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Abstract. 
We present a new refinement of generalized Hölder’s inequality due to Vasić and Pečarić. Moreover, the obtained result is used to improve Beckenbach-type inequality due to Wang.


1. Introduction 
If 
	
		
			

				𝑎
			

			

				𝑘
			

			
				≥
				0
			

		
	
, 
	
		
			

				𝑏
			

			

				𝑘
			

			
				≥
				0
				(
				𝑘
				=
				1
				,
				2
				,
				…
				,
				𝑛
				)
			

		
	
, 
	
		
			
				𝑝
				>
				1
			

		
	
, and 
	
		
			
				(
				1
				/
				𝑝
				)
				+
				(
				1
				/
				𝑞
				)
				=
				1
			

		
	
, then 
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝑎
			

			

				𝑘
			

			

				𝑏
			

			

				𝑘
			

			
				≤
				
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝑎
			

			
				𝑝
				𝑘
			

			

				
			

			
				1
				/
				𝑝
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑘
				=
				1
			

			

				𝑏
			

			
				𝑞
				𝑘
			

			

				
			

			
				1
				/
				𝑞
			

			

				.
			

		
	

					The sign of inequality is reversed for 
	
		
			
				𝑝
				<
				1
			

		
	
, 
	
		
			
				𝑝
				≠
				0
			

		
	
 (for 
	
		
			
				𝑝
				<
				0
			

		
	
; we assume that 
	
		
			

				𝑎
			

			

				𝑘
			

			
				,
				𝑏
			

			

				𝑘
			

			
				>
				0
			

		
	
). Inequality (1) and its reversed version are called Hölder’s inequalities and are important in the study of inequalities and in the field of applied mathematics. The important inequalities have attracted interest of many mathematicians and have been improved as well as generalized in several different directions. For example, Barza et al. [1] presented matriceal versions of Hölder’s inequality. Nikolova and Varošanec [2] obtained some new refinements of the classical Hölder’s inequality by using a convex function. Tian and Hu [3] established a new reversed version of a generalized sharp Hölder’s inequality. For more detailed expositions, the interested reader may consult [1–13] and the references therein. Among various generalizations of (1), Vasić and Pečarić in [14] presented the following interesting theorem.
Theorem A.  Let 
	
		
			

				𝐴
			

			
				𝑖
				𝑗
			

			
				≥
				0
				(
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑛
				,
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑚
				)
			

		
	
. (a)If 
	
		
			

				𝛽
			

			

				𝑗
			

		
	
 are positive numbers, such that 
	
		
			

				∑
			

			
				𝑚
				𝑗
				=
				1
			

			
				(
				1
				/
				𝛽
			

			

				𝑗
			

			
				)
				≥
				1
			

		
	
, then 
										
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			
				𝑚
				𝑖
				=
				1
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝐴
			

			
				𝑖
				𝑗
			

			

				≤
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				𝑗
			

			
				𝑖
				𝑗
			

			

				
			

			
				1
				/
				𝛽
			

			

				𝑗
			

			

				.
			

		
	
(b)If 
	
		
			

				𝛽
			

			

				1
			

			
				>
				0
			

		
	
, 
	
		
			

				𝛽
			

			

				𝑗
			

			
				<
				0
				(
				𝑗
				=
				2
				,
				3
				,
				…
				,
				𝑚
				)
			

		
	
 and if 
	
		
			

				∑
			

			
				𝑚
				𝑗
				=
				1
			

			
				(
				1
				/
				𝛽
			

			

				𝑗
			

			
				)
				≤
				1
			

		
	
, then
										
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			
				𝑚
				𝑖
				=
				1
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝐴
			

			
				𝑖
				𝑗
			

			

				≥
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				𝑗
			

			
				𝑖
				𝑗
			

			

				
			

			
				1
				/
				𝛽
			

			

				𝑗
			

			

				.
			

		
	
(c)If 
	
		
			

				𝛽
			

			

				𝑗
			

			
				<
				0
				(
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑚
				)
			

		
	
, then 
										
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			
				𝑚
				𝑖
				=
				1
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝐴
			

			
				𝑖
				𝑗
			

			

				≥
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				𝑗
			

			
				𝑖
				𝑗
			

			

				
			

			
				1
				/
				𝛽
			

			

				𝑗
			

			

				.
			

		
	


				The main objective of this paper is to build some new refinements of inequalities (2), (3), and (4). Moreover, the obtained results will be applied to improve Beckenbach-type inequality which is due to Wang [15].
2. A New Refinement of Generalized Hölder’s Inequality
In this section, we first prove the following lemma, which plays a crucial role in proving our main results.
Lemma 1.  Let 
	
		
			

				𝑋
			

			
				𝑖
				𝑗
			

			
				>
				0
			

		
	
 and let 
	
		
			
				∑
				1
				−
			

			
				𝑚
				𝑗
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				𝑗
			

			
				𝑖
				𝑗
			

			
				>
				0
				(
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑛
				,
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑚
				)
			

		
	
. (a) If 
	
		
			

				𝛽
			

			

				𝑗
			

			
				>
				0
				(
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑚
				)
			

		
	
 and if                                          
	
		
			

				∑
			

			
				𝑚
				𝑗
				=
				1
			

			
				(
				1
				/
				𝛽
			

			

				𝑗
			

			
				)
				≥
				1
			

		
	
, then
										
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			
				
				1
				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				𝑗
			

			
				𝑖
				𝑗
			

			

				
			

			
				1
				/
				𝛽
			

			

				𝑗
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑚
				𝑖
				=
				1
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑋
			

			
				𝑖
				𝑗
			

			
				≤
				⎡
				⎢
				⎢
				⎣
				
				1
				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				2
			

			
				𝑖
				2
			

			

				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				1
			

			
				𝑖
				1
			

			

				
			

			

				2
			

			
				⎤
				⎥
				⎥
				⎦
			

			
				1
				/
				𝛽
			

			

				∗
			

			

				,
			

		
	
    where 
	
		
			

				𝛽
			

			

				∗
			

			
				=
				m
				a
				x
				{
				𝛽
			

			

				1
			

			
				,
				𝛽
			

			

				2
			

			

				}
			

		
	
.(b)If 
	
		
			

				𝛽
			

			

				1
			

			
				>
				0
			

		
	
, 
	
		
			

				𝛽
			

			

				𝑗
			

			
				>
				0
				(
				𝑗
				=
				2
				,
				3
				,
				…
				,
				𝑚
				)
			

		
	
 and if 
	
		
			

				∑
			

			
				𝑚
				𝑗
				=
				1
			

			
				(
				1
				/
				𝛽
			

			

				𝑗
			

			
				)
				≤
				1
			

		
	
, then
										
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			
				
				1
				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				𝑗
			

			
				𝑖
				𝑗
			

			

				
			

			
				1
				/
				𝛽
			

			

				𝑗
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑚
				𝑖
				=
				1
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑋
			

			
				𝑖
				𝑗
			

			
				≥
				⎡
				⎢
				⎢
				⎣
				
				1
				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				2
			

			
				𝑖
				2
			

			

				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				1
			

			
				𝑖
				1
			

			

				
			

			

				2
			

			
				⎤
				⎥
				⎥
				⎦
			

			
				1
				/
				𝛽
			

			

				2
			

			

				.
			

		
	
(c)If 
	
		
			

				𝛽
			

			

				𝑗
			

			
				<
				0
				(
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑚
				)
			

		
	
, then 
										
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			
				
				1
				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				𝑗
			

			
				𝑖
				𝑗
			

			

				
			

			
				1
				/
				𝛽
			

			

				𝑗
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑚
				𝑖
				=
				1
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑋
			

			
				𝑖
				𝑗
			

			
				≥
				⎡
				⎢
				⎢
				⎣
				
				1
				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				2
			

			
				𝑖
				2
			

			

				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				1
			

			
				𝑖
				1
			

			

				
			

			

				2
			

			
				⎤
				⎥
				⎥
				⎦
			

			
				1
				/
				𝛽
			

			

				2
			

			

				.
			

		
	

Proof. (a) Without loss of generality, we assume that 
	
		
			

				𝛽
			

			

				1
			

			
				≤
				𝛽
			

			

				2
			

		
	
.Case 1 (when 
	
		
			
				0
				<
				𝛽
			

			

				1
			

			
				<
				𝛽
			

			

				2
			

		
	
). It implies that 
	
		
			
				1
				/
				𝛽
			

			

				2
			

			
				>
				0
			

		
	
 and 
	
		
			
				(
				1
				/
				𝛽
			

			

				1
			

			
				)
				−
				(
				1
				/
				𝛽
			

			

				2
			

			
				)
				>
				0
			

		
	
. According to 
	
		
			
				(
				1
				/
				𝛽
			

			

				2
			

			
				)
				+
				(
				1
				/
				𝛽
			

			

				2
			

			
				)
				+
				(
				(
				1
				/
				𝛽
			

			

				1
			

			
				)
				−
				(
				1
				/
				𝛽
			

			

				2
			

			
				)
				)
				+
				(
				1
				/
				𝛽
			

			

				3
			

			
				)
				+
				⋯
				+
				(
				1
				/
				𝛽
			

			

				𝑚
			

			
				)
				≥
				1
			

		
	
, by using inequality (2), we have
							
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				⎡
				⎢
				⎢
				⎣
				
				1
				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				2
			

			
				𝑖
				2
			

			

				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				1
			

			
				𝑖
				1
			

			

				
			

			

				2
			

			
				⎤
				⎥
				⎥
				⎦
			

			
				1
				/
				𝛽
			

			

				2
			

			
				=
				
				
				1
				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				1
			

			
				𝑖
				1
			

			
				
				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				2
			

			
				𝑖
				2
			

			

				
			

			
				1
				/
				𝛽
			

			

				2
			

			
				×
				
				
				1
				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				2
			

			
				𝑖
				2
			

			
				
				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				1
			

			
				𝑖
				1
			

			

				
			

			
				1
				/
				𝛽
			

			

				2
			

			
				×
				
				
				1
				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				1
			

			
				𝑖
				1
			

			
				
				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				1
			

			
				𝑖
				1
			

			

				
			

			
				(
				1
				/
				𝛽
			

			

				1
			

			
				)
				−
				(
				1
				/
				𝛽
			

			

				2
			

			

				)
			

			

				×
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				3
			

			
				
				
				1
				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				𝑗
			

			
				𝑖
				𝑗
			

			
				
				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				𝑗
			

			
				𝑖
				𝑗
			

			

				
			

			
				1
				/
				𝛽
			

			

				𝑗
			

			
				≥
				
				1
				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				1
			

			
				𝑖
				1
			

			

				
			

			
				1
				/
				𝛽
			

			

				2
			

			
				
				1
				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				2
			

			
				𝑖
				2
			

			

				
			

			
				1
				/
				𝛽
			

			

				2
			

			
				×
				
				1
				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				1
			

			
				𝑖
				1
			

			

				
			

			
				(
				1
				/
				𝛽
			

			

				1
			

			
				)
				−
				(
				1
				/
				𝛽
			

			

				2
			

			

				)
			

			

				×
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				3
			

			
				
				1
				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				1
			

			
				𝑖
				1
			

			

				
			

			
				1
				/
				𝛽
			

			

				𝑗
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			
				⎡
				⎢
				⎢
				⎣
				
				𝑋
			

			

				𝛽
			

			

				2
			

			
				𝑖
				2
			

			

				
			

			
				1
				/
				𝛽
			

			

				2
			

			
				
				𝑋
			

			

				𝛽
			

			

				1
			

			
				𝑖
				1
			

			

				
			

			
				1
				/
				𝛽
			

			

				2
			

			
				×
				
				𝑋
			

			

				𝛽
			

			

				1
			

			
				𝑖
				1
			

			

				
			

			
				(
				1
				/
				𝛽
			

			

				1
			

			
				)
				−
				(
				1
				/
				𝛽
			

			

				2
			

			
				)
				𝑚
			

			

				
			

			
				𝑗
				=
				3
			

			
				
				𝑋
			

			

				𝛽
			

			

				𝑗
			

			
				𝑖
				𝑗
			

			

				
			

			
				1
				/
				𝛽
			

			

				𝑗
			

			
				
				=
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				3
			

			
				
				1
				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				𝑗
			

			
				𝑖
				𝑗
			

			

				
			

			
				1
				/
				𝛽
			

			

				𝑗
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑚
				𝑖
				=
				1
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑋
			

			
				𝑖
				𝑗
			

			

				,
			

		
	

						which means that the desired inequality (5) holds for 
	
		
			
				0
				<
				𝛽
			

			

				1
			

			
				<
				𝛽
			

			

				2
			

		
	
.Case 2 (when 
	
		
			

				𝛽
			

			

				1
			

			
				=
				𝛽
			

			

				2
			

			
				>
				0
			

		
	
). By applying inequality (2), we obtain 
							
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				⎡
				⎢
				⎢
				⎣
				
				1
				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				2
			

			
				𝑖
				2
			

			

				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				1
			

			
				𝑖
				1
			

			

				
			

			

				2
			

			
				⎤
				⎥
				⎥
				⎦
			

			
				1
				/
				𝛽
			

			

				2
			

			
				=
				
				
				1
				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				1
			

			
				𝑖
				1
			

			
				
				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				2
			

			
				𝑖
				2
			

			

				
			

			
				1
				/
				𝛽
			

			

				2
			

			
				×
				
				
				1
				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				2
			

			
				𝑖
				2
			

			
				
				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				1
			

			
				𝑖
				1
			

			

				
			

			
				1
				/
				𝛽
			

			

				2
			

			

				×
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				3
			

			
				
				
				1
				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				𝑗
			

			
				𝑖
				𝑗
			

			
				
				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				𝑗
			

			
				𝑖
				𝑗
			

			

				
			

			
				1
				/
				𝛽
			

			

				𝑗
			

			
				≥
				
				1
				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				1
			

			
				𝑖
				1
			

			

				
			

			
				1
				/
				𝛽
			

			

				2
			

			
				
				1
				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				2
			

			
				𝑖
				2
			

			

				
			

			
				1
				/
				𝛽
			

			

				2
			

			

				×
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				3
			

			
				
				1
				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				𝑗
			

			
				𝑖
				𝑗
			

			

				
			

			
				1
				/
				𝛽
			

			

				𝑗
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			
				
				
				𝑋
			

			

				𝛽
			

			

				2
			

			
				𝑖
				2
			

			

				
			

			
				1
				/
				𝛽
			

			

				2
			

			
				
				𝑋
			

			

				𝛽
			

			

				1
			

			
				𝑖
				1
			

			

				
			

			
				1
				/
				𝛽
			

			

				2
			

			

				×
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				3
			

			
				
				𝑋
			

			

				𝛽
			

			

				𝑗
			

			
				𝑖
				𝑗
			

			

				
			

			
				1
				/
				𝛽
			

			

				𝑗
			

			
				
				=
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			
				
				1
				−
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝑋
			

			

				𝛽
			

			

				𝑗
			

			
				𝑖
				𝑗
			

			

				
			

			
				1
				/
				𝛽
			

			

				𝑗
			

			

				+
			

			

				𝑛
			

			

				
			

			
				𝑚
				𝑖
				=
				1
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝑋
			

			
				𝑖
				𝑗
			

			

				.
			

		
	

						That is, inequality (5) is true for 
	
		
			

				𝛽
			

			

				1
			

			
				=
				𝛽
			

			

				2
			

			
				>
				0
			

		
	
.(b) If 
	
		
			

				𝛽
			

			

				1
			

			
				>
				0
			

		
	
, 
	
		
			

				𝛽
			

			

				𝑗
			

			
				<
				0
				(
				𝑗
				=
				2
				,
				3
				,
				…
				,
				𝑚
				)
			

		
	
, then 
	
		
			
				(
				1
				/
				𝛽
			

			

				1
			

			
				)
				−
				(
				1
				/
				𝛽
			

			

				2
			

			
				)
				>
				0
			

		
	
, 
	
		
			
				(
				1
				/
				𝛽
			

			

				𝑗
			

			
				)
				<
				0
				(
				𝑗
				=
				2
				,
				3
				,
				…
				,
				𝑚
				)
			

		
	
. By the same method as in Case 1, we obtain the desired inequality (6).(c) The proof of inequality (7) is similar to the one of inequality (5), and we omit it.The proof of Lemma 1 is completed.
Next, we present new refinements of inequalities (2), (3), and (4).
Theorem 2.  Let 
	
		
			

				𝐴
			

			
				𝑖
				𝑗
			

			
				≥
				0
				(
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑛
				,
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑚
				)
			

		
	
, and let 
	
		
			

				𝑠
			

		
	
 be any given natural number 
	
		
			
				(
				1
				≤
				𝑠
				≤
				𝑛
				)
			

		
	
. (a) If 
	
		
			

				𝛽
			

			

				𝑗
			

			
				>
				0
				(
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑚
				)
			

		
	
 and if 
	
		
			

				∑
			

			
				𝑚
				𝑗
				=
				1
			

			
				(
				1
				/
				𝛽
			

			

				𝑗
			

			
				)
				≥
				1
			

		
	
, then
										
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			
				𝑚
				𝑖
				=
				1
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝐴
			

			
				𝑖
				𝑗
			

			
				≤
				⎡
				⎢
				⎢
				⎣
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				𝑗
			

			
				𝑖
				𝑗
			

			

				
			

			
				1
				/
				𝛽
			

			

				𝑗
			

			
				⎤
				⎥
				⎥
				⎦
				×
				⎡
				⎢
				⎢
				⎣
				
				𝐴
				1
				−
			

			

				𝛽
			

			

				2
			

			
				𝑠
				2
			

			
				
			
			

				∑
			

			
				𝑛
				𝑖
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				2
			

			
				𝑖
				2
			

			
				−
				𝐴
			

			

				𝛽
			

			

				1
			

			
				𝑠
				1
			

			
				
			
			

				∑
			

			
				𝑛
				𝑖
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				1
			

			
				𝑖
				1
			

			

				
			

			

				2
			

			
				⎤
				⎥
				⎥
				⎦
			

			
				1
				/
				𝛽
			

			

				∗
			

			

				,
			

		
	
 where 
	
		
			

				𝛽
			

			

				∗
			

			
				=
				m
				a
				x
				{
				𝛽
			

			

				1
			

			
				,
				𝛽
			

			

				2
			

			

				}
			

		
	
.(b)If 
	
		
			

				𝛽
			

			

				1
			

			
				>
				0
			

		
	
, 
	
		
			

				𝛽
			

			

				𝑗
			

			
				<
				0
				(
				𝑗
				=
				2
				,
				3
				,
				…
				,
				𝑚
				)
			

		
	
 and if        
	
		
			

				∑
			

			
				𝑚
				𝑗
				=
				1
			

			
				(
				1
				/
				𝛽
			

			

				𝑗
			

			
				)
				≤
				1
			

		
	
, then
										
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			
				𝑚
				𝑖
				=
				1
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝐴
			

			
				𝑖
				𝑗
			

			
				≥
				⎡
				⎢
				⎢
				⎣
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				𝑗
			

			
				𝑖
				𝑗
			

			

				
			

			
				1
				/
				𝛽
			

			

				𝑗
			

			
				⎤
				⎥
				⎥
				⎦
				×
				⎡
				⎢
				⎢
				⎣
				
				𝐴
				1
				−
			

			

				𝛽
			

			

				2
			

			
				𝑠
				2
			

			
				
			
			

				∑
			

			
				𝑛
				𝑖
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				2
			

			
				𝑖
				2
			

			
				−
				𝐴
			

			

				𝛽
			

			

				1
			

			
				𝑠
				1
			

			
				
			
			

				∑
			

			
				𝑛
				𝑖
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				1
			

			
				𝑖
				1
			

			

				
			

			

				2
			

			
				⎤
				⎥
				⎥
				⎦
			

			
				1
				/
				𝛽
			

			

				2
			

			

				.
			

		
	
(c)If 
	
		
			

				𝛽
			

			

				𝑗
			

			
				<
				0
				(
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑚
				)
			

		
	
, then 
										
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			
				𝑚
				𝑖
				=
				1
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝐴
			

			
				𝑖
				𝑗
			

			
				≥
				⎡
				⎢
				⎢
				⎣
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				𝑗
			

			
				𝑖
				𝑗
			

			

				
			

			
				1
				/
				𝛽
			

			

				𝑗
			

			
				⎤
				⎥
				⎥
				⎦
				×
				⎡
				⎢
				⎢
				⎣
				
				𝐴
				1
				−
			

			

				𝛽
			

			

				2
			

			
				𝑠
				2
			

			
				
			
			

				∑
			

			
				𝑛
				𝑖
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				2
			

			
				𝑖
				2
			

			
				−
				𝐴
			

			

				𝛽
			

			

				1
			

			
				𝑠
				1
			

			
				
			
			

				∑
			

			
				𝑛
				𝑖
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				1
			

			
				𝑖
				1
			

			

				
			

			

				2
			

			
				⎤
				⎥
				⎥
				⎦
			

			
				1
				/
				𝛽
			

			

				2
			

			

				.
			

		
	

Proof. Consider the following substitution:
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			

				𝑋
			

			
				𝑖
				𝑗
			

			
				=
				𝐴
			

			
				𝑖
				𝑗
			

			
				
			
			
				
				∑
			

			
				𝑛
				𝑘
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				𝑗
			

			
				𝑘
				𝑗
			

			

				
			

			
				1
				/
				𝛽
			

			

				𝑗
			

			
				(
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑛
				,
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑚
				)
				.
			

		
	
It is easy to see that, for any given natural number 
	
		
			
				𝑠
				(
				1
				≤
				𝑠
				≤
				𝑛
				)
			

		
	
, the following inequalities hold:
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			

				𝑋
			

			
				𝑖
				𝑗
			

			
				
				>
				0
				,
				1
				−
			

			
				1
				≤
				𝑖
				≤
				𝑛
				,
				𝑖
				≠
				𝑠
			

			

				𝑋
			

			

				𝛽
			

			

				𝑗
			

			
				𝑖
				𝑗
			

			
				>
				0
				.
			

		
	
Consequently, by using the substitution (13) and inequality (5), we have
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			
				⎡
				⎢
				⎢
				⎣
				
				1
				−
			

			
				1
				≤
				𝑖
				≤
				𝑛
				,
				𝑖
				≠
				𝑠
			

			
				⎛
				⎜
				⎜
				⎝
				𝐴
			

			

				𝛽
			

			

				𝑗
			

			
				𝑖
				𝑗
			

			
				
			
			

				∑
			

			
				𝑛
				𝑘
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				𝑗
			

			
				𝑘
				𝑗
			

			
				⎞
				⎟
				⎟
				⎠
				⎤
				⎥
				⎥
				⎦
			

			
				1
				/
				𝛽
			

			

				𝑗
			

			
				+
				
			

			
				1
				≤
				𝑖
				≤
				𝑛
				,
				𝑖
				≠
				𝑠
			

			
				⎛
				⎜
				⎜
				⎜
				⎝
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝐴
			

			
				𝑖
				𝑗
			

			
				
			
			
				
				∑
			

			
				𝑛
				𝑘
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				𝑗
			

			
				𝑘
				𝑗
			

			

				
			

			
				1
				/
				𝛽
			

			

				𝑗
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				≤
				⎧
				⎪
				⎨
				⎪
				⎩
				
				
				1
				−
			

			
				1
				≤
				𝑖
				≤
				𝑛
				,
				𝑖
				≠
				𝑠
			

			
				
				𝐴
			

			

				𝛽
			

			

				2
			

			
				𝑖
				2
			

			
				
			
			

				∑
			

			
				𝑛
				𝑘
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				2
			

			
				𝑘
				2
			

			
				
				−
				
			

			
				1
				≤
				𝑖
				≤
				𝑛
				,
				𝑖
				≠
				𝑠
			

			
				
				𝐴
			

			

				𝛽
			

			

				1
			

			
				𝑖
				1
			

			
				
			
			

				∑
			

			
				𝑛
				𝑘
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				2
			

			
				𝑘
				2
			

			
				
				
			

			

				2
			

			
				⎫
				⎪
				⎬
				⎪
				⎭
			

			
				1
				/
				𝛽
			

			

				∗
			

		
	

						for 
	
		
			

				𝛽
			

			

				𝑗
			

			
				>
				0
				(
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑚
				)
			

		
	
, 
	
		
			

				∑
			

			
				𝑚
				𝑗
				=
				1
			

			
				(
				1
				/
				𝛽
			

			

				𝑗
			

			
				)
				≥
				1
			

		
	
, and thus we have
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			

				∏
			

			
				𝑚
				𝑗
				=
				1
			

			

				𝐴
			

			
				𝑠
				𝑗
			

			
				
			
			

				∏
			

			
				𝑚
				𝑗
				=
				1
			

			
				
				∑
			

			
				𝑛
				𝑘
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				𝑗
			

			
				𝑘
				𝑗
			

			

				
			

			
				1
				/
				𝛽
			

			

				𝑗
			

			
				+
				∑
			

			
				1
				≤
				𝑖
				≤
				𝑛
				,
				𝑖
				≠
				𝑠
			

			

				∏
			

			
				𝑚
				𝑗
				=
				1
			

			

				𝐴
			

			
				𝑖
				𝑗
			

			
				
			
			

				∏
			

			
				𝑚
				𝑗
				=
				1
			

			
				
				∑
			

			
				𝑛
				𝑘
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				𝑗
			

			
				𝑘
				𝑗
			

			

				
			

			
				1
				/
				𝛽
			

			

				𝑗
			

			
				≤
				⎡
				⎢
				⎢
				⎣
				
				𝐴
				1
				−
			

			

				𝛽
			

			

				2
			

			
				𝑠
				2
			

			
				
			
			

				∑
			

			
				𝑛
				𝑘
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				2
			

			
				𝑘
				2
			

			
				−
				𝐴
			

			

				𝛽
			

			

				1
			

			
				𝑠
				1
			

			
				
			
			

				∑
			

			
				𝑛
				𝑘
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				1
			

			
				𝑘
				1
			

			

				
			

			

				2
			

			
				⎤
				⎥
				⎥
				⎦
			

			
				1
				/
				𝛽
			

			

				∗
			

			

				,
			

		
	

						that is, 
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			

				∑
			

			
				𝑛
				𝑖
				=
				1
			

			
				
				∏
			

			
				𝑚
				𝑗
				=
				1
			

			

				𝐴
			

			
				𝑖
				𝑗
			

			

				
			

			
				
			
			

				∏
			

			
				𝑚
				𝑗
				=
				1
			

			
				
				∑
			

			
				𝑛
				𝑘
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				𝑗
			

			
				𝑘
				𝑗
			

			

				
			

			
				1
				/
				𝛽
			

			

				𝑗
			

			
				≤
				⎡
				⎢
				⎢
				⎣
				
				𝐴
				1
				−
			

			

				𝛽
			

			

				2
			

			
				𝑠
				2
			

			
				
			
			

				∑
			

			
				𝑛
				𝑘
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				2
			

			
				𝑘
				2
			

			
				−
				𝐴
			

			

				𝛽
			

			

				1
			

			
				𝑠
				1
			

			
				
			
			

				∑
			

			
				𝑛
				𝑘
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				1
			

			
				𝑘
				1
			

			

				
			

			

				2
			

			
				⎤
				⎥
				⎥
				⎦
			

			
				1
				/
				𝛽
			

			

				∗
			

			

				.
			

		
	

						So, we have the desired inequality (10). The proof of inequalities (11) and (12) is similar to the one of inequality (10), and we omit it. The proof of Theorem 2 is completed.
Putting 
	
		
			
				𝑠
				=
				1
			

		
	
 in (10), (11), and (12), respectively, we obtain the following corollary.
Corollary 3.   Let 
	
		
			

				𝐴
			

			
				𝑖
				𝑗
			

			
				≥
				0
				(
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑛
				,
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑚
				)
			

		
	
. (a)If 
	
		
			

				𝛽
			

			

				𝑗
			

			
				>
				0
				(
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑚
				)
			

		
	
 and if 
	
		
			

				∑
			

			
				𝑚
				𝑗
				=
				1
			

			
				(
				1
				/
				𝛽
			

			

				𝑗
			

			
				)
				≥
				1
			

		
	
, then
										
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			
				𝑚
				𝑖
				=
				1
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝐴
			

			
				𝑖
				𝑗
			

			
				≤
				⎡
				⎢
				⎢
				⎣
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				𝑗
			

			
				𝑖
				𝑗
			

			

				
			

			
				1
				/
				𝛽
			

			

				𝑗
			

			
				⎤
				⎥
				⎥
				⎦
				×
				⎡
				⎢
				⎢
				⎣
				
				𝐴
				1
				−
			

			

				𝛽
			

			

				2
			

			
				1
				2
			

			
				
			
			

				∑
			

			
				𝑛
				𝑖
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				2
			

			
				𝑖
				2
			

			
				−
				𝐴
			

			

				𝛽
			

			

				1
			

			
				1
				1
			

			
				
			
			

				∑
			

			
				𝑛
				𝑖
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				1
			

			
				𝑖
				1
			

			

				
			

			

				2
			

			
				⎤
				⎥
				⎥
				⎦
			

			
				1
				/
				𝛽
			

			

				∗
			

			

				,
			

		
	

									 where  
	
		
			

				𝛽
			

			

				∗
			

			
				=
				m
				a
				x
				{
				𝛽
			

			

				1
			

			
				,
				𝛽
			

			

				2
			

			

				}
			

		
	
.(b)If 
	
		
			

				𝛽
			

			

				1
			

			
				>
				0
				,
				𝛽
			

			

				𝑗
			

			
				<
				0
				(
				𝑗
				=
				2
				,
				3
				,
				…
				,
				𝑚
				)
			

		
	
 and if 
	
		
			

				∑
			

			
				𝑚
				𝑗
				=
				1
			

			
				(
				1
				/
				𝛽
			

			

				𝑗
			

			
				)
				≤
				1
			

		
	
, then
										
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			
				𝑚
				𝑖
				=
				1
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝐴
			

			
				𝑖
				𝑗
			

			
				≥
				⎡
				⎢
				⎢
				⎣
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				𝑗
			

			
				𝑖
				𝑗
			

			

				
			

			
				1
				/
				𝛽
			

			

				𝑗
			

			
				⎤
				⎥
				⎥
				⎦
				×
				⎡
				⎢
				⎢
				⎣
				
				𝐴
				1
				−
			

			

				𝛽
			

			

				2
			

			
				1
				2
			

			
				
			
			

				∑
			

			
				𝑛
				𝑖
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				2
			

			
				𝑖
				2
			

			
				−
				𝐴
			

			

				𝛽
			

			

				1
			

			
				1
				1
			

			
				
			
			

				∑
			

			
				𝑛
				𝑖
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				1
			

			
				𝑖
				1
			

			

				
			

			

				2
			

			
				⎤
				⎥
				⎥
				⎦
			

			
				1
				/
				𝛽
			

			

				2
			

			

				.
			

		
	
(c)If 
	
		
			

				𝛽
			

			

				𝑗
			

			
				<
				0
				(
				𝑗
				=
				1
				,
				2
				,
				…
				,
				𝑚
				)
			

		
	
, then
										
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				𝑛
			

			

				
			

			
				𝑚
				𝑖
				=
				1
			

			

				
			

			
				𝑗
				=
				1
			

			

				𝐴
			

			
				𝑖
				𝑗
			

			
				≥
				⎡
				⎢
				⎢
				⎣
			

			

				𝑚
			

			

				
			

			
				𝑗
				=
				1
			

			

				
			

			

				𝑛
			

			

				
			

			
				𝑖
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				𝑗
			

			
				𝑖
				𝑗
			

			

				
			

			
				1
				/
				𝛽
			

			

				𝑗
			

			
				⎤
				⎥
				⎥
				⎦
				×
				⎡
				⎢
				⎢
				⎣
				
				𝐴
				1
				−
			

			

				𝛽
			

			

				2
			

			
				1
				2
			

			
				
			
			

				∑
			

			
				𝑛
				𝑖
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				2
			

			
				𝑖
				2
			

			
				−
				𝐴
			

			

				𝛽
			

			

				1
			

			
				1
				1
			

			
				
			
			

				∑
			

			
				𝑛
				𝑖
				=
				1
			

			

				𝐴
			

			

				𝛽
			

			

				1
			

			
				𝑖
				1
			

			

				
			

			

				2
			

			
				⎤
				⎥
				⎥
				⎦
			

			
				1
				/
				𝛽
			

			

				2
			

			

				.
			

		
	

3. Application
In this section, we present a refinement of Beckenbach-type inequality by using Corollary 3. The classical Beckenbach inequality was proved by Beckenbach in [5]. Since Beckenbach discovered this inequality, it has been discussed by many researchers, who either improved it using various techniques or generalized it in many different ways. The interested reader may refer to [7, 16] and references therein. In 1983, Wang [15] established the following Beckenbach-type inequality.
Theorem B.  Let 
	
		
			
				𝑓
				(
				𝑥
				)
			

		
	
 and 
	
		
			
				𝑔
				(
				𝑥
				)
			

		
	
 be positive integrable functions defined on 
	
		
			
				[
				0
				,
				𝑇
				]
			

		
	
, and let 
	
		
			
				(
				1
				/
				𝑝
				)
				+
				(
				1
				/
				𝑞
				)
				=
				1
			

		
	
. If 
	
		
			
				𝑞
				≥
				𝑝
				>
				1
			

		
	
,  then, for any positive numbers 
	
		
			

				𝑎
			

		
	
, 
	
		
			

				𝑏
			

		
	
, and 
	
		
			

				𝑐
			

		
	
, the inequality 
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				
				∫
				𝑎
				+
				𝑐
			

			
				𝑇
				0
			

			

				ℎ
			

			

				𝑝
			

			
				
				(
				𝑥
				)
				𝑑
				𝑥
			

			
				1
				/
				𝑝
			

			
				
			
			
				∫
				𝑏
				+
				𝑐
			

			
				𝑇
				0
			

			
				≤
				
				∫
				ℎ
				(
				𝑥
				)
				𝑔
				(
				𝑥
				)
				𝑑
				𝑥
				𝑎
				+
				𝑐
			

			
				𝑇
				0
			

			

				𝑓
			

			

				𝑝
			

			
				
				(
				𝑥
				)
				𝑑
				𝑥
			

			
				1
				/
				𝑝
			

			
				
			
			
				∫
				𝑏
				+
				𝑐
			

			
				𝑇
				0
			

			
				𝑓
				(
				𝑥
				)
				𝑔
				(
				𝑥
				)
				𝑑
				𝑥
			

		
	

						holds, where 
	
		
			
				ℎ
				(
				𝑥
				)
				=
				(
				(
				𝑎
				𝑔
				(
				𝑥
				)
				)
				/
				𝑏
				)
			

			
				𝑞
				/
				𝑝
			

		
	
. The sign of the inequality in (21) is reversed if 
	
		
			
				0
				<
				𝑝
				<
				1
			

		
	
.
Theorem 4.  Let 
	
		
			
				𝑓
				(
				𝑥
				)
			

		
	
 and 
	
		
			
				𝑔
				(
				𝑥
				)
			

		
	
 be positive integrable functions defined on 
	
		
			
				[
				0
				,
				𝑇
				]
			

		
	
, and let 
	
		
			
				(
				1
				/
				𝑝
				)
				+
				(
				1
				/
				𝑞
				)
				=
				1
			

		
	
.  If 
	
		
			
				𝑞
				≥
				𝑝
				>
				1
			

		
	
,  then, for any positive numbers 
	
		
			

				𝑎
			

		
	
, 
	
		
			

				𝑏
			

		
	
, and 
	
		
			

				𝑐
			

		
	
, the inequality
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				
				∫
				𝑎
				+
				𝑐
			

			
				𝑇
				0
			

			

				ℎ
			

			

				𝑝
			

			
				
				(
				𝑥
				)
				𝑑
				𝑥
			

			
				1
				/
				𝑝
			

			
				
			
			
				∫
				𝑏
				+
				𝑐
			

			
				𝑇
				0
			

			
				≤
				
				∫
				ℎ
				(
				𝑥
				)
				𝑔
				(
				𝑥
				)
				𝑑
				𝑥
				𝑎
				+
				𝑐
			

			
				𝑇
				0
			

			

				𝑓
			

			

				𝑝
			

			
				
				(
				𝑥
				)
				𝑑
				𝑥
			

			
				1
				/
				𝑝
			

			
				
			
			
				∫
				𝑏
				+
				𝑐
			

			
				𝑇
				0
			

			
				×
				
				
				𝑎
				𝑓
				(
				𝑥
				)
				𝑔
				(
				𝑥
				)
				𝑑
				𝑥
				1
				−
			

			
				−
				(
				𝑞
				/
				𝑝
				)
			

			

				𝑏
			

			

				𝑞
			

			
				
			
			

				𝑎
			

			
				−
				(
				𝑞
				/
				𝑝
				)
			

			

				𝑏
			

			

				𝑞
			

			
				∫
				+
				𝑐
			

			
				𝑇
				0
			

			

				𝑔
			

			

				𝑞
			

			
				−
				𝑎
				(
				𝑥
				)
				𝑑
				𝑥
			

			
				
			
			
				∫
				𝑎
				+
				𝑐
			

			
				𝑇
				0
			

			

				𝑓
			

			

				𝑝
			

			
				
				(
				𝑥
				)
				𝑑
				𝑥
			

			

				2
			

			
				⎤
				⎥
				⎥
				⎦
			

			
				1
				/
				𝑞
			

		
	

						holds, where 
	
		
			
				ℎ
				(
				𝑥
				)
				=
				(
				(
				𝑎
				𝑔
				(
				𝑥
				)
				)
				/
				𝑏
				)
			

			
				𝑞
				/
				𝑝
			

		
	
. The sign of the inequality in (22) is reversed if 
	
		
			
				0
				<
				𝑝
				<
				1
			

		
	
.
Proof. After some simple calculations, we have 
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				
				∫
				𝑎
				+
				𝑐
			

			
				𝑇
				0
			

			

				ℎ
			

			

				𝑝
			

			
				
				(
				𝑥
				)
				𝑑
				𝑥
			

			
				1
				/
				𝑝
			

			
				
			
			
				∫
				𝑏
				+
				𝑐
			

			
				𝑇
				0
			

			
				=
				
				𝑎
				ℎ
				(
				𝑥
				)
				𝑔
				(
				𝑥
				)
				𝑑
				𝑥
			

			
				−
				(
				𝑞
				/
				𝑝
				)
			

			

				𝑏
			

			

				𝑞
			

			
				
				+
				𝑐
			

			
				𝑇
				0
			

			

				𝑔
			

			

				𝑞
			

			
				
				(
				𝑥
				)
				𝑑
				𝑥
			

			
				−
				1
				/
				𝑞
			

			

				.
			

		
	

						On the other hand, putting 
	
		
			

				𝛽
			

			

				1
			

			
				=
				𝑝
			

		
	
,     
	
		
			

				𝛽
			

			

				2
			

			
				=
				𝑞
			

		
	
,    
	
		
			
				𝑚
				=
				2
			

		
	
 in (18), from the integral form of Hölder’s inequality (1) and Corollary 3, we obtain 
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				
				𝑏
				+
				𝑐
			

			
				𝑇
				0
			

			
				
				
				𝑓
				(
				𝑥
				)
				𝑔
				(
				𝑥
				)
				𝑑
				𝑥
				≤
				𝑏
				+
				𝑐
			

			
				𝑇
				0
			

			

				𝑓
			

			

				𝑝
			

			
				(
				
				𝑥
				)
				𝑑
				𝑥
			

			
				1
				/
				𝑝
			

			
				
				
			

			
				𝑇
				0
			

			

				𝑔
			

			

				𝑞
			

			
				(
				
				𝑥
				)
				𝑑
				𝑥
			

			
				1
				/
				𝑞
			

			
				=
				𝑎
			

			
				1
				/
				𝑝
			

			
				
				𝑏
				𝑎
			

			
				−
				1
				/
				𝑝
			

			
				
				+
				
				𝑐
				
			

			
				𝑇
				0
			

			

				𝑓
			

			

				𝑝
			

			
				(
				
				𝑥
				)
				𝑑
				𝑥
			

			
				1
				/
				𝑝
			

			
				×
				
				𝑐
				
			

			
				𝑇
				0
			

			

				𝑔
			

			

				𝑞
			

			
				(
				
				𝑥
				)
				𝑑
				𝑥
			

			
				1
				/
				𝑞
			

			
				≤
				
				
				𝑎
				+
				𝑐
			

			
				𝑇
				0
			

			

				𝑓
			

			

				𝑝
			

			
				(
				
				𝑥
				)
				𝑑
				𝑥
			

			
				1
				/
				𝑝
			

			
				×
				
				𝑎
			

			
				−
				(
				𝑞
				/
				𝑝
				)
			

			

				𝑏
			

			

				𝑞
			

			
				
				+
				𝑐
			

			
				𝑇
				0
			

			

				𝑔
			

			

				𝑞
			

			
				(
				
				𝑥
				)
				𝑑
				𝑥
			

			
				1
				/
				𝑞
			

			
				×
				
				
				𝑎
				1
				−
			

			
				−
				(
				𝑞
				/
				𝑝
				)
			

			

				𝑏
			

			

				𝑞
			

			
				
			
			

				𝑎
			

			
				−
				(
				𝑞
				/
				𝑝
				)
			

			

				𝑏
			

			

				𝑞
			

			
				∫
				+
				𝑐
			

			
				𝑇
				0
			

			

				𝑔
			

			

				𝑞
			

			
				−
				𝑎
				(
				𝑥
				)
				𝑑
				𝑥
			

			
				
			
			
				∫
				𝑎
				+
				𝑐
			

			
				𝑇
				0
			

			

				𝑓
			

			

				𝑝
			

			
				
				(
				𝑥
				)
				𝑑
				𝑥
			

			

				2
			

			
				⎤
				⎥
				⎥
				⎦
			

			
				1
				/
				𝑞
			

			

				,
			

		
	

						that is, 
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				
				𝑎
			

			
				−
				(
				𝑞
				/
				𝑝
				)
			

			

				𝑏
			

			

				𝑞
			

			
				
				+
				𝑐
			

			
				𝑇
				0
			

			

				𝑔
			

			

				𝑞
			

			
				
				(
				𝑥
				)
				𝑑
				𝑥
			

			
				−
				1
				/
				𝑞
			

			
				≤
				
				∫
				𝑎
				+
				𝑐
			

			
				𝑇
				0
			

			

				𝑓
			

			

				𝑝
			

			
				
				(
				𝑥
				)
				𝑑
				𝑥
			

			
				1
				/
				𝑝
			

			
				
			
			
				∫
				𝑏
				+
				𝑐
			

			
				𝑇
				0
			

			
				×
				
				
				𝑎
				𝑓
				(
				𝑥
				)
				𝑔
				(
				𝑥
				)
				𝑑
				𝑥
				1
				−
			

			
				−
				(
				𝑞
				/
				𝑝
				)
			

			

				𝑏
			

			

				𝑞
			

			
				
			
			

				𝑎
			

			
				−
				(
				𝑞
				/
				𝑝
				)
			

			

				𝑏
			

			

				𝑞
			

			
				∫
				+
				𝑐
			

			
				𝑇
				0
			

			

				𝑔
			

			

				𝑞
			

			
				−
				𝑎
				(
				𝑥
				)
				𝑑
				𝑥
			

			
				
			
			
				∫
				𝑎
				+
				𝑐
			

			
				𝑇
				0
			

			

				𝑓
			

			

				𝑝
			

			
				(
				
				𝑥
				)
				𝑑
				𝑥
			

			

				2
			

			
				⎤
				⎥
				⎥
				⎦
			

			
				1
				/
				𝑞
			

			

				.
			

		
	

						Combining inequalities (23) and (25) yields inequality (22). In a similar way, we can prove that the reversed version of inequality (22) is true. Thus, the proof of Theorem 4 is complete. 
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