
				𝑡
				]
			

		
	
 with 
	
		
			
				𝑎
				(
				0
				)
				=
				0
			

		
	
. In fact, it is only needed to express formally the exponential function 
	
		
			
				e
				x
				p
				{
				−
				(
				𝑢
			

			

				1
			

			
				−
				𝑎
				(
				𝑠
			

			

				1
			

			
				)
				)
			

			

				2
			

			
				/
				(
				2
				𝑏
				(
				𝑠
			

			

				1
			

			
				)
				)
				}
			

		
	
 in 
	
		
			

				𝑊
			

			

				𝑚
			

		
	
.
By Theorem 7 and the change of variable theorem, we have the following corollary.
Corollary 9.  
	
		
			

				𝑌
			

		
	
 is a Gaussian process with respect to 
	
		
			

				𝑤
			

			

				𝜑
			

			

				𝛼
			

		
	
, and its covariance function is given by
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				𝐸
				𝑌
				
				
				
				⋅
				,
				𝑠
			

			

				1
			

			
				
				
				𝑠
				−
				𝑎
			

			

				1
			

			
				𝑌
				
				
				
				
				⋅
				,
				𝑠
			

			

				2
			

			
				
				
				𝑠
				−
				𝑎
			

			

				2
			

			
				
				
				𝑠
				
				
				
				=
				𝑏
				m
				i
				n
			

			

				1
			

			
				,
				𝑠
			

			

				2
			

			
				
				
				f
				o
				r
				𝑠
			

			

				1
			

			
				,
				𝑠
			

			

				2
			

			
				∈
				[
				]
				,
				0
				,
				𝑡
			

		
	

						so that 
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				𝐸
				
				𝑌
				
				⋅
				,
				𝑠
			

			

				1
			

			
				
				𝑌
				
				⋅
				,
				𝑠
			

			

				2
			

			
				
				
				𝑠
				
				
				=
				𝑏
				m
				i
				n
			

			

				1
			

			
				,
				𝑠
			

			

				2
			

			
				
				𝑠
				
				
				+
				𝑎
			

			

				1
			

			
				
				𝑎
				
				𝑠
			

			

				2
			

			
				
				.
			

		
	

Using Fourier transforms on 
	
		
			
				(
				𝐶
				[
				0
				,
				𝑡
				]
				,
				𝑤
			

			

				𝜑
			

			

				𝛼
			

			

				)
			

		
	
, we have the following corollary by Theorem 7.
Corollary 10.  Let 
	
		
			
				0
				≤
				𝑠
			

			

				1
			

			
				<
				𝑠
			

			

				2
			

			
				≤
				𝑡
			

		
	
. Then, 
	
		
			
				𝑌
				(
				⋅
				,
				𝑠
			

			

				2
			

			
				)
				−
				𝑌
				(
				⋅
				,
				𝑠
			

			

				1
			

			

				)
			

		
	
 is normally distributed on 
	
		
			
				(
				𝐶
				[
				0
				,
				𝑡
				]
				,
				𝑤
			

			

				𝜑
			

			

				𝛼
			

			

				)
			

		
	
 with mean 
	
		
			
				𝑎
				(
				𝑠
			

			

				2
			

			
				)
				−
				𝑎
				(
				𝑠
			

			

				1
			

			

				)
			

		
	
 and variance 
	
		
			
				𝑏
				(
				𝑠
			

			

				2
			

			
				)
				−
				𝑏
				(
				𝑠
			

			

				1
			

			

				)
			

		
	
.
By Corollary 10, we can prove the following corollary.
Corollary 11.  Let 
	
		
			
				0
				≤
				𝑠
			

			

				1
			

			
				<
				𝑠
			

			

				2
			

			
				≤
				𝑠
			

			

				3
			

			
				<
				𝑠
			

			

				4
			

			
				≤
				𝑡
			

		
	
. Then 
	
		
			
				𝑌
				(
				⋅
				,
				𝑠
			

			

				2
			

			
				)
				−
				𝑌
				(
				⋅
				,
				𝑠
			

			

				1
			

			

				)
			

		
	
 and 
	
		
			
				𝑌
				(
				⋅
				,
				𝑠
			

			

				4
			

			
				)
				−
				𝑌
				(
				⋅
				,
				𝑠
			

			

				3
			

			

				)
			

		
	
 are independent on 
	
		
			
				(
				𝐶
				[
				0
				,
				𝑡
				]
				,
				𝑤
			

			

				𝜑
			

			

				𝛼
			

			

				)
			

		
	
.
Theorem 12.  
	
		
			

				𝑌
			

		
	
 is a generalized Brownian motion process on 
	
		
			
				(
				𝐶
				[
				0
				,
				𝑡
				]
				,
				𝑤
			

			

				𝜑
			

			

				𝛼
			

			

				)
			

		
	
 determined by the mean function 
	
		
			

				𝑎
			

		
	
 and variance function 
	
		
			

				𝑏
			

		
	
.
Remark 13. (1) A generalized Brownian motion process determined by the mean function 
	
		
			

				𝑎
			

		
	
 and variance function 
	
		
			

				𝑏
			

		
	
 is a Gaussian process whose mean and covariance functions are given by 
	
		
			

				𝑎
			

		
	
 and 
	
		
			
				𝑏
				(
				m
				i
				n
				{
				𝑠
			

			

				1
			

			
				,
				𝑠
			

			

				2
			

			
				}
				)
				−
				𝑏
				(
				0
				)
			

		
	
, respectively, for 
	
		
			

				𝑠
			

			

				1
			

			
				,
				𝑠
			

			

				2
			

			
				∈
				[
				0
				,
				𝑡
				]
			

		
	
 [1].     (2) In [8], the author proved that 
	
		
			
				𝑌
				−
				𝑎
			

		
	
 is a generalized Brownian motion process using Theorem 6. Comparing with [8], we proved the results in this paper using only the translation theorem [4, Theorem 3.1] which is another approach to prove 
	
		
			

				𝑌
			

		
	
 being a generalized Brownian motion process. 
3. Simple Formulas for Generalized Conditional Wiener Integrals
In this section, we derive two simple formulas for generalized conditional Wiener integrals on 
	
		
			
				(
				𝐶
				[
				0
				,
				𝑡
				]
				,
				𝑤
			

			

				𝜑
			

			

				𝛼
			

			

				)
			

		
	
. For this purpose, we start with this section defining a conditional 
	
		
			

				𝑤
			

			

				𝜑
			

			

				𝛼
			

		
	
-integral.
Let 
	
		
			
				𝐹
				∶
				𝐶
				[
				0
				,
				𝑡
				]
				→
				ℂ
			

		
	
 be integrable on 
	
		
			

				𝑤
			

			

				𝜑
			

			

				𝛼
			

		
	
 and 
	
		
			

				𝑋
			

		
	
 a random vector on 
	
		
			
				𝐶
				[
				0
				,
				𝑡
				]
			

		
	
 assuming that the value space of 
	
		
			

				𝑋
			

		
	
 is a normed space equipped with the Borel 
	
		
			

				𝜎
			

		
	
-algebra. Then, we have the conditional expectation 
	
		
			
				𝐸
				[
				𝐹
				∣
				𝑋
				]
			

		
	
 of 
	
		
			

				𝐹
			

		
	
 given 
	
		
			

				𝑋
			

		
	
 from a well-known probability theory. Furthermore, there exists a 
	
		
			

				𝑃
			

			

				𝑋
			

		
	
-integrable 
	
		
			

				ℂ
			

		
	
-valued function 
	
		
			

				𝜓
			

		
	
 on the value space of 
	
		
			

				𝑋
			

		
	
 such that 
	
		
			
				𝐸
				[
				𝐹
				∣
				𝑋
				]
				(
				𝑥
				)
				=
				(
				𝜓
				∘
				𝑋
				)
				(
				𝑥
				)
			

		
	
 for 
	
		
			

				𝑤
			

			

				𝜑
			

			

				𝛼
			

		
	
 a.e. 
	
		
			
				𝑥
				∈
				𝐶
				[
				0
				,
				𝑡
				]
			

		
	
, where 
	
		
			

				𝑃
			

			

				𝑋
			

		
	
 is the probability distribution of 
	
		
			

				𝑋
			

		
	
. The function 
	
		
			

				𝜓
			

		
	
 is called the conditional 
	
		
			

				𝑤
			

			

				𝜑
			

			

				𝛼
			

		
	
-integral of 
	
		
			

				𝐹
			

		
	
 given 
	
		
			

				𝑋
			

		
	
, and it is also denoted by 
	
		
			
				𝐸
				[
				𝐹
				∣
				𝑋
				]
			

		
	
. Let 
	
		
			
				0
				=
				𝑡
			

			

				0
			

			
				<
				𝑡
			

			

				1
			

			
				<
				⋯
				<
				𝑡
			

			

				𝑛
			

			
				<
				𝑡
			

			
				𝑛
				+
				1
			

			
				=
				𝑡
			

		
	
 be a partition of 
	
		
			
				[
				0
				,
				𝑡
				]
			

		
	
. For 
	
		
			
				𝑗
				=
				1
				,
				…
				,
				𝑛
				+
				1
			

		
	
, let 
	
		
			

				𝛼
			

			

				𝑗
			

			
				(
				𝑠
				)
				=
				(
				𝑏
				(
				𝑡
			

			

				𝑗
			

			
				)
				−
				𝑏
				(
				𝑠
				)
				)
				/
				(
				𝑏
				(
				𝑡
			

			

				𝑗
			

			
				)
				−
				𝑏
				(
				𝑡
			

			
				𝑗
				−
				1
			

			
				)
				)
			

		
	
, 
	
		
			

				𝛽
			

			

				𝑗
			

			
				(
				𝑠
				)
				=
				(
				𝑏
				(
				𝑠
				)
				−
				𝑏
				(
				𝑡
			

			
				𝑗
				−
				1
			

			
				)
				)
				/
				(
				𝑏
				(
				𝑡
			

			

				𝑗
			

			
				)
				−
				𝑏
				(
				𝑡
			

			
				𝑗
				−
				1
			

			
				)
				)
			

		
	
 and 
	
		
			

				𝛾
			

			

				𝑗
			

			
				(
				𝑠
				)
				=
				𝛼
			

			

				𝑗
			

			
				(
				𝑠
				)
				𝛽
			

			

				𝑗
			

			
				(
				𝑠
				)
				(
				𝑏
				(
				𝑡
			

			

				𝑗
			

			
				)
				−
				𝑏
				(
				𝑡
			

			
				𝑗
				−
				1
			

			
				)
				)
			

		
	
, where 
	
		
			
				𝑠
				∈
				[
				𝑡
			

			
				𝑗
				−
				1
			

			
				,
				𝑡
			

			

				𝑗
			

			

				]
			

		
	
. Define random vectors 
	
		
			

				𝑌
			

			

				𝑛
			

			
				∶
				𝐶
				[
				0
				,
				𝑡
				]
				→
				ℝ
			

			

				𝑛
			

		
	
 and 
	
		
			

				𝑌
			

			
				𝑛
				+
				1
			

			
				∶
				𝐶
				[
				0
				,
				𝑡
				]
				→
				ℝ
			

			
				𝑛
				+
				1
			

		
	
 by 
	
		
			

				𝑌
			

			

				𝑛
			

			
				(
				𝑥
				)
				=
				(
				𝑌
				(
				𝑥
				,
				𝑡
			

			

				1
			

			
				)
				,
				…
				,
				𝑌
				(
				𝑥
				,
				𝑡
			

			

				𝑛
			

			
				)
				)
			

		
	
 and 
	
		
			

				𝑌
			

			
				𝑛
				+
				1
			

			
				(
				𝑥
				)
				=
				(
				𝑌
				(
				𝑥
				,
				𝑡
			

			

				1
			

			
				)
				,
				…
				,
				𝑌
				(
				𝑥
				,
				𝑡
			

			

				𝑛
			

			
				)
				,
				𝑌
				(
				𝑥
				,
				𝑡
			

			
				𝑛
				+
				1
			

			
				)
				)
			

		
	
 for 
	
		
			
				𝑥
				∈
				𝐶
				[
				0
				,
				𝑡
				]
			

		
	
. For any 
	
		
			

				𝑥
			

		
	
 in 
	
		
			
				𝐶
				[
				0
				,
				𝑡
				]
			

		
	
, define a polygonal function 
	
		
			
				[
				𝑌
				(
				𝑥
				,
				⋅
				)
				]
			

			
				𝑎
				,
				𝑏
			

		
	
 of 
	
		
			
				𝑌
				(
				𝑥
				,
				⋅
				)
			

		
	
 by
						
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				[
				𝑌
				]
				(
				𝑥
				,
				⋅
				)
			

			
				𝑎
				,
				𝑏
			

			
				=
				(
				𝑠
				)
			

			
				𝑛
				+
				1
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝜒
			

			
				(
				𝑡
			

			
				𝑗
				−
				1
			

			
				,
				𝑡
			

			

				𝑗
			

			

				]
			

			
				
				𝛼
				(
				𝑠
				)
			

			

				𝑗
			

			
				
				(
				𝑠
				)
				𝑌
				𝑥
				,
				𝑡
			

			
				𝑗
				−
				1
			

			
				
				+
				𝛽
			

			

				𝑗
			

			
				
				(
				𝑠
				)
				𝑌
				𝑥
				,
				𝑡
			

			

				𝑗
			

			
				
				
				+
				𝜒
			

			
				{
				0
				}
			

			
				(
				𝑠
				)
				𝑎
				(
				0
				)
			

		
	

					for 
	
		
			
				𝑠
				∈
				[
				0
				,
				𝑡
				]
			

		
	
, where 
	
		
			

				𝜒
			

			
				(
				𝑡
			

			
				𝑗
				−
				1
			

			
				,
				𝑡
			

			

				𝑗
			

			

				]
			

		
	
 and 
	
		
			

				𝜒
			

			
				{
				0
				}
			

		
	
 denote indicator functions. For 
	
		
			
				𝑥
				∈
				𝐶
				[
				0
				,
				𝑡
				]
			

		
	
 and 
	
		
			
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			
				=
				(
				𝜉
			

			

				1
			

			
				,
				…
				,
				𝜉
			

			

				𝑛
			

			
				,
				𝜉
			

			
				𝑛
				+
				1
			

			
				)
				∈
				ℝ
			

			
				𝑛
				+
				1
			

		
	
, define polygonal functions 
	
		
			
				[
				𝑍
				(
				𝑥
				,
				⋅
				)
				]
			

			

				𝑏
			

		
	
 and 
	
		
			
				[
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			

				]
			

			

				𝑏
			

		
	
 of 
	
		
			
				𝑍
				(
				𝑥
				,
				⋅
				)
			

		
	
 and 
	
		
			
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

		
	
 by (15), where 
	
		
			
				𝑌
				(
				𝑥
				,
				𝑡
			

			

				𝑗
			

			

				)
			

		
	
 is replaced by 
	
		
			
				𝑍
				(
				𝑥
				,
				𝑡
			

			

				𝑗
			

			

				)
			

		
	
 and 
	
		
			

				𝜉
			

			

				𝑗
			

		
	
, respectively, for 
	
		
			
				𝑗
				=
				1
				,
				…
				,
				𝑛
				+
				1
			

		
	
 (
	
		
			

				𝜉
			

			

				0
			

			
				=
				0
			

		
	
 and 
	
		
			
				𝑎
				(
				0
				)
				=
				0
			

		
	
 formally). Moreover, define a polygonal function 
	
		
			
				[
				𝑎
				]
			

			

				𝑏
			

		
	
 of 
	
		
			

				𝑎
			

		
	
 by (15), where 
	
		
			
				𝑌
				(
				𝑥
				,
				𝑡
			

			

				𝑗
			

			

				)
			

		
	
 is replaced by 
	
		
			
				𝑎
				(
				𝑡
			

			

				𝑗
			

			

				)
			

		
	
. For 
	
		
			
				⃗
				𝜉
			

			

				𝑛
			

			
				=
				(
				𝜉
			

			

				1
			

			
				,
				…
				,
				𝜉
			

			

				𝑛
			

			
				)
				∈
				ℝ
			

			

				𝑛
			

		
	
, the symbol 
	
		
			
				[
				⃗
				𝜉
			

			

				𝑛
			

			

				]
			

			

				𝑏
			

		
	
 is understood as 
	
		
			

				𝜒
			

			
				[
				0
				,
				𝑡
			

			

				𝑛
			

			

				]
			

			
				[
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			

				]
			

			

				𝑏
			

		
	
 on 
	
		
			
				[
				0
				,
				𝑡
				]
			

		
	
.
By Theorems 2.4 and 2.9 in [8], we can easily prove the following theorem.
Theorem 14.  Let 
	
		
			

				𝑡
			

			
				𝑗
				−
				1
			

			
				<
				𝑠
				<
				𝑡
			

			

				𝑗
			

		
	
  for some 
	
		
			
				𝑗
				∈
				{
				1
				,
				…
				,
				𝑛
				+
				1
				}
			

		
	
. Then, 
	
		
			
				𝑌
				(
				⋅
				,
				𝑠
				)
				−
				[
				𝑌
				(
				⋅
				,
				⋅
				)
				]
			

			
				𝑎
				,
				𝑏
			

			
				(
				𝑠
				)
			

		
	
 is normally distributed on 
	
		
			
				(
				𝐶
				[
				0
				,
				𝑡
				]
				,
				𝑤
			

			

				𝜑
			

			

				𝛼
			

			

				)
			

		
	
 with mean 
	
		
			
				𝑎
				(
				𝑠
				)
				−
				[
				𝑎
				]
			

			

				𝑏
			

			
				(
				𝑠
				)
			

		
	
 and variance 
	
		
			

				𝛾
			

			

				𝑗
			

			
				(
				𝑠
				)
			

		
	
.
Theorem 15.  The process 
	
		
			
				{
				𝑌
				(
				⋅
				,
				𝑠
				)
				−
				[
				𝑌
				(
				⋅
				,
				⋅
				)
				]
			

			
				𝑎
				,
				𝑏
			

			
				(
				𝑠
				)
				∶
				0
				≤
				𝑠
				≤
				𝑡
				}
			

		
	
 and 
	
		
			

				𝑌
			

			
				𝑛
				+
				1
			

		
	
 are stochastically independent on 
	
		
			
				(
				𝐶
				[
				0
				,
				𝑡
				]
				,
				𝑤
			

			

				𝜑
			

			

				𝛼
			

			

				)
			

		
	
.
Proof. Let 
	
		
			

				𝑡
			

			
				𝑙
				−
				1
			

			
				<
				𝑠
				<
				𝑡
			

			

				𝑙
			

		
	
 for some 
	
		
			
				𝑙
				∈
				{
				1
				,
				…
				,
				𝑛
				+
				1
				}
			

		
	
. Then, for 
	
		
			
				𝑗
				=
				1
				,
				…
				,
				𝑛
				+
				1
			

		
	
,
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				𝐸
				[
				]
				
				
				𝑌
				(
				⋅
				,
				𝑠
				)
				−
				𝑌
				(
				⋅
				,
				⋅
				)
			

			
				𝑎
				,
				𝑏
			

			
				
				𝑌
				
				(
				𝑠
				)
				⋅
				,
				𝑡
			

			

				𝑗
			

			
				𝑍
				[
				𝑍
				]
				
				
				=
				𝐸
				
				
				(
				⋅
				,
				𝑠
				)
				−
				(
				⋅
				,
				⋅
				)
			

			

				𝑏
			

			
				−
				[
				𝑎
				]
				(
				𝑠
				)
				+
				𝑎
				(
				𝑠
				)
			

			

				𝑏
			

			
				𝑍
				
				(
				𝑠
				)
				
				
				⋅
				,
				𝑡
			

			

				𝑗
			

			
				
				
				𝑡
				+
				𝑎
			

			

				𝑗
			

			
				
				[
				]
				
				
				
				=
				𝐸
				𝑍
				(
				⋅
				,
				𝑠
				)
				−
				𝑍
				(
				⋅
				,
				⋅
				)
			

			

				𝑏
			

			
				
				𝐸
				
				𝑍
				
				(
				𝑠
				)
				⋅
				,
				𝑡
			

			

				𝑗
			

			
				+
				
				[
				𝑎
				]
				
				
				𝑎
				(
				𝑠
				)
				−
			

			

				𝑏
			

			
				
				𝑎
				
				𝑡
				(
				𝑠
				)
			

			

				𝑗
			

			

				
			

		
	

						by Corollary 2.4 and Theorems 2.9 and 2.10 in [8]. By Corollary 5 and Theorem 14 we have 
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				𝐸
				[
				]
				
				
				𝑌
				(
				⋅
				,
				𝑠
				)
				−
				𝑌
				(
				⋅
				,
				⋅
				)
			

			
				𝑎
				,
				𝑏
			

			
				
				𝑌
				
				(
				𝑠
				)
				⋅
				,
				𝑡
			

			

				𝑗
			

			
				=
				
				𝑎
				[
				𝑎
				]
				
				
				(
				𝑠
				)
				−
			

			

				𝑏
			

			
				
				𝑎
				
				𝑡
				(
				𝑠
				)
			

			

				𝑗
			

			
				
				
				[
				]
				=
				𝐸
				𝑌
				(
				⋅
				,
				𝑠
				)
				−
				𝑌
				(
				⋅
				,
				⋅
				)
			

			
				𝑎
				,
				𝑏
			

			
				
				𝐸
				
				𝑌
				
				(
				𝑠
				)
				⋅
				,
				𝑡
			

			

				𝑗
			

			
				.
				
				
			

		
	

						Since 
	
		
			
				𝑌
				(
				⋅
				,
				𝑠
				)
				−
				[
				𝑌
				(
				⋅
				,
				⋅
				)
				]
			

			
				𝑎
				,
				𝑏
			

			
				(
				𝑠
				)
			

		
	
 and 
	
		
			
				𝑌
				(
				⋅
				,
				𝑡
			

			

				𝑗
			

			

				)
			

		
	
 are normally distributed on 
	
		
			

				𝑤
			

			

				𝜑
			

			

				𝛼
			

		
	
, they are independent. The proofs of remainder cases follow easily.
Theorem 16.  The processes 
	
		
			
				{
				𝑌
				(
				⋅
				,
				𝑠
				)
				−
				[
				𝑌
				(
				⋅
				,
				⋅
				)
				]
			

			
				𝑎
				,
				𝑏
			

			
				(
				𝑠
				)
				∶
				𝑡
			

			
				𝑗
				−
				1
			

			
				≤
				𝑠
				≤
				𝑡
			

			

				𝑗
			

			

				}
			

		
	
, where 
	
		
			
				𝑗
				=
				1
				,
				…
				,
				𝑛
				+
				1
			

		
	
, are stochastically independent on 
	
		
			
				(
				𝐶
				[
				0
				,
				𝑡
				]
				,
				𝑤
			

			

				𝜑
			

			

				𝛼
			

			

				)
			

		
	
.
Proof. Let 
	
		
			

				𝑠
			

			

				1
			

			
				∈
				[
				𝑡
			

			
				𝑙
				−
				1
			

			
				,
				𝑡
			

			

				𝑙
			

			

				]
			

		
	
 and 
	
		
			

				𝑠
			

			

				2
			

			
				∈
				[
				𝑡
			

			
				𝑗
				−
				1
			

			
				,
				𝑡
			

			

				𝑗
			

			

				]
			

		
	
 with 
	
		
			
				𝑙
				<
				𝑗
			

		
	
. If 
	
		
			

				𝑠
			

			

				1
			

			
				∈
				{
				0
				,
				𝑡
			

			

				1
			

			
				,
				…
				,
				𝑡
			

			
				𝑛
				+
				1
			

			

				}
			

		
	
 or 
	
		
			

				𝑠
			

			

				2
			

			
				∈
				{
				0
				,
				𝑡
			

			

				1
			

			
				,
				…
				,
				𝑡
			

			
				𝑛
				+
				1
			

			

				}
			

		
	
, we can prove easily the independence of 
	
		
			
				𝑌
				(
				⋅
				,
				𝑠
			

			

				1
			

			
				)
				−
				[
				𝑌
				(
				⋅
				,
				⋅
				)
				]
			

			
				𝑎
				,
				𝑏
			

			
				(
				𝑠
			

			

				1
			

			

				)
			

		
	
 and 
	
		
			
				𝑌
				(
				⋅
				,
				𝑠
			

			

				2
			

			
				)
				−
				[
				𝑌
				(
				⋅
				,
				⋅
				)
				]
			

			
				𝑎
				,
				𝑏
			

			
				(
				𝑠
			

			

				2
			

			

				)
			

		
	
. Suppose that 
	
		
			

				𝑡
			

			
				𝑙
				−
				1
			

			
				<
				𝑠
			

			

				1
			

			
				<
				𝑡
			

			

				𝑙
			

			
				≤
				𝑡
			

			
				𝑗
				−
				1
			

			
				<
				𝑠
			

			

				2
			

			
				<
				𝑡
			

			

				𝑗
			

		
	
. By Theorems 3.1 and 2.11 in [8], we have
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				𝐸
				𝑌
				
				
				
				⋅
				,
				𝑠
			

			

				1
			

			
				
				−
				[
				]
				𝑌
				(
				⋅
				,
				⋅
				)
			

			
				𝑎
				,
				𝑏
			

			
				
				𝑠
			

			

				1
			

			
				𝑌
				
				
				
				
				⋅
				,
				𝑠
			

			

				2
			

			
				
				−
				[
				]
				𝑌
				(
				⋅
				,
				⋅
				)
			

			
				𝑎
				,
				𝑏
			

			
				
				𝑠
			

			

				2
			

			
				𝑍
				
				
				
				
				=
				𝐸
				
				
				⋅
				,
				𝑠
			

			

				1
			

			
				
				−
				[
				]
				𝑍
				(
				⋅
				,
				⋅
				)
			

			

				𝑏
			

			
				
				𝑠
			

			

				1
			

			
				
				
				𝑠
				+
				𝑎
			

			

				1
			

			
				
				−
				[
				𝑎
				]
			

			

				𝑏
			

			
				
				𝑠
			

			

				1
			

			
				×
				
				𝑍
				
				
				
				⋅
				,
				𝑠
			

			

				2
			

			
				
				−
				[
				]
				𝑍
				(
				⋅
				,
				⋅
				)
			

			

				𝑏
			

			
				
				𝑠
			

			

				2
			

			
				
				
				𝑠
				+
				𝑎
			

			

				2
			

			
				
				−
				[
				𝑎
				]
			

			

				𝑏
			

			
				
				𝑠
			

			

				2
			

			
				
				𝑍
				
				
				
				
				=
				𝐸
				⋅
				,
				𝑠
			

			

				1
			

			
				
				−
				[
				]
				𝑍
				(
				⋅
				,
				⋅
				)
			

			

				𝑏
			

			
				
				𝑠
			

			

				1
			

			
				𝐸
				
				𝑍
				
				
				
				⋅
				,
				𝑠
			

			

				2
			

			
				
				−
				[
				]
				𝑍
				(
				⋅
				,
				⋅
				)
			

			

				𝑏
			

			
				
				𝑠
			

			

				2
			

			
				+
				
				𝑎
				
				𝑠
				
				
			

			

				1
			

			
				
				−
				[
				𝑎
				]
			

			

				𝑏
			

			
				
				𝑠
			

			

				1
			

			
				𝑎
				
				𝑠
				
				
				
			

			

				2
			

			
				
				−
				[
				𝑎
				]
			

			

				𝑏
			

			
				
				𝑠
			

			

				2
			

			
				
				𝑌
				
				
				
				=
				𝐸
				⋅
				,
				𝑠
			

			

				1
			

			
				
				−
				[
				]
				𝑌
				(
				⋅
				,
				⋅
				)
			

			
				𝑎
				,
				𝑏
			

			
				
				𝑠
			

			

				1
			

			
				𝐸
				
				𝑌
				
				
				
				⋅
				,
				𝑠
			

			

				2
			

			
				
				−
				[
				]
				𝑌
				(
				⋅
				,
				⋅
				)
			

			
				𝑎
				,
				𝑏
			

			
				
				𝑠
			

			

				2
			

			
				
				
			

		
	

						which completes the proof.
Applying the same method as used in the proof of Theorem 2 in [2, page 383] with Problem 4 of [9, page 216], we have the following theorem by Theorem 15.
Theorem 17.  Let 
	
		
			
				𝐹
				∶
				𝐶
				[
				0
				,
				𝑡
				]
				→
				ℂ
			

		
	
 be a function, and let 
	
		
			
				𝐹
				(
				𝑌
				(
				𝑥
				,
				⋅
				)
				)
			

		
	
 be 
	
		
			

				𝑤
			

			

				𝜑
			

			

				𝛼
			

		
	
-integrable over the variable 
	
		
			

				𝑥
			

		
	
. Then, for a Borel subset 
	
		
			

				𝐵
			

		
	
 of 
	
		
			

				ℝ
			

			

				𝑛
			

		
	
 
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			

				
			

			

				𝑌
			

			
				−
				1
				𝑛
				+
				1
			

			
				(
				𝐵
				)
			

			
				𝐹
				(
				𝑌
				(
				𝑥
				,
				⋅
				)
				)
				𝑑
				𝑤
			

			

				𝜑
			

			

				𝛼
			

			
				=
				
				(
				𝑥
				)
			

			

				𝐵
			

			
				𝐸
				
				𝐹
				
				[
				]
				𝑌
				(
				𝑥
				,
				⋅
				)
				−
				𝑌
				(
				𝑥
				,
				⋅
				)
			

			
				𝑎
				,
				𝑏
			

			
				+
				
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			

				
			

			

				𝑏
			

			
				
				
				𝑑
				𝑃
			

			

				𝑌
			

			
				𝑛
				+
				1
			

			
				
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			
				
				,
			

		
	

						where the expectation is taken over 
	
		
			

				𝑤
			

			

				𝜑
			

			

				𝛼
			

		
	
 and 
	
		
			

				𝑃
			

			

				𝑌
			

			
				𝑛
				+
				1
			

		
	
 is the probability distribution of  
	
		
			

				𝑌
			

			
				𝑛
				+
				1
			

		
	
 on 
	
		
			
				(
				ℝ
			

			
				𝑛
				+
				1
			

			
				,
				ℬ
				(
				ℝ
			

			
				𝑛
				+
				1
			

			
				)
				)
			

		
	
. Moreover, for 
	
		
			

				𝑃
			

			

				𝑌
			

			
				𝑛
				+
				1
			

		
	
 a.e. 
	
		
			
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			
				∈
				ℝ
			

			
				𝑛
				+
				1
			

		
	
 (hence for a.e. 
	
		
			
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			
				∈
				ℝ
			

			
				𝑛
				+
				1
			

		
	
)
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				𝐸
				
				𝐹
				(
				𝑌
				(
				𝑥
				,
				⋅
				)
				)
				∣
				𝑌
			

			
				𝑛
				+
				1
			

			
				
				
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			
				
				
				𝐹
				
				[
				]
				=
				𝐸
				𝑌
				(
				𝑥
				,
				⋅
				)
				−
				𝑌
				(
				𝑥
				,
				⋅
				)
			

			
				𝑎
				,
				𝑏
			

			
				+
				
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			

				
			

			

				𝑏
			

			
				.
				
				
			

		
	

Using the same method as used in the proof of Theorem 2.5 in [6], we can prove the following theorem.
Theorem 18.  Let 
	
		
			
				𝐹
				∶
				𝐶
				[
				0
				,
				𝑡
				]
				→
				ℂ
			

		
	
 be a function and 
	
		
			
				𝐹
				(
				𝑌
				(
				𝑥
				,
				⋅
				)
				)
			

		
	
 
	
		
			

				𝑤
			

			

				𝜑
			

			

				𝛼
			

		
	
-integrable over the variable 
	
		
			

				𝑥
			

		
	
. Moreover, let 
	
		
			

				𝑃
			

			

				𝑌
			

			

				𝑛
			

		
	
 be a probability distribution of 
	
		
			

				𝑌
			

			

				𝑛
			

		
	
 on 
	
		
			
				(
				ℝ
			

			

				𝑛
			

			
				,
				ℬ
				(
				ℝ
			

			

				𝑛
			

			
				)
				)
			

		
	
. Then, for 
	
		
			

				𝑃
			

			

				𝑌
			

			

				𝑛
			

		
	
 a.e. 
	
		
			
				⃗
				𝜉
			

			

				𝑛
			

			
				=
				(
				𝜉
			

			

				1
			

			
				,
				…
				,
				𝜉
			

			

				𝑛
			

			
				)
				∈
				ℝ
			

			

				𝑛
			

		
	
 (hence for a.e. 
	
		
			
				⃗
				𝜉
			

			

				𝑛
			

			
				∈
				ℝ
			

			

				𝑛
			

		
	
)
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				𝐸
				
				𝐹
				∣
				𝑌
			

			

				𝑛
			

			
				
				
				⃗
				𝜉
			

			

				𝑛
			

			
				
				=
				
				1
			

			
				
			
			
				
				
				𝑡
				2
				𝜋
				𝑏
				(
				𝑡
				)
				−
				𝑏
			

			

				𝑛
			

			
				
				
				
			

			
				1
				/
				2
			

			
				×
				
			

			

				ℝ
			

			
				𝐸
				
				𝐹
				
				[
				]
				𝑌
				(
				𝑥
				,
				⋅
				)
				−
				𝑌
				(
				𝑥
				,
				⋅
				)
			

			
				𝑎
				,
				𝑏
			

			
				+
				
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			

				
			

			

				𝑏
			

			
				
				−
				
				𝜉
				
				
				×
				e
				x
				p
			

			
				𝑛
				+
				1
			

			
				
				𝜉
				−
				𝑎
				(
				𝑡
				)
				−
			

			

				𝑛
			

			
				
				𝑡
				−
				𝑎
			

			

				𝑛
			

			
				
				
				
			

			

				2
			

			
				
			
			
				2
				
				
				𝑡
				𝑏
				(
				𝑡
				)
				−
				𝑏
			

			

				𝑛
			

			
				
				
				
				𝑑
				𝜉
			

			
				𝑛
				+
				1
			

			

				,
			

		
	

						where  
	
		
			
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			
				=
				(
				𝜉
			

			

				1
			

			
				,
				…
				,
				𝜉
			

			

				𝑛
			

			
				,
				𝜉
			

			
				𝑛
				+
				1
			

			

				)
			

		
	
 and the expectation is taken over 
	
		
			

				𝑤
			

			

				𝜑
			

			

				𝛼
			

		
	
.
Note that the conditioning functions 
	
		
			

				𝑌
			

			
				𝑛
				+
				1
			

		
	
 and 
	
		
			

				𝑌
			

			

				𝑛
			

		
	
 describe the positions of paths at the times 
	
		
			

				𝑡
			

			

				1
			

			
				,
				…
				,
				𝑡
			

			

				𝑛
			

			
				,
				𝑡
			

			
				𝑛
				+
				1
			

			
				=
				𝑡
			

		
	
 (the present time). 
	
		
			

				𝑌
			

			
				𝑛
				+
				1
			

		
	
 contains the present position 
	
		
			
				𝑌
				(
				𝑥
				,
				𝑡
				)
			

		
	
 of the path 
	
		
			
				𝑌
				(
				𝑥
				,
				⋅
				)
			

		
	
 for 
	
		
			
				𝑥
				∈
				𝐶
				[
				0
				,
				𝑡
				]
			

		
	
, while 
	
		
			

				𝑌
			

			

				𝑛
			

		
	
 does not. Moreover if we let 
	
		
			
				ℎ
				=
				1
			

		
	
 a.e., 
	
		
			
				𝛼
				=
				0
			

		
	
, and 
	
		
			
				𝜑
				=
				𝛿
			

			

				0
			

		
	
, the Dirac measure concentrated at 
	
		
			

				0
			

		
	
, then we can obtain Theorems 1 and 2 in [10] by the translation theorem (Theorem 1). If 
	
		
			
				𝑎
				(
				0
				)
				=
				0
			

		
	
, 
	
		
			
				√
				ℎ
				=
			

			
				
			
			

				𝑏
			

			

				
			

		
	
, 
	
		
			

				𝜑
			

			

				𝛼
			

			
				=
				𝛿
			

			

				0
			

		
	
, and 
	
		
			
				𝑡
				=
				𝑇
			

		
	
, then we can obtain the space 
	
		
			

				𝐶
			

			
				𝑎
				,
				𝑏
			

			
				[
				0
				,
				𝑇
				]
			

		
	
 in [7] by Theorem 12. Furthermore, if 
	
		
			

				𝑌
			

		
	
 is replaced by the generalized Brownian motion process 
	
		
			
				𝑥
				(
				𝑠
				)
			

		
	
 on 
	
		
			

				𝐶
			

			
				𝑎
				,
				𝑏
			

			
				[
				0
				,
				𝑇
				]
				×
				[
				0
				,
				𝑇
				]
			

		
	
, and we let 
	
		
			

				𝜑
			

			

				𝛼
			

			
				=
				𝛿
			

			

				0
			

		
	
, then we can also obtain Theorem 3.4 in [7] by Theorem 17. If we let 
	
		
			
				𝑎
				≡
				0
			

		
	
 and 
	
		
			

				𝜑
			

			

				𝛼
			

			
				=
				𝛿
			

			

				0
			

		
	
, then we can obtain Theorem 3 in [11] by Theorem 17. If we let 
	
		
			
				𝑎
				≡
				0
			

		
	
, then we can obtain Theorem 2.12 in [8] by Theorem 17. If we let 
	
		
			
				𝑛
				=
				0
			

		
	
 and 
	
		
			

				𝜑
			

			

				𝛼
			

			
				=
				𝛿
			

			

				0
			

		
	
, then we can obtain Remark 2.2 in [3] by Theorem 17. Finally, if we let 
	
		
			
				ℎ
				=
				1
			

		
	
 a.e., 
	
		
			

				𝜑
			

			

				𝛼
			

			
				=
				𝛿
			

			

				0
			

		
	
 and 
	
		
			
				𝑎
				≡
				0
			

		
	
, then we can obtain Theorem 2 in [2] by Theorem 17 which is among the first result expressing the conditional Wiener integrals of functions on 
	
		
			

				𝐶
			

			

				0
			

			
				[
				0
				,
				𝑡
				]
			

		
	
 as ordinary Wiener integrals.
Remark 19. Note that Theorems 17 and 18 are not generalizations of Theorem 2.9 in [5] and Theorem 2.5 in [6]. In Theorem 2.9 of [5] and Theorem 2.5 of [6], the conditioning functions have initial distributions 
	
		
			

				𝜑
			

		
	
, while 
	
		
			

				𝑌
			

			
				𝑛
				+
				1
			

		
	
 and 
	
		
			

				𝑌
			

			

				𝑛
			

		
	
 in Theorems 17 and 18 have no initial distributions.
4. Evaluation Formulas Using the Simple Formulas
In this section, we derive evaluation formulas for the generalized conditional Wiener integrals of various functions which are of interest in Feynman integration theories and quantum mechanics. For a function 
	
		
			
				𝐹
				∶
				𝐶
				[
				0
				,
				𝑡
				]
				→
				ℂ
			

		
	
 let 
	
		
			

				𝐹
			

			

				𝑌
			

			
				(
				𝑥
				)
				=
				𝐹
				(
				𝑌
				(
				𝑥
				,
				⋅
				)
				)
			

		
	
 for 
	
		
			
				𝑥
				∈
				𝐶
				[
				0
				,
				𝑡
				]
			

		
	
.
Lemma 20.  Let 
	
		
			

				𝐹
			

			

				𝑚
			

			
				∫
				(
				𝑥
				)
				=
			

			
				𝑡
				0
			

			
				(
				𝑥
				(
				𝑠
				)
				)
			

			

				𝑚
			

			
				𝑑
				𝑠
				(
				𝑚
				∈
				ℕ
				)
			

		
	
 for 
	
		
			
				𝑥
				∈
				𝐶
				[
				0
				,
				𝑡
				]
			

		
	
. Then, 
	
		
			
				(
				𝐹
			

			

				𝑚
			

			

				)
			

			

				𝑌
			

		
	
 is 
	
		
			

				𝑤
			

			

				𝜑
			

			

				𝛼
			

		
	
-integrable and 
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				𝐸
				𝐹
				
				
			

			

				𝑚
			

			

				
			

			

				𝑌
			

			
				
				=
			

			
				[
				𝑚
				/
				2
				]
			

			

				
			

			
				𝑙
				=
				0
			

			
				𝑚
				!
			

			
				
			
			

				2
			

			

				𝑙
			

			
				
				𝑙
				!
				(
				𝑚
				−
				2
				𝑙
				)
				!
			

			
				𝑡
				0
			

			
				(
				𝑎
				(
				𝑠
				)
				)
			

			
				𝑚
				−
				2
				𝑙
			

			
				(
				𝑏
				(
				𝑠
				)
				)
			

			

				𝑙
			

			
				𝑑
				𝑠
				,
			

		
	

						where 
	
		
			
				[
				⋅
				]
			

		
	
 denotes the greatest integer function.
Proof. By Corollary 5, the change of variable theorem and the binomial expansion,
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			

				
			

			
				𝑡
				0
			

			

				
			

			
				𝐶
				[
				0
				,
				𝑡
				]
			

			
				|
				|
				|
				|
				𝑌
				(
				𝑥
				,
				𝑠
				)
			

			

				𝑚
			

			
				𝑑
				𝑤
			

			

				𝜑
			

			

				𝛼
			

			
				≤
				
				1
				(
				𝑥
				)
				𝑑
				𝑠
			

			
				
			
			
				𝜋
				
			

			
				𝑚
				1
				/
				2
			

			

				
			

			
				𝑙
				=
				0
			

			

				2
			

			
				𝑙
				/
				2
			

			
				Γ
				
				𝑙
				+
				1
			

			
				
			
			
				2
				
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑚
				𝑙
				⎞
				⎟
				⎟
				⎟
				⎠
				
			

			
				(
				0
				,
				𝑡
				]
			

			
				|
				|
				|
				|
				𝑎
				(
				𝑠
				)
			

			
				𝑚
				−
				𝑙
			

			
				(
				𝑏
				(
				𝑠
				)
				)
			

			
				𝑙
				/
				2
			

			
				𝑑
				𝑠
				,
			

		
	

						where 
	
		
			

				Γ
			

		
	
 denote the gamma function, so that 
	
		
			
				(
				𝐹
			

			

				𝑚
			

			

				)
			

			

				𝑌
			

		
	
 is integrable over 
	
		
			
				(
				𝐶
				[
				0
				,
				𝑡
				]
				,
				𝑤
			

			

				𝜑
			

			

				𝛼
			

			

				)
			

		
	
. Furthermore, we have
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			

				
			

			
				𝐶
				[
				0
				,
				𝑡
				]
			

			

				
			

			
				𝑡
				0
			

			
				(
				𝑌
				(
				𝑥
				,
				𝑠
				)
				)
			

			

				𝑚
			

			
				𝑑
				𝑠
				𝑑
				𝑤
			

			

				𝜑
			

			

				𝛼
			

			
				(
				𝑥
				)
				=
				2
			

			
				[
				𝑚
				/
				2
				]
			

			

				
			

			
				𝑙
				=
				0
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
				𝑚
				⎞
				⎟
				⎟
				⎟
				⎠
				
				2
				𝑙
			

			
				(
				0
				,
				𝑡
				]
			

			
				(
				𝑎
				(
				𝑠
				)
				)
			

			
				𝑚
				−
				2
				𝑙
			

			
				
				1
			

			
				
			
			
				
				2
				𝜋
				𝑏
				(
				𝑠
				)
			

			
				1
				/
				2
			

			
				×
				
			

			
				∞
				0
			

			

				𝑢
			

			
				2
				𝑙
			

			
				
				−
				𝑢
				e
				x
				p
			

			

				2
			

			
				
			
			
				
				=
				2
				𝑏
				(
				𝑠
				)
				𝑑
				𝑢
				𝑑
				𝑠
			

			
				[
				𝑚
				/
				2
				]
			

			

				
			

			
				𝑙
				=
				0
			

			
				𝑚
				!
			

			
				
			
			

				2
			

			

				𝑙
			

			
				
				𝑙
				!
				(
				𝑚
				−
				2
				𝑙
				)
				!
			

			
				𝑡
				0
			

			
				(
				𝑎
				(
				𝑠
				)
				)
			

			
				𝑚
				−
				2
				𝑙
			

			
				(
				𝑏
				(
				𝑠
				)
				)
			

			

				𝑙
			

			
				𝑑
				𝑠
			

		
	

						which completes the proof.
Theorem 21.  Let the assumptions be as given in Lemma 20. Then, for a.e. 
	
		
			
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			
				∈
				ℝ
			

			
				𝑛
				+
				1
			

		
	
 (hence, 
	
		
			

				𝑃
			

			

				𝑌
			

			
				𝑛
				+
				1
			

		
	
 a.e. 
	
		
			
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			
				∈
				ℝ
			

			
				𝑛
				+
				1
			

		
	
)
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				𝐸
				𝐹
				
				
			

			

				𝑚
			

			

				
			

			

				𝑌
			

			
				∣
				𝑌
			

			
				𝑛
				+
				1
			

			
				
				
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			
				
				=
			

			
				𝑛
				+
				1
			

			

				
			

			
				𝑗
				=
				1
				[
				𝑚
				/
				2
				]
			

			

				
			

			
				𝑙
				=
				0
			

			
				𝑚
				!
			

			
				
			
			

				2
			

			

				𝑙
			

			
				×
				
				𝑙
				!
				(
				𝑚
				−
				2
				𝑙
				)
				!
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			
				𝑗
				−
				1
			

			
				
				[
				𝑎
				]
				𝑎
				(
				𝑠
				)
				−
			

			

				𝑏
			

			
				
				⃗
				𝜉
				(
				𝑠
				)
				+
			

			
				𝑛
				+
				1
			

			

				
			

			

				𝑏
			

			
				
				(
				𝑠
				)
			

			
				𝑚
				−
				2
				𝑙
			

			
				
				𝛾
			

			

				𝑗
			

			
				
				(
				𝑠
				)
			

			

				𝑙
			

			
				𝑑
				𝑠
				,
			

		
	

						where the expectation is taken over 
	
		
			

				𝑤
			

			

				𝜑
			

			

				𝛼
			

		
	
.
Proof. For 
	
		
			

				𝑃
			

			

				𝑌
			

			
				𝑛
				+
				1
			

		
	
 a.e. 
	
		
			
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			
				∈
				ℝ
			

			
				𝑛
				+
				1
			

		
	
, we have by Theorems 14 and 17
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				𝐸
				𝐹
				
				
			

			

				𝑚
			

			

				
			

			

				𝑌
			

			
				∣
				𝑌
			

			
				𝑛
				+
				1
			

			
				
				
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			
				
				=
			

			
				𝑛
				+
				1
			

			

				
			

			
				𝑗
				=
				1
			

			

				
			

			
				(
				𝑡
			

			
				𝑗
				−
				1
			

			
				,
				𝑡
			

			

				𝑗
			

			

				)
			

			
				
				1
			

			
				
			
			
				2
				𝜋
				𝛾
			

			

				𝑗
			

			
				
				(
				𝑠
				)
			

			
				1
				/
				2
			

			
				×
				
			

			

				ℝ
			

			
				
				[
				𝑎
				]
				𝑢
				+
				𝑎
				(
				𝑠
				)
				−
			

			

				𝑏
			

			
				
				⃗
				𝜉
				(
				𝑠
				)
				+
			

			
				𝑛
				+
				1
			

			

				
			

			

				𝑏
			

			
				
				(
				𝑠
				)
			

			

				𝑚
			

			
				
				−
				𝑢
				×
				e
				x
				p
			

			

				2
			

			
				
			
			
				2
				𝛾
			

			

				𝑗
			

			
				
				=
				(
				𝑠
				)
				𝑑
				𝑢
				𝑑
				𝑠
			

			
				𝑛
				+
				1
			

			

				
			

			
				𝑗
				=
				1
				[
				𝑚
				/
				2
				]
			

			

				
			

			
				𝑙
				=
				0
			

			
				𝑚
				!
			

			
				
			
			

				2
			

			

				𝑙
			

			
				×
				
				𝑙
				!
				(
				𝑚
				−
				2
				𝑙
				)
				!
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			
				𝑗
				−
				1
			

			
				
				𝑎
				[
				𝑎
				]
				(
				𝑠
				)
				−
			

			

				𝑏
			

			
				
				⃗
				𝜉
				(
				𝑠
				)
				+
			

			
				𝑛
				+
				1
			

			

				
			

			

				𝑏
			

			
				
				(
				𝑠
				)
			

			
				𝑚
				−
				2
				𝑙
			

			
				
				𝛾
			

			

				𝑗
			

			
				
				(
				𝑠
				)
			

			

				𝑙
			

			
				𝑑
				𝑠
			

		
	

						by the same method as used in the proof of Lemma 20.
Theorem 22.  Let the assumptions be as given in Theorem 21, and for 
	
		
			
				⃗
				𝜉
			

			

				𝑛
			

			
				=
				(
				𝜉
			

			

				1
			

			
				,
				…
				,
				𝜉
			

			

				𝑛
			

			
				)
				∈
				ℝ
			

			

				𝑛
			

		
	
 let 
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				Ξ
				
				⃗
				𝜉
			

			

				𝑛
			

			
				
				=
			

			

				𝑛
			

			

				
			

			
				𝑗
				=
				1
				[
				𝑚
				/
				2
				]
			

			

				
			

			
				𝑙
				=
				0
			

			
				𝑚
				!
			

			
				
			
			

				2
			

			

				𝑙
			

			
				×
				
				𝑙
				!
				(
				𝑚
				−
				2
				𝑙
				)
				!
			

			

				𝑡
			

			

				𝑗
			

			

				𝑡
			

			
				𝑗
				−
				1
			

			
				
				[
				𝑎
				]
				𝑎
				(
				𝑠
				)
				−
			

			

				𝑏
			

			
				
				⃗
				𝜉
				(
				𝑠
				)
				+
			

			

				𝑛
			

			

				
			

			

				𝑏
			

			
				
				(
				𝑠
				)
			

			
				𝑚
				−
				2
				𝑙
			

			
				
				𝛾
			

			

				𝑗
			

			
				
				(
				𝑠
				)
			

			

				𝑙
			

			
				𝑑
				𝑠
				.
			

		
	

						Then, for a.e. 
	
		
			
				⃗
				𝜉
			

			

				𝑛
			

			
				∈
				ℝ
			

			

				𝑛
			

		
	
 (hence 
	
		
			

				𝑃
			

			

				𝑌
			

			

				𝑛
			

		
	
 a.e. 
	
		
			
				⃗
				𝜉
			

			

				𝑛
			

			
				∈
				ℝ
			

			

				𝑛
			

		
	
)
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				𝐸
				𝐹
				
				
			

			

				𝑚
			

			

				
			

			

				𝑌
			

			
				∣
				𝑌
			

			

				𝑛
			

			
				
				
				⃗
				𝜉
			

			

				𝑛
			

			
				
				
				⃗
				𝜉
				=
				Ξ
			

			

				𝑛
			

			
				
				×
				+
				𝑚
				!
			

			
				[
				𝑚
				/
				2
				]
			

			

				
			

			
				𝑙
				=
				0
				𝑚
				−
				2
				𝑙
			

			

				
			

			
				𝑘
				𝑘
				=
				0
			

			

				
			

			
				𝑝
				=
				0
				[
				𝑝
				/
				2
				]
			

			

				
			

			
				𝑞
				=
				0
			

			

				𝜉
			

			
				𝑛
				𝑘
				−
				𝑝
			

			
				
				
				𝑡
				𝑎
				(
				𝑡
				)
				−
				𝑎
			

			

				𝑛
			

			
				
				
			

			
				𝑝
				−
				2
				𝑞
			

			
				
				
				𝑡
				𝑏
				(
				𝑡
				)
				−
				𝑏
			

			

				𝑛
			

			
				
				
			

			

				𝑞
			

			
				
			
			

				2
			

			
				𝑙
				+
				𝑞
			

			
				×
				
				𝑙
				!
				𝑞
				!
				(
				𝑘
				−
				𝑝
				)
				!
				(
				𝑝
				−
				2
				𝑞
				)
				!
				(
				𝑚
				−
				2
				𝑙
				−
				𝑘
				)
				!
			

			
				𝑡
				𝑡
			

			

				𝑛
			

			
				
				𝛾
			

			
				𝑛
				+
				1
			

			
				
				(
				𝑠
				)
			

			

				𝑙
			

			
				
				𝛽
			

			
				𝑛
				+
				1
			

			
				
				(
				𝑠
				)
			

			

				𝑝
			

			
				
				[
				𝑎
				]
				𝑎
				(
				𝑠
				)
				−
			

			

				𝑏
			

			
				
				(
				𝑠
				)
			

			
				𝑚
				−
				2
				𝑙
				−
				𝑘
			

			
				𝑑
				𝑠
				,
			

		
	

						where the expectation is taken over 
	
		
			

				𝑤
			

			

				𝜑
			

			

				𝛼
			

		
	
.
Proof. For 
	
		
			
				⃗
				𝜉
			

			

				𝑛
			

			
				=
				(
				𝜉
			

			

				1
			

			
				,
				…
				,
				𝜉
			

			

				𝑛
			

			
				)
				∈
				ℝ
			

			

				𝑛
			

		
	
, let 
	
		
			
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			
				=
				(
				𝜉
			

			

				1
			

			
				,
				…
				,
				𝜉
			

			

				𝑛
			

			
				,
				𝜉
			

			
				𝑛
				+
				1
			

			

				)
			

		
	
. By the binomial expansion, we have for 
	
		
			

				𝑡
			

			

				𝑛
			

			
				≤
				𝑠
				≤
				𝑡
			

		
	

	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				
				[
				𝑎
				]
				𝑎
				(
				𝑠
				)
				−
			

			

				𝑏
			

			
				
				⃗
				𝜉
				(
				𝑠
				)
				+
			

			
				𝑛
				+
				1
			

			

				
			

			

				𝑏
			

			
				
				(
				𝑠
				)
			

			
				𝑚
				−
				2
				𝑙
			

			

				=
			

			
				𝑚
				−
				2
				𝑙
			

			

				
			

			
				𝑘
				𝑘
				=
				0
			

			

				
			

			
				𝑝
				=
				0
			

			

				𝜉
			

			
				𝑛
				𝑘
				−
				𝑝
			

			
				(
				𝑚
				−
				2
				𝑙
				)
				!
			

			
				
			
			
				
				𝛽
				𝑝
				!
				(
				𝑘
				−
				𝑝
				)
				!
				(
				𝑚
				−
				2
				𝑙
				−
				𝑘
				)
				!
			

			
				𝑛
				+
				1
			

			
				
				(
				𝑠
				)
			

			

				𝑝
			

			
				×
				
				[
				𝑎
				]
				𝑎
				(
				𝑠
				)
				−
			

			

				𝑏
			

			
				
				(
				𝑠
				)
			

			
				𝑚
				−
				2
				𝑙
				−
				𝑘
			

			
				
				𝜉
			

			
				𝑛
				+
				1
			

			
				−
				𝜉
			

			

				𝑛
			

			

				
			

			

				𝑝
			

			

				,
			

		
	

						so that by Theorems 18 and 21, we have for a.e. 
	
		
			
				⃗
				𝜉
			

			

				𝑛
			

			
				=
				(
				𝜉
			

			

				1
			

			
				,
				⋯
				,
				𝜉
			

			

				𝑛
			

			
				)
				∈
				ℝ
			

			

				𝑛
			

		
	

	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				𝐸
				𝐹
				
				
			

			

				𝑚
			

			

				
			

			

				𝑌
			

			
				∣
				𝑌
			

			

				𝑛
			

			
				
				
				⃗
				𝜉
			

			

				𝑛
			

			
				
				
				⃗
				𝜉
				=
				Ξ
			

			

				𝑛
			

			
				
				+
			

			
				[
				𝑚
				/
				2
				]
			

			

				
			

			
				𝑙
				=
				0
				𝑚
				−
				2
				𝑙
			

			

				
			

			
				𝑘
				𝑘
				=
				0
			

			

				
			

			
				𝑝
				=
				0
				[
				𝑝
				/
				2
				]
			

			

				
			

			
				𝑞
				=
				0
			

			
				𝑚
				!
				𝜉
			

			
				𝑛
				𝑘
				−
				𝑝
			

			
				
				
				𝑡
				𝑎
				(
				𝑡
				)
				−
				𝑎
			

			

				𝑛
			

			
				
				
			

			
				𝑝
				−
				2
				𝑞
			

			
				
			
			

				2
			

			
				𝑙
				−
				1
			

			
				×
				
				𝑙
				!
				(
				2
				𝑞
				)
				!
				(
				𝑘
				−
				𝑝
				)
				!
				(
				𝑝
				−
				2
				𝑞
				)
				!
				(
				𝑚
				−
				2
				𝑙
				−
				𝑘
				)
				!
			

			
				𝑡
				𝑡
			

			

				𝑛
			

			
				
				𝛾
			

			
				𝑛
				+
				1
			

			
				
				(
				𝑠
				)
			

			

				𝑙
			

			
				
				𝛽
			

			
				𝑛
				+
				1
			

			
				
				(
				𝑠
				)
			

			

				𝑝
			

			
				×
				
				[
				𝑎
				]
				𝑎
				(
				𝑠
				)
				−
			

			

				𝑏
			

			
				(
				
				𝑠
				)
			

			
				𝑚
				−
				2
				𝑙
				−
				𝑘
			

			
				
				1
			

			
				
			
			
				
				
				𝑡
				2
				𝜋
				𝑏
				(
				𝑡
				)
				−
				𝑏
			

			

				𝑛
			

			
				
				
				
			

			
				1
				/
				2
			

			
				×
				
			

			
				∞
				0
			

			

				𝑢
			

			
				2
				𝑞
			

			
				
				−
				𝑢
				e
				x
				p
			

			

				2
			

			
				
			
			
				2
				
				
				𝑡
				𝑏
				(
				𝑡
				)
				−
				𝑏
			

			

				𝑛
			

			
				
				
				
				𝑑
				𝑢
				𝑑
				𝑠
			

		
	

						by the change of variable theorem. Using the same method as used in the proof of Lemma 20, we have the desired result.
From now on, we assume that every expectation is taken over 
	
		
			

				𝑤
			

			

				𝜑
			

			

				𝛼
			

		
	
 unless otherwise specified. By Corollary 9, Theorems 14 and 17, and Theorem 3.4 in [8], we have the following theorem.
Theorem 23.  Let 
	
		
			
				0
				<
				𝑠
			

			

				1
			

			
				<
				𝑠
			

			

				2
			

			
				≤
				𝑡
			

		
	
, 
	
		
			

				𝑠
			

			

				1
			

			
				∈
				[
				𝑡
			

			
				𝑙
				−
				1
			

			
				−
				𝑡
			

			

				𝑙
			

			

				]
			

		
	
 and 
	
		
			

				𝑠
			

			

				2
			

			
				∈
				[
				𝑡
			

			
				𝑗
				−
				1
			

			
				−
				𝑡
			

			

				𝑗
			

			

				]
			

		
	
. For 
	
		
			
				𝑥
				∈
				𝐶
				[
				0
				,
				𝑡
				]
			

		
	
, let 
	
		
			
				𝐺
				(
				𝑥
				)
				=
				𝑥
				(
				𝑠
			

			

				1
			

			
				)
				𝑥
				(
				𝑠
			

			

				2
			

			

				)
			

		
	
.  (1)If  
	
		
			
				𝑙
				≠
				𝑗
			

		
	
, then for a.e. 
	
		
			
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			
				∈
				ℝ
			

			
				𝑛
				+
				1
			

		
	
 (hence, 
	
		
			

				𝑃
			

			

				𝑌
			

			
				𝑛
				+
				1
			

		
	
 a.e. 
	
		
			
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			
				∈
				ℝ
			

			
				𝑛
				+
				1
			

		
	
) 
										
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				𝐸
				
				𝐺
			

			

				𝑌
			

			
				∣
				𝑌
			

			
				𝑛
				+
				1
			

			
				
				
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			
				
				=
				
				𝑎
				
				𝑠
			

			

				1
			

			
				
				−
				[
				𝑎
				]
			

			

				𝑏
			

			
				
				𝑠
			

			

				1
			

			
				
				+
				
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			

				
			

			

				𝑏
			

			
				
				𝑠
			

			

				1
			

			
				
				
				×
				
				𝑎
				
				𝑠
			

			

				2
			

			
				
				−
				[
				𝑎
				]
			

			

				𝑏
			

			
				
				𝑠
			

			

				2
			

			
				
				+
				
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			

				
			

			

				𝑏
			

			
				
				𝑠
			

			

				2
			

			
				
				
				.
			

		
	
(2)If  
	
		
			
				𝑙
				=
				𝑗
			

		
	
, then for a.e. 
	
		
			
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			
				∈
				ℝ
			

			
				𝑛
				+
				1
			

		
	
 (hence, 
	
		
			

				𝑃
			

			

				𝑌
			

			
				𝑛
				+
				1
			

		
	
 a.e. 
	
		
			
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			
				∈
				ℝ
			

			
				𝑛
				+
				1
			

		
	
) 
										
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				𝐸
				
				𝐺
			

			

				𝑌
			

			
				∣
				𝑌
			

			
				𝑛
				+
				1
			

			
				
				
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			
				
				=
				𝛼
			

			

				𝑗
			

			
				
				𝑠
			

			

				2
			

			
				𝑏
				
				𝑠
				
				
			

			

				1
			

			
				
				
				𝑡
				−
				𝑏
			

			
				𝑗
				−
				1
			

			
				+
				
				𝑎
				
				𝑠
				
				
			

			

				1
			

			
				
				−
				[
				𝑎
				]
			

			

				𝑏
			

			
				
				𝑠
			

			

				1
			

			
				
				+
				
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			

				
			

			

				𝑏
			

			
				
				𝑠
			

			

				1
			

			
				
				
				×
				
				𝑎
				
				𝑠
			

			

				2
			

			
				
				−
				[
				𝑎
				]
			

			

				𝑏
			

			
				
				𝑠
			

			

				2
			

			
				
				+
				
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			

				
			

			

				𝑏
			

			
				
				𝑠
			

			

				2
			

			
				
				
				.
			

		
	

Theorem 24.  Let the assumptions be as given in Theorem 23.  (1)If 
	
		
			
				𝑙
				≤
				𝑛
			

		
	
, 
	
		
			
				𝑗
				≤
				𝑛
			

		
	
 and 
	
		
			
				𝑙
				≠
				𝑗
			

		
	
, then for a.e. 
	
		
			
				⃗
				𝜉
			

			

				𝑛
			

			
				∈
				ℝ
			

			

				𝑛
			

		
	
 (hence, 
	
		
			

				𝑃
			

			

				𝑌
			

			

				𝑛
			

		
	
 a.e. 
	
		
			
				⃗
				𝜉
			

			

				𝑛
			

			
				∈
				ℝ
			

			

				𝑛
			

		
	
) 
										
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				𝐸
				
				𝐺
			

			

				𝑌
			

			
				∣
				𝑌
			

			

				𝑛
			

			
				
				
				⃗
				𝜉
			

			

				𝑛
			

			
				
				=
				
				𝑎
				
				𝑠
			

			

				1
			

			
				
				−
				[
				𝑎
				]
			

			

				𝑏
			

			
				
				𝑠
			

			

				1
			

			
				
				+
				
				⃗
				𝜉
			

			

				𝑛
			

			

				
			

			

				𝑏
			

			
				
				𝑠
			

			

				1
			

			
				
				
				×
				
				𝑎
				
				𝑠
			

			

				2
			

			
				
				−
				[
				𝑎
				]
			

			

				𝑏
			

			
				
				𝑠
			

			

				2
			

			
				
				+
				
				⃗
				𝜉
			

			

				𝑛
			

			

				
			

			

				𝑏
			

			
				
				𝑠
			

			

				2
			

			
				
				
				.
			

		
	
(2)If 
	
		
			
				𝑙
				≤
				𝑛
			

		
	
, 
	
		
			
				𝑗
				≤
				𝑛
			

		
	
 and 
	
		
			
				𝑙
				=
				𝑗
			

		
	
, then for a.e. 
	
		
			
				⃗
				𝜉
			

			

				𝑛
			

			
				∈
				ℝ
			

			

				𝑛
			

		
	
 (hence 
	
		
			

				𝑃
			

			

				𝑌
			

			

				𝑛
			

		
	
 a.e. 
	
		
			
				⃗
				𝜉
			

			

				𝑛
			

			
				∈
				ℝ
			

			

				𝑛
			

		
	
) 
										
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				𝐸
				
				𝐺
			

			

				𝑌
			

			
				∣
				𝑌
			

			

				𝑛
			

			
				
				
				⃗
				𝜉
			

			

				𝑛
			

			
				
				=
				𝛼
			

			

				𝑗
			

			
				
				𝑠
			

			

				2
			

			
				𝑏
				
				𝑠
				
				
			

			

				1
			

			
				
				
				𝑡
				−
				𝑏
			

			
				𝑗
				−
				1
			

			
				+
				
				𝑎
				
				𝑠
				
				
			

			

				1
			

			
				
				−
				[
				𝑎
				]
			

			

				𝑏
			

			
				
				𝑠
			

			

				1
			

			
				
				+
				
				⃗
				𝜉
			

			

				𝑛
			

			

				
			

			

				𝑏
			

			
				
				𝑠
			

			

				1
			

			
				
				
				×
				
				𝑎
				
				𝑠
			

			

				2
			

			
				
				−
				[
				𝑎
				]
			

			

				𝑏
			

			
				
				𝑠
			

			

				2
			

			
				
				+
				
				⃗
				𝜉
			

			

				𝑛
			

			

				
			

			

				𝑏
			

			
				
				𝑠
			

			

				2
			

			
				
				
				.
			

		
	
(3)If 
	
		
			
				𝑙
				=
				𝑛
				+
				1
			

		
	
 and 
	
		
			
				𝑗
				≤
				𝑛
			

		
	
, then for a.e. 
	
		
			
				⃗
				𝜉
			

			

				𝑛
			

			
				=
				(
				𝜉
			

			

				1
			

			
				,
				…
				,
				𝜉
			

			

				𝑛
			

			
				)
				∈
				ℝ
			

			

				𝑛
			

		
	
 (hence 
	
		
			

				𝑃
			

			

				𝑌
			

			

				𝑛
			

		
	
 a.e. 
	
		
			
				⃗
				𝜉
			

			

				𝑛
			

			
				∈
				ℝ
			

			

				𝑛
			

		
	
) 
										
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				𝐸
				
				𝐺
			

			

				𝑌
			

			
				∣
				𝑌
			

			

				𝑛
			

			
				
				
				⃗
				𝜉
			

			

				𝑛
			

			
				
				=
				
				𝑎
				
				𝑠
			

			

				1
			

			
				
				−
				[
				𝑎
				]
			

			

				𝑏
			

			
				
				𝑠
			

			

				1
			

			
				
				+
				𝜉
			

			

				𝑛
			

			
				+
				𝛽
			

			
				𝑛
				+
				1
			

			
				
				𝑠
			

			

				1
			

			
				
				𝑡
				
				
				𝑎
				(
				𝑡
				)
				−
				𝑎
			

			

				𝑛
			

			
				×
				
				𝑎
				
				𝑠
				
				
				
			

			

				2
			

			
				
				−
				[
				𝑎
				]
			

			

				𝑏
			

			
				
				𝑠
			

			

				2
			

			
				
				+
				
				⃗
				𝜉
			

			

				𝑛
			

			

				
			

			

				𝑏
			

			
				
				𝑠
			

			

				2
			

			
				
				
				.
			

		
	
(4)If 
	
		
			
				𝑙
				≤
				𝑛
			

		
	
 and 
	
		
			
				𝑗
				=
				𝑛
				+
				1
			

		
	
, then for a.e. 
	
		
			
				⃗
				𝜉
			

			

				𝑛
			

			
				=
				(
				𝜉
			

			

				1
			

			
				,
				…
				,
				𝜉
			

			

				𝑛
			

			
				)
				∈
				ℝ
			

			

				𝑛
			

		
	
 (hence 
	
		
			

				𝑃
			

			

				𝑌
			

			

				𝑛
			

		
	
 a.e. 
	
		
			
				⃗
				𝜉
			

			

				𝑛
			

			
				∈
				ℝ
			

			

				𝑛
			

		
	
) 
										
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			
				𝐸
				
				𝐺
			

			

				𝑌
			

			
				∣
				𝑌
			

			

				𝑛
			

			
				
				
				⃗
				𝜉
			

			

				𝑛
			

			
				
				=
				
				𝑎
				
				𝑠
			

			

				2
			

			
				
				−
				[
				𝑎
				]
			

			

				𝑏
			

			
				
				𝑠
			

			

				2
			

			
				
				+
				𝜉
			

			

				𝑛
			

			
				+
				𝛽
			

			
				𝑛
				+
				1
			

			
				
				𝑠
			

			

				2
			

			
				
				𝑡
				
				
				𝑎
				(
				𝑡
				)
				−
				𝑎
			

			

				𝑛
			

			
				×
				
				𝑎
				
				𝑠
				
				
				
			

			

				1
			

			
				
				−
				[
				𝑎
				]
			

			

				𝑏
			

			
				
				𝑠
			

			

				1
			

			
				
				+
				
				⃗
				𝜉
			

			

				𝑛
			

			

				
			

			

				𝑏
			

			
				
				𝑠
			

			

				1
			

			
				
				
				.
			

		
	
(5)If  
	
		
			
				𝑙
				=
				𝑛
				+
				1
			

		
	
 and 
	
		
			
				𝑗
				=
				𝑛
				+
				1
			

		
	
, then for a.e. 
	
		
			
				⃗
				𝜉
			

			

				𝑛
			

			
				=
				(
				𝜉
			

			

				1
			

			
				,
				…
				,
				𝜉
			

			

				𝑛
			

			
				)
				∈
				ℝ
			

			

				𝑛
			

		
	
 (hence 
	
		
			

				𝑃
			

			

				𝑌
			

			

				𝑛
			

		
	
 a.e. 
	
		
			
				⃗
				𝜉
			

			

				𝑛
			

			
				∈
				ℝ
			

			

				𝑛
			

		
	
) 
										
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			
				𝐸
				
				𝐺
			

			

				𝑌
			

			
				∣
				𝑌
			

			

				𝑛
			

			
				
				
				⃗
				𝜉
			

			

				𝑛
			

			
				
				=
				𝜉
			

			
				2
				𝑛
			

			
				+
				𝜉
			

			

				𝑛
			

			
				
				
				𝑡
				𝑎
				(
				𝑡
				)
				−
				𝑎
			

			

				𝑛
			

			
				×
				
				𝑎
				
				𝑠
				
				
			

			

				1
			

			
				
				−
				[
				𝑎
				]
			

			

				𝑏
			

			
				
				𝑠
			

			

				1
			

			
				
				
				𝑠
				+
				𝑎
			

			

				2
			

			
				
				−
				[
				𝑎
				]
			

			

				𝑏
			

			
				
				𝑠
			

			

				2
			

			
				
				+
				𝛽
			

			
				𝑛
				+
				1
			

			
				
				𝑠
			

			

				1
			

			
				
				+
				𝛽
			

			
				𝑛
				+
				1
			

			
				
				𝑠
			

			

				2
			

			
				+
				
				𝑎
				
				𝑠
				
				
			

			

				1
			

			
				
				−
				[
				𝑎
				]
			

			

				𝑏
			

			
				
				𝑠
			

			

				1
			

			
				
				+
				𝛽
			

			
				𝑛
				+
				1
			

			
				
				𝑠
			

			

				1
			

			
				
				𝑡
				
				
				𝑎
				(
				𝑡
				)
				−
				𝑎
			

			

				𝑛
			

			
				×
				
				𝑎
				
				𝑠
				
				
				
			

			

				2
			

			
				
				−
				[
				𝑎
				]
			

			

				𝑏
			

			
				
				𝑠
			

			

				2
			

			
				
				+
				𝛽
			

			
				𝑛
				+
				1
			

			
				
				𝑠
			

			

				2
			

			
				
				𝑡
				
				
				𝑎
				(
				𝑡
				)
				−
				𝑎
			

			

				𝑛
			

			
				
				
				
				+
				𝛽
			

			
				𝑛
				+
				1
			

			
				
				𝑠
			

			

				1
			

			
				
				𝛽
			

			
				𝑛
				+
				1
			

			
				
				𝑠
			

			

				2
			

			
				
				𝑡
				
				
				𝑏
				(
				𝑡
				)
				−
				𝑏
			

			

				𝑛
			

			
				
				
				+
				𝛼
			

			
				𝑛
				+
				1
			

			
				
				𝑠
			

			

				2
			

			
				𝑏
				
				𝑠
				
				
			

			

				1
			

			
				
				
				𝑡
				−
				𝑏
			

			

				𝑛
			

			
				.
				
				
			

		
	

Proof. For 
	
		
			
				⃗
				𝜉
			

			

				𝑛
			

			
				=
				(
				𝜉
			

			

				1
			

			
				,
				…
				,
				𝜉
			

			

				𝑛
			

			
				)
				∈
				ℝ
			

			

				𝑛
			

		
	
, let 
	
		
			
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			
				=
				(
				𝜉
			

			

				1
			

			
				,
				…
				,
				𝜉
			

			

				𝑛
			

			
				,
				𝜉
			

			
				𝑛
				+
				1
			

			

				)
			

		
	
. (1) and (2) follow immediately from Theorem 23. If 
	
		
			
				𝑠
				∈
				[
				𝑡
			

			

				𝑛
			

			
				,
				𝑡
				]
			

		
	
, then 
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				
				1
			

			
				
			
			
				
				
				𝑡
				2
				𝜋
				𝑏
				(
				𝑡
				)
				−
				𝑏
			

			

				𝑛
			

			
				
				
				
			

			
				1
				/
				2
			

			
				×
				
			

			

				ℝ
			

			
				
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			

				
			

			

				𝑏
			

			
				
				−
				
				𝜉
				(
				𝑠
				)
				×
				e
				x
				p
			

			
				𝑛
				+
				1
			

			
				−
				𝜉
			

			

				𝑛
			

			
				−
				
				
				𝑡
				𝑎
				(
				𝑡
				)
				−
				𝑎
			

			

				𝑛
			

			
				
				
				
			

			

				2
			

			
				
			
			
				2
				
				
				𝑡
				𝑏
				(
				𝑡
				)
				−
				𝑏
			

			

				𝑛
			

			
				
				
				
				𝑑
				𝜉
			

			
				𝑛
				+
				1
			

			
				=
				
				1
			

			
				
			
			
				
				
				𝑡
				2
				𝜋
				𝑏
				(
				𝑡
				)
				−
				𝑏
			

			

				𝑛
			

			
				
				
				
			

			
				1
				/
				2
			

			
				×
				
			

			

				ℝ
			

			
				
				𝜉
			

			

				𝑛
			

			
				+
				𝛽
			

			
				𝑛
				+
				1
			

			
				
				𝜉
				(
				𝑠
				)
			

			
				𝑛
				+
				1
			

			
				−
				𝜉
			

			

				𝑛
			

			
				
				−
				
				𝜉
				
				
				×
				e
				x
				p
			

			
				𝑛
				+
				1
			

			
				−
				𝜉
			

			

				𝑛
			

			
				−
				
				
				𝑡
				𝑎
				(
				𝑡
				)
				−
				𝑎
			

			

				𝑛
			

			
				
				
				
			

			

				2
			

			
				
			
			
				2
				
				
				𝑡
				𝑏
				(
				𝑡
				)
				−
				𝑏
			

			

				𝑛
			

			
				
				
				
				𝑑
				𝜉
			

			
				𝑛
				+
				1
			

			
				=
				𝜉
			

			

				𝑛
			

			
				+
				𝛽
			

			
				𝑛
				+
				1
			

			
				
				
				𝑡
				(
				𝑠
				)
				𝑎
				(
				𝑡
				)
				−
				𝑎
			

			

				𝑛
			

			
				
				
			

		
	

						by which (3) and (4) follow. If 
	
		
			

				𝑠
			

			

				1
			

			
				,
				𝑠
			

			

				2
			

			
				∈
				[
				𝑡
			

			

				𝑛
			

			
				,
				𝑡
				]
			

		
	
, then
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			
				
				1
			

			
				
			
			
				
				
				𝑡
				2
				𝜋
				𝑏
				(
				𝑡
				)
				−
				𝑏
			

			

				𝑛
			

			
				
				
				
			

			
				1
				/
				2
			

			
				×
				
			

			

				ℝ
			

			
				
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			

				
			

			

				𝑏
			

			
				
				𝑠
			

			

				1
			

			
				
				
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			

				
			

			

				𝑏
			

			
				
				𝑠
			

			

				2
			

			
				
				
				−
				
				𝜉
				×
				e
				x
				p
			

			
				𝑛
				+
				1
			

			
				−
				𝜉
			

			

				𝑛
			

			
				−
				
				
				𝑡
				𝑎
				(
				𝑡
				)
				−
				𝑎
			

			

				𝑛
			

			
				
				
				
			

			

				2
			

			
				
			
			
				2
				
				
				𝑡
				𝑏
				(
				𝑡
				)
				−
				𝑏
			

			

				𝑛
			

			
				
				
				
				𝑑
				𝜉
			

			
				𝑛
				+
				1
			

			
				=
				
				1
			

			
				
			
			
				
				
				𝑡
				2
				𝜋
				𝑏
				(
				𝑡
				)
				−
				𝑏
			

			

				𝑛
			

			
				
				
				
			

			
				1
				/
				2
			

			
				×
				
			

			

				ℝ
			

			
				
				𝜉
			

			

				𝑛
			

			
				+
				𝛽
			

			
				𝑛
				+
				1
			

			
				
				𝑠
			

			

				1
			

			
				𝜉
				
				
			

			
				𝑛
				+
				1
			

			
				−
				𝜉
			

			

				𝑛
			

			
				×
				
				𝜉
				
				
			

			

				𝑛
			

			
				+
				𝛽
			

			
				𝑛
				+
				1
			

			
				
				𝑠
			

			

				2
			

			
				𝜉
				
				
			

			
				𝑛
				+
				1
			

			
				−
				𝜉
			

			

				𝑛
			

			
				
				−
				
				𝜉
				
				
				×
				e
				x
				p
			

			
				𝑛
				+
				1
			

			
				−
				𝜉
			

			

				𝑛
			

			
				−
				
				
				𝑡
				𝑎
				(
				𝑡
				)
				−
				𝑎
			

			

				𝑛
			

			
				
				
				
			

			

				2
			

			
				
			
			
				2
				
				
				𝑡
				𝑏
				(
				𝑡
				)
				−
				𝑏
			

			

				𝑛
			

			
				
				
				
				𝑑
				𝜉
			

			
				𝑛
				+
				1
			

			
				=
				𝜉
			

			
				2
				𝑛
			

			
				+
				𝜉
			

			

				𝑛
			

			
				
				
				𝑡
				𝑎
				(
				𝑡
				)
				−
				𝑎
			

			

				𝑛
			

			
				𝛽
				
				
				
			

			
				𝑛
				+
				1
			

			
				
				𝑠
			

			

				1
			

			
				
				+
				𝛽
			

			
				𝑛
				+
				1
			

			
				
				𝑠
			

			

				2
			

			
				
				
				+
				𝛽
			

			
				𝑛
				+
				1
			

			
				
				𝑠
			

			

				1
			

			
				
				𝛽
			

			
				𝑛
				+
				1
			

			
				
				𝑠
			

			

				2
			

			
				
				
				
				
				𝑡
				𝑎
				(
				𝑡
				)
				−
				𝑎
			

			

				𝑛
			

			
				
				
			

			

				2
			

			
				
				𝑡
				+
				𝑏
				(
				𝑡
				)
				−
				𝑏
			

			

				𝑛
			

			
				
				
			

		
	

						by which we have (5).
For 
	
		
			
				𝑗
				=
				1
				,
				…
				,
				𝑛
				+
				1
			

		
	
, let 
	
		
			

				ℎ
			

			

				𝑗
			

			
				=
				𝜒
			

			
				(
				𝑡
			

			
				𝑗
				−
				1
			

			
				,
				𝑡
			

			

				𝑗
			

			

				]
			

			

				ℎ
			

		
	
 and 
	
		
			

				𝑔
			

			

				𝑗
			

			
				=
				ℎ
			

			

				𝑗
			

			
				/
				√
			

			
				
			
			
				𝑏
				(
				𝑡
			

			

				𝑗
			

			
				)
				−
				𝑏
				(
				𝑡
			

			
				𝑗
				−
				1
			

			

				)
			

		
	
. Let 
	
		
			

				𝑉
			

		
	
 be the subspace of 
	
		
			

				𝐿
			

			

				2
			

			
				[
				0
				,
				𝑡
				]
			

		
	
 generated by 
	
		
			
				{
				𝑔
			

			

				1
			

			
				,
				…
				,
				𝑔
			

			
				𝑛
				+
				1
			

			

				}
			

		
	
, 
	
		
			

				𝑉
			

			

				⟂
			

		
	
 the orthogonal complement of 
	
		
			

				𝑉
			

		
	
, and 
	
		
			

				𝒫
			

			

				⟂
			

			
				∶
				𝐿
			

			

				2
			

			
				[
				0
				,
				𝑡
				]
				→
				𝑉
			

			

				⟂
			

		
	
 the orthogonal projection. Let 
	
		
			
				ℳ
				(
				𝐿
			

			

				2
			

			
				[
				0
				,
				𝑡
				]
				)
			

		
	
 be the class of all 
	
		
			

				ℂ
			

		
	
-valued Borel measures of bounded variation over 
	
		
			

				𝐿
			

			

				2
			

			
				[
				0
				,
				𝑡
				]
			

		
	
, and let 
	
		
			

				𝒮
			

			

				𝑤
			

			
				𝜑
				𝛼
			

		
	
 be the space of all functions 
	
		
			

				𝐹
			

		
	
 which for 
	
		
			
				𝜎
				∈
				ℳ
				(
				𝐿
			

			

				2
			

			
				[
				0
				,
				𝑡
				]
				)
			

		
	
 have the form
						
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			
				
				𝐹
				(
				𝑥
				)
				=
			

			

				𝐿
			

			

				2
			

			
				[
				0
				,
				𝑡
				]
			

			
				e
				x
				p
				{
				𝑖
				(
				𝑣
				,
				𝑥
				)
				}
				𝑑
				𝜎
				(
				𝑣
				)
			

		
	

					for 
	
		
			

				𝑤
			

			

				𝜑
			

			

				𝛼
			

		
	
 a.e. 
	
		
			
				𝑥
				∈
				𝐶
				[
				0
				,
				𝑡
				]
			

		
	
. Note that 
	
		
			

				𝒮
			

			

				𝑤
			

			
				𝜑
				𝛼
			

		
	
 is a Banach algebra [4].
Now, we have the following theorems which are our final results.
Theorem 25.  Let 
	
		
			

				ℎ
			

		
	
 be of bounded variation and 
	
		
			

				𝑎
			

		
	
 absolutely continuous on 
	
		
			
				[
				0
				,
				𝑡
				]
			

		
	
. Let 
	
		
			
				𝐹
				∈
				𝒮
			

			

				𝑤
			

			
				𝜑
				𝛼
			

		
	
 and 
	
		
			
				𝜎
				∈
				ℳ
				(
				𝐿
			

			

				2
			

			
				[
				0
				,
				𝑡
				]
				)
			

		
	
 be related by  (40). Then, 
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			
				𝐸
				
				𝐹
			

			

				𝑌
			

			
				
				=
				
			

			

				𝐿
			

			

				2
			

			
				[
				0
				,
				𝑡
				]
			

			
				
				−
				1
				e
				x
				p
			

			
				
			
			
				2
				‖
				𝑣
				ℎ
				‖
			

			

				2
			

			
				
				𝑑
				𝜎
			

			

				𝑎
			

			
				(
				𝑣
				)
				,
			

		
	

						where 
	
		
			
				(
				𝑑
				𝜎
			

			

				𝑎
			

			
				/
				𝑑
				𝜎
				)
				(
				𝑣
				)
				=
				e
				x
				p
				{
				𝑖
				(
				𝑣
				,
				𝑎
				)
				}
			

		
	
 for 
	
		
			
				𝑣
				∈
				𝐿
			

			

				2
			

			
				[
				0
				,
				𝑡
				]
			

		
	
. Moreover for a.e. 
	
		
			
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			
				∈
				ℝ
			

			
				𝑛
				+
				1
			

		
	
 (hence for 
	
		
			

				𝑃
			

			

				𝑌
			

			
				𝑛
				+
				1
			

		
	
 a.e. 
	
		
			
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			
				∈
				ℝ
			

			
				𝑛
				+
				1
			

		
	
) 
	
		
			
				𝐸
				[
				𝐹
			

			

				𝑌
			

			
				∣
				𝑌
			

			
				𝑛
				+
				1
			

			
				⃗
				𝜉
				]
				(
			

			
				𝑛
				+
				1
			

			

				)
			

		
	
 is given by 
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			
				𝐸
				
				𝐹
			

			

				𝑌
			

			
				∣
				𝑌
			

			
				𝑛
				+
				1
			

			
				
				
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			
				
				=
				
			

			

				𝐿
			

			

				2
			

			
				[
				0
				,
				𝑡
				]
			

			
				
				𝑖
				
				[
				𝑎
				]
				e
				x
				p
				𝑣
				,
				𝑎
				−
			

			

				𝑏
			

			
				+
				
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			

				
			

			

				𝑏
			

			
				
				−
				1
			

			
				
			
			
				2
				‖
				‖
				𝒫
			

			

				⟂
			

			
				‖
				‖
				(
				𝑣
				ℎ
				)
			

			

				2
			

			
				
				𝑑
				𝜎
				(
				𝑣
				)
				.
			

		
	

Proof. By Corollary 5 and the Fubini’s theorem 
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			
				𝐸
				
				𝐹
			

			

				𝑌
			

			
				
				=
				
			

			

				𝐿
			

			

				2
			

			
				[
				0
				,
				𝑡
				]
			

			

				
			

			
				𝐶
				[
				0
				,
				𝑡
				]
			

			
				e
				x
				p
				{
				𝑖
				(
				𝑣
				,
				𝑌
				(
				𝑥
				,
				⋅
				)
				)
				}
				𝑑
				𝑤
			

			

				𝜑
			

			

				𝛼
			

			
				=
				
				(
				𝑥
				)
				𝑑
				𝜎
				(
				𝑣
				)
			

			

				𝐿
			

			

				2
			

			
				[
				0
				,
				𝑡
				]
			

			
				
				−
				1
				e
				x
				p
				{
				𝑖
				(
				𝑣
				,
				𝑎
				)
				}
				e
				x
				p
			

			
				
			
			
				2
				‖
				𝑣
				ℎ
				‖
			

			

				2
			

			
				
				𝑑
				𝜎
				(
				𝑣
				)
				,
			

		
	

						where the last equality follows from the following integral formula:
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			

				
			

			

				ℝ
			

			
				
				e
				x
				p
				−
				𝑎
				𝑢
			

			

				2
			

			
				
				
				𝜋
				+
				𝑖
				𝑏
				𝑢
				𝑑
				𝑢
				=
			

			
				
			
			
				𝑎
				
			

			
				1
				/
				2
			

			
				
				−
				𝑏
				e
				x
				p
			

			

				2
			

			
				
			
			
				
				4
				𝑎
			

		
	

						for 
	
		
			
				𝑎
				∈
				ℂ
			

			

				+
			

		
	
 and any real 
	
		
			

				𝑏
			

		
	
. Furthermore, for a.e. 
	
		
			
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			
				∈
				ℝ
			

			
				𝑛
				+
				1
			

		
	
, we have by Theorems 3.4 and 3.6 in [8]
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			
				𝐸
				
				𝐹
			

			

				𝑌
			

			
				∣
				𝑌
			

			
				𝑛
				+
				1
			

			
				
				
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			
				
				=
				
			

			

				𝐿
			

			

				2
			

			
				[
				0
				,
				𝑡
				]
			

			
				
				𝑖
				
				[
				𝑎
				]
				e
				x
				p
				𝑣
				,
				𝑎
				−
			

			

				𝑏
			

			
				+
				
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			

				
			

			

				𝑏
			

			
				×
				
				
				
			

			
				𝐶
				[
				0
				,
				𝑡
				]
			

			
				
				𝑖
				
				[
				]
				e
				x
				p
				𝑣
				,
				𝑍
				(
				𝑥
				,
				⋅
				)
				−
				𝑍
				(
				𝑥
				,
				⋅
				)
			

			

				𝑏
			

			
				
				
				𝑑
				𝑤
			

			

				𝜑
			

			

				𝛼
			

			
				=
				
				(
				𝑥
				)
				𝑑
				𝜎
				(
				𝑣
				)
			

			

				𝐿
			

			

				2
			

			
				[
				0
				,
				𝑡
				]
			

			
				
				𝑖
				
				[
				𝑎
				]
				e
				x
				p
				𝑣
				,
				𝑎
				−
			

			

				𝑏
			

			
				+
				
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			

				
			

			

				𝑏
			

			
				
				−
				1
				
				
				×
				e
				x
				p
			

			
				
			
			
				2
				‖
				‖
				𝒫
			

			

				⟂
			

			
				‖
				‖
				(
				𝑣
				ℎ
				)
			

			

				2
			

			
				
				𝑑
				𝜎
				(
				𝑣
				)
			

		
	

						which completes the proof.
Theorem 26.  Let the assumptions be as given in Theorem 25 and for 
	
		
			
				⃗
				𝜉
			

			

				𝑛
			

			
				∈
				ℝ
			

			

				𝑛
			

		
	
 let 
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			
				𝐴
				
				⃗
				𝜉
				𝑣
				,
			

			

				𝑛
			

			
				
				
				𝑖
				
				[
				𝑎
				]
				=
				e
				x
				p
				𝑣
				,
				𝑎
				−
			

			

				𝑏
			

			
				+
				
				⃗
				𝜉
			

			

				𝑛
			

			

				
			

			

				𝑏
			

			
				
				−
				1
			

			
				
			
			
				2
				‖
				‖
				𝒫
			

			

				⟂
			

			
				‖
				‖
				(
				𝑣
				ℎ
				)
			

			

				2
			

			
				
				.
			

		
	

						Then, for a.e. 
	
		
			
				⃗
				𝜉
			

			

				𝑛
			

			
				∈
				ℝ
			

			

				𝑛
			

		
	
 (hence for 
	
		
			

				𝑃
			

			

				𝑌
			

			

				𝑛
			

		
	
 a.e. 
	
		
			
				⃗
				𝜉
			

			

				𝑛
			

			
				∈
				ℝ
			

			

				𝑛
			

		
	
) 
	
		
			
				𝐸
				[
				𝐹
			

			

				𝑌
			

			
				∣
				𝑌
			

			

				𝑛
			

			
				⃗
				𝜉
				]
				(
			

			

				𝑛
			

			

				)
			

		
	
 is given by 
							
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			
				𝐸
				
				𝐹
			

			

				𝑌
			

			
				∣
				𝑌
			

			

				𝑛
			

			
				
				
				⃗
				𝜉
			

			

				𝑛
			

			
				
				=
				
			

			

				𝐿
			

			

				2
			

			
				[
				0
				,
				𝑡
				]
			

			
				𝐴
				
				⃗
				𝜉
				𝑣
				,
			

			

				𝑛
			

			
				
				⎧
				⎪
				⎨
				⎪
				⎩
				𝑖
				
				e
				x
				p
				𝑣
				ℎ
				,
				𝑔
			

			
				𝑛
				+
				1
			

			
				
				𝑡
				
				
				𝑎
				(
				𝑡
				)
				−
				𝑎
			

			

				𝑛
			

			
				
				
			

			
				
			
			

				
			

			
				
			
			
				
				𝑡
				𝑏
				(
				𝑡
				)
				−
				𝑏
			

			

				𝑛
			

			
				
				−
				1
			

			
				
			
			
				2
				
				𝑣
				ℎ
				,
				𝑔
			

			
				𝑛
				+
				1
			

			

				
			

			

				2
			

			
				⎫
				⎪
				⎬
				⎪
				⎭
				𝑑
				𝜎
				(
				𝑣
				)
				,
			

		
	

						where 
	
		
			
				⟨
				⋅
				,
				⋅
				⟩
			

		
	
 denotes the inner product on 
	
		
			

				𝐿
			

			

				2
			

			
				[
				0
				,
				𝑡
				]
			

		
	
.
Proof. Let 
	
		
			
				⃗
				𝜉
			

			

				𝑛
			

			
				=
				(
				𝜉
			

			

				1
			

			
				,
				…
				,
				𝜉
			

			

				𝑛
			

			
				)
				∈
				ℝ
			

			

				𝑛
			

		
	
 and let 
	
		
			
				⃗
				𝜉
			

			
				𝑛
				+
				1
			

			
				=
				(
				𝜉
			

			

				1
			

			
				,
				…
				,
				𝜉
			

			

				𝑛
			

			
				,
				𝜉
			

			
				𝑛
				+
				1
			

			

				)
			

		
	
. By the definition of the Paley-Wiener-Zygmund integral it is not difficult to show 
							
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			
				
				
				⃗
				𝜉
				𝑣
				,
			

			
				𝑛
				+
				1
			

			

				
			

			

				𝑏
			

			
				
				=
				
				
				⃗
				𝜉
				𝑣
				,
			

			

				𝑛
			

			

				
			

			

				𝑏
			

			
				
				+
				
				𝑣
				ℎ
				,
				𝑔
			

			
				𝑛
				+
				1
			

			

				
			

			
				
			
			

				
			

			
				
			
			
				𝑏
				
				𝑡
				(
				𝑡
				)
				−
				𝑏
			

			

				𝑛
			

			
				
				
				𝜉
			

			
				𝑛
				+
				1
			

			
				−
				𝜉
			

			

				𝑛
			

			

				
			

		
	

						so that we have for a.e. 
	
		
			
				⃗
				𝜉
			

			

				𝑛
			

			
				=
				(
				𝜉
			

			

				1
			

			
				,
				…
				,
				𝜉
			

			

				𝑛
			

			
				)
				∈
				ℝ
			

			

				𝑛
			

		
	

	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			
				𝐸
				
				𝐹
			

			

				𝑌
			

			
				∣
				𝑌
			

			

				𝑛
			

			
				
				
				⃗
				𝜉
			

			

				𝑛
			

			
				
				=
				
				1
			

			
				
			
			
				
				
				𝑡
				2
				𝜋
				𝑏
				(
				𝑡
				)
				−
				𝑏
			

			

				𝑛
			

			
				
				
				
			

			
				1
				/
				2
			

			
				×
				
			

			

				𝐿
			

			

				2
			

			
				[
				0
				,
				𝑡
				]
			

			
				𝐴
				
				⃗
				𝜉
				𝑣
				,
			

			

				𝑛
			

			
				
				×
				
			

			

				ℝ
			

			
				⎧
				⎪
				⎨
				⎪
				⎩
				𝑖
				
				e
				x
				p
				𝑣
				ℎ
				,
				𝑔
			

			
				𝑛
				+
				1
			

			

				
			

			
				
			
			

				
			

			
				
			
			
				
				𝑡
				𝑏
				(
				𝑡
				)
				−
				𝑏
			

			

				𝑛
			

			
				
				
				𝜉
			

			
				𝑛
				+
				1
			

			
				−
				𝜉
			

			

				𝑛
			

			
				
				−
				
				𝜉
			

			
				𝑛
				+
				1
			

			
				−
				𝜉
			

			

				𝑛
			

			
				−
				
				
				𝑡
				𝑎
				(
				𝑡
				)
				−
				𝑎
			

			

				𝑛
			

			
				
				
				
			

			

				2
			

			
				
			
			
				2
				
				
				𝑡
				𝑏
				(
				𝑡
				)
				−
				𝑏
			

			

				𝑛
			

			
				⎫
				⎪
				⎬
				⎪
				⎭
				
				
				𝑑
				𝜉
			

			
				𝑛
				+
				1
			

			
				=
				
				𝑑
				𝜎
				(
				𝑣
				)
			

			

				𝐿
			

			

				2
			

			
				[
				0
				,
				𝑡
				]
			

			
				𝐴
				
				⃗
				𝜉
				𝑣
				,
			

			

				𝑛
			

			
				
				⎧
				⎪
				⎨
				⎪
				⎩
				𝑖
				
				e
				x
				p
				𝑣
				ℎ
				,
				𝑔
			

			
				𝑛
				+
				1
			

			
				
				𝑡
				
				
				𝑎
				(
				𝑡
				)
				−
				𝑎
			

			

				𝑛
			

			
				
				
			

			
				
			
			

				
			

			
				
			
			
				
				𝑡
				𝑏
				(
				𝑡
				)
				−
				𝑏
			

			

				𝑛
			

			
				
				−
				1
			

			
				
			
			
				2
				
				𝑣
				ℎ
				,
				𝑔
			

			
				𝑛
				+
				1
			

			

				
			

			

				2
			

			
				⎫
				⎪
				⎬
				⎪
				⎭
				𝑑
				𝜎
				(
				𝑣
				)
			

		
	

						by Theorem 25 and the change of variable theorem.
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