Research Article

Initial Boundary Value Problem of the General Three-Component Camassa-Holm Shallow Water System on an Interval

Lixin Tian, Qingwen Yuan, and Lizhen Wang

Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China

Correspondence should be addressed to Qingwen Yuan; yuanqingwen1987@126.com

Received 19 July 2012; Accepted 6 November 2012

Academic Editor: Feliz Minhos

Copyright © 2013 Lixin Tian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study the initial boundary value problem of the general three-component Camassa-Holm shallow water system on an interval subject to inhomogeneous boundary conditions. First we prove a local in time existence theorem and present a weak-strong uniqueness result. Then, we establish a asymptotic stabilization of this system by a boundary feedback. Finally, we obtain a result of blow-up solution with certain initial data and boundary profiles.

1. Introduction

It is well known that the Camassa-Holm equation has attracted much attention in the past decade. It is a nonlinear dispersive wave equation that models the propagation of unidirectional irrotational shallow water waves over a flat bed, as well as water waves moving over an underlying shear flow. It was first introduced by Fokas and Fuchssteiner as a bi-Hamiltonian model. Cauchy problem and initial boundary value problem for Camassa-Holm equation have been studied extensively in a number of papers (see [1–15] and the references within).

Fu and Qu in [16] proposed a coupled Camassa-Holm equation,

\begin{align*}
 m_t &= 2m u_x + m u + (mv)_x + nu_x + lw_x, \\
 n_t &= 2n v_x + n v + (nu)_x + mu_x + lw_x, \\
 l_t &= 2l w_x + l w + (lu + lv)_x + mu_x + nw_x,
\end{align*}

(1)

with \(m = u - u_{xx}, n = v - v_{xx} \), which has peakon solitons in the form of a superposition of multipeakons and may as well be integrable. They investigated the local well-posedness and blow-up solutions of system (1) by means of Kato’s semigroup approach to nonlinear hyperbolic evolution equation and obtained a criterion and condition on the initial data guaranteeing the development of singularities in finite time for strong solutions of system (1) by energy estimates. Recently the initial boundary value problem for the system (1) has been established in [17]; moreover, the local well-posedness and blow-up phenomena for the coupled Camassa-Holm equation were also established in [16, 18–32]. In [33], Tian and Xu obtained the compact and bounded absorbing set and the existence of the global attractor for viscous system (1) with the periodic boundary condition in by uniform prior estimate.

Recently, Fu and Qu in [34] introduced a general three-component Camassa-Holm equation as follows:

\begin{align*}
 m_t &= 2m u_x + m u + (mv + mw)_x + nw_x + lw_x, \\
 n_t &= 2n v_x + n v + (nu + nw)_x + mu_x + lw_x, \\
 l_t &= 2l w_x + l w + (lu + lv)_x + mu_x + nw_x,
\end{align*}

(2)

where \(m = u - u_{xx}, n = v - v_{xx}, \) and \(l = w - w_{xx} \). Equation (2) also has peakon solitons in the form of a superposition of multipeakons. Such system also conserves the \(H^1 \)-norm conservation law. Moreover, the well-posedness and blow-up phenomena for system (2) with peakons have been established in [35]. To our knowledge, the initial boundary value problem of (2) has not been studied yet. The first aim
of this paper is to consider an initial boundary value problem of the following

\[m_t = 2m u_x + m_x u + (mv + mw)_x + nw_x + lw_x, \]
\[n_t = 2n w_x + n v_x + (nw + n)_x + mu_x + lw_x, \]
\[l_t = 2lw_x + l w + (lu + lv)_x + mu_x + nw_x, \]
\[m(0, \cdot) = m_0, \quad n(0, \cdot) = n_0, \quad l(0, \cdot) = l_0, \]
\[m(\cdot, 0) \mid_{\Gamma_1} = m_t, \quad n(\cdot, 0) \mid_{\Gamma_1} = n_t, \quad l(\cdot, 0) \mid_{\Gamma_1} = l_t, \]
where \(\Gamma_1 = \{ t \in [0, T] \mid (u + v + w)(t, x) < 0 \}, \Gamma_2 = \{ t \in [0, T] \mid (u + v + w)(t, x) > 0 \} \).

Then, we will consider the asymptotic stabilization of (3) by means of a stationary feedback law acting on the inhomogeneous boundary condition. Following the step in [11], we convert the initial boundary value problem of (3) on the interval into an ODE system and two PDE systems. Then, we can consider the system (3) easily. Consequently, we obtain a local in time existence theorem, a weak-strong uniqueness result, asymptotic stabilization result on the interval, and a result of blow-up solution, respectively.

Our paper is organized as follows. In Section 2, we will consider an initial boundary value problem and the uniqueness of the solution to (3). By using the feedback law enjoyed by (3), the asymptotic stabilization on an interval is considered in Section 3. Finally, in Section 4, a result of blow-up solution with certain initial data and boundary profiles will be established.

First, we begin with a general remark that will be used many times later.

Remark 1. Let \(T \) be a positive number and \(\Omega_T = [0, T] \times [0, 1] \). Changing \(\Gamma(t, x) = \min(u(t, 1 - x), v(t, 1 - x), w(t, 1 - x)) \) in \(u(t, 1 - x), v(t, 1 - x), w(t, 1 - x) \), and \(t \in T - t \), and it will be more convenient for us to analyze the system, if we define the following sets

\[P_1 = \{ t \in [0, T] \mid (u + v + w)(t, 0) = 0 \}, \]
\[P_2 = \{ t \in [0, T] \mid (u + v + w)(t, 1) = 0 \}. \]

Let \(\Lambda = (1 - \alpha^2)^{1/2} \), then the operator \(\Lambda^{-2} \) can be expressed as

\[\Lambda^{-2} f(x) = G * f(x) = \frac{1}{2} \int_0^1 e^{-|x-y|} f(y) dy, \]
where \(G = (1 / 2) e^{-\alpha^2 y} \). Now, let \(A_i = \Lambda^{-2} B_i = G * B_i, i = 1, 2, 3 \), where \(B_i \) is an auxiliary function which lifts the boundary values \(m_t, m_n, n_t, n_n, l_t \) defined by

\[B_i(t, x) = 0, \quad (t, x) \in [0, T] \times [0, 1], \]
\[G * B_i(t, 0) = v_i(t), \quad G * B_i(t, 1) = v_i(t), \quad \forall t \in [0, T], \]
where \(i = 1, 2, 3 \).

Setting \(u = p + G * B_1, v = q + G * B_2, \) and \(w = r + G * B_3 \), we can further rewrite the system (3) as

\[p = G * m, \quad q = G * n, \quad r = G * l, \]
\[p(t, 0) = p(t, 1) = 0, \quad q(t, 0) = q(t, 1) = 0, \]
\[r(t, 0) = r(t, 1) = 0, \]
\[m_t = (p + G * B_1 + v + w) m_x, \]
\[n_t = (q + G * B_2 + u + w) n_x, \]
\[l_t = (r + G * B_3 + u + w) l_x, \]
where functions \(m_t, m_n, n_t, n_n, l_t \) in \(C^0([0, 1], R) \) are the boundary values and \(m_0, n_0, l_0 \) in \(L^\infty(0, 1) \) are the initial datum.

Lemma 2. We have \(A_i = G * B_i \in C^0([0, T]; C^{\infty}(0, 1)) \in C^0([0, T]; C^\infty([0, 1]) \) and \(p, \tilde{p}, \tilde{r} \in L^\infty((0, T), C^1((0, 1))) \cap \) \(\text{Lip}(0, T), H^1_f([0, 1]), i = 1, 2, 3, m, n, l \in L^\infty(\Omega_T) \cap \) \(\text{Lip}(0, T), H^{-1}(0, 1)) \). Moreover, we also have the bounds

\[\| A_i \|_{L^\infty((0, T); C^{\infty}(0, 1))} \leq \frac{\cosh(1)}{\sinh(1)} \left(\| v_i \|_{L^\infty(0, T)} + \| v_i \|_{L^\infty(0, T)} \right), \]
\[\| \tilde{p} \|_{L^\infty((0, T); C^{\infty}(0, 1))} \leq 2 \left(1 + \cosh(1) \right) \| m \|_{L^\infty(\Omega_T)}, \]
\[\| \tilde{r} \|_{L^\infty((0, T); H^{-1}(0, 1))} \leq 2 \left(1 + \cosh(1) \right) \| n \|_{L^\infty(\Omega_T)}, \]
\[\| \tilde{p} \|_{L^\infty((0, T); H^{-1}(0, 1))} \leq 2 \left(1 + \cosh(1) \right) \| m \|_{L^\infty(\Omega_T)}, \]
\[\| \tilde{r} \|_{L^\infty((0, T); H^{-1}(0, 1))} \leq 2 \left(1 + \cosh(1) \right) \| n \|_{L^\infty(\Omega_T)}.
Proof. \(A_i, \bar{p}, \bar{q}, \bar{r}, (i = 1, 2, 3) \) can be expressed, respectively, as

\[
A_i(t, x) = G * B_i(t, x)
= \frac{1}{\sinh(1)} \left(\sinh(x) \psi_i(t) + \sinh(1 - x) \psi_i(t) \right),
\]

\((i = 1, 2, 3) \),

\[
\bar{p}(t, x) = -\int_0^x \sinh(x - \bar{x}) m(t, \bar{x}) d\bar{x}
+ \frac{\sinh(x)}{\sinh(1)} \int_0^1 \sinh(1 - \bar{x}) m(t, \bar{x}) d\bar{x},
\]

\[
\bar{q}(t, x) = -\int_0^x \sinh(x - \bar{x}) n(t, \bar{x}) d\bar{x}
+ \frac{\sinh(x)}{\sinh(1)} \int_0^1 \sinh(1 - \bar{x}) n(t, \bar{x}) d\bar{x},
\]

\[
\bar{r}(t, x) = -\int_0^x \sinh(x - \bar{x}) l(t, \bar{x}) d\bar{x}
+ \frac{\sinh(x)}{\sinh(1)} \int_0^1 \sinh(1 - \bar{x}) l(t, \bar{x}) d\bar{x}.
\]

Estimates (9) and (10) can be easily obtained from the above expressions.

\[\square\]

2. Initial Boundary Value Problem

First, we define what we mean by a weak solution to (8). Our test functions will be in the space:

\[
\text{Adm}(\Omega_T) = \{ \varphi \in C^1(\Omega_T) \mid \varphi(t, x) = 0 \text{ on } [0, T] \setminus I_f, \varphi|_{\Gamma} \}
\times \{ 0 \} \cup \{ 0, 1 \} \cup \{ 0 \} \cup \{ T \} \cup \{ 0, 1 \} \}.
\]

Definition 3. When \((p, q, r) \in L^\infty((0, T); \text{Lip}[0, 1]) \times L^\infty((0, T); \text{Lip}[0, 1]) \times L^\infty((0, T); \text{Lip}[0, 1]), \) the function \((m, n, l) \in L^\infty(\Omega_T) \times L^\infty(\Omega_T) \times L^\infty(\Omega_T)\) is the weak solution to (8) if for all \(\varphi \in \text{Adm}(\Omega_T) \):

\[
\int_{\Omega_T} m \varphi_x - (u + v + w) \varphi_x + (p_x + \partial_x G * B_i) \varphi dt dx
= -\int_{\Omega_T} (mu_x + lw_x) \varphi(t, x) dt dx
+ \int_0^1 n_0(x) \varphi(0, x) dx
+ \int_0^T ((u + v + w)(t, 0) \varphi(t, 0) n(t, 0)
- (u + v + w)(t, 1) \varphi(t, 1) n(t, 1)) dt,
\]

\[
\int_{\Omega_T} n \varphi_t - (u + v + w) \varphi_x + (q_x + \partial_x G * B_2) \varphi dt dx
= -\int_{\Omega_T} (mu_x + nw_x) \varphi(t, x) dt dx
+ \int_0^1 l_0(x) \varphi(0, x) dx
+ \int_0^T ((u + v + w)(t, 0) \varphi(t, 0) l(t, 0)
- (u + v + w)(t, 1) \varphi(t, 1) l(t, 1)) dt.
\]

It is obvious that \(C^1_p(\Omega_T) \subset \text{Adm}(\Omega_T); \) therefore, a weak solution to system (8) is also a solution to (8) in the distribution sense. And it is clear that a regular weak solution is a classical solution.

Definition 4. For \((t, x) \in \Omega_T, \) we consider \(\omega(-, t, x) \) the maximal solution satisfying

\[
\omega_t = -(u + v + w)(t, x),
\]

\[
\omega(0, x) = x.
\]

We consider that \(\omega \) is the flow of \((u(t, x), v(t, x), \omega(t, x))\). For \((t, x) \in \Omega_T, \) \(\omega(t, x) \) is defined on a set \([e(t, x), h(t, x)]. \) Here \(e(t, x) \) is basically the entrance time in \(\Omega_T \) of the characteristic curve going through \((t, x).\)

Remark 5. Obviously \(e(t, x) > 0 \) implies that \(\omega(e(t, x), t, x) \in [0, 1]. \)

In the following, we consider a partition of \(\Omega_T, \) which allows us to distinguish the different influence zones in \(\Omega_T. \)

Definition 6. Let \(P = \{(t, x) \in \Omega_T \mid \exists s \in [e(t, x), h(t, x)] \text{ such that } \omega \in [0, 1] \text{ and } (u + v + w)(s, \omega(s, t, x)) = 0 \mid \{ (s, \omega(s, 0, 0)) \mid \text{ for all } s \in [0, T] \cup (s, \omega(s, 0, 1)) \mid \text{ for all } s \in [0, T] \}
\]

\[
I = \{(t, x) \in \Omega_T \setminus P \mid e(t, x) = 0\},
\]

\[
L = \{(t, x) \in \Omega_T \setminus P \mid \omega(e(t, x), t, x) = 0\},
\]

\[
R = \{(t, x) \in \Omega_T \setminus P \mid \omega(e(t, x), t, x) = 1\}.
\]

Those points of the set \(P \) are tangent to the boundary, which are precisely the singular points of \(e \) and \(h. \) It’s obviously that the sets \(P, I, L, \) and \(R \) constitute a partition of \(\Omega_T. \) Furthermore, if \((t, x) \in L, \) then \(e(t, x) \in I_1, \) and if \((t, x) \in R, \) then \(e(t, x) \in I_1. \)

Definition 7. Here, we consider the case of data \((u, v, w) \in L^\infty([0, T]; C^1([0, 1])) \times L^\infty([0, T]; C^1([0, 1])) \times L^2(\Omega_T). \)
\[L^\infty([0, T]; C^1([0, 1])), (m_l, n_l, l_l) \in C^1(\Gamma_1) \times C^1(\Gamma_l) \times C^1(\Gamma_l); (m_r, n_r, l_r) \in C^1(\Gamma_l) \times C^1(\Gamma_l) \times C^1(\Gamma_l), (m_0, n_0, l_0) \in C^1(0, 1) \times C^1(0, 1) \times C^1(0, 1). \] We define the functions \(m, n, \) and \(l \) in the following way.

When \((t, x) \in P, m(t, x) = 0, n(t, x) = 0, \) and \(l(t, x) = 0, \) when \((t, x) \in L, \)

\[
m(t, x) = m_0(\omega(0, t, x))
\times \exp \left(\int_0^t \left[2 \left(p_x + \partial_x G * B_1 \right) + v_x + w_x \right]
\times (s, \omega(s, t, x)) \, ds \right)
+ \int_0^t \left(n_v x + l w_x \right)(s, \omega(s, t, x))
\times \exp \left(\int_0^s \left[2 \left(p_x + \partial_x G * B_1 \right) + v_x + w_x \right]
\times \left(s', \omega(s', t, x) \right) \, ds' \right) \, dr,
\]

\[
n(t, x) = n_0(\omega(0, t, x))
\times \exp \left(\int_0^t \left[2 \left(q_x + \partial_x G * B_2 \right) + u_x + w_x \right]
\times (s, \omega(s, t, x)) \, ds \right)
+ \int_0^t \left(m u_x + l w_x \right)(s, \omega(s, t, x))
\times \exp \left(\int_s^t \left[2 \left(q_x + \partial_x G * B_2 \right) + u_x + w_x \right]
\times \left(s', \omega(s', t, x) \right) \, ds' \right) \, ds,
\]

\[
l(t, x) = l_0(\omega(0, t, x))
\times \exp \left(\int_0^t \left[2 \left(r_x + \partial_x G * B_3 \right) + u_x + v_x \right]
\times (s, \omega(s, t, x)) \, ds \right)
+ \int_0^t \left(m u_x + n v_x \right)(s, \omega(s, t, x))
\times \exp \left(\int_s^t \left[2 \left(r_x + \partial_x G * B_3 \right) + u_x + v_x \right]
\times \left(s', \omega(s', t, x) \right) \, ds' \right) \, ds,
\]

when \((t, x) \in R, \)

\[
m(t, x) = m_1(\omega(0, t, x))
\times \exp \left(\int_0^t \left[2 \left(p_x + \partial_x G * B_1 \right) + v_x + w_x \right]
\times (s, \omega(s, t, x)) \, ds \right)
+ \int_0^t \left(m u_x + l w_x \right)(r, \omega(r, t, x))
\times \exp \left(\int_r^t \left[2 \left(p_x + \partial_x G * B_1 \right) + v_x + w_x \right]
\times \left(s', \omega(s', t, x) \right) \, ds' \right) \, dr,
\]

when \((t, x) \in L, \)

\[
m(t, x) = m_2(\omega(0, t, x))
\times \exp \left(\int_{e(t,x)} \left[2 \left(p_x + \partial_x G * B_1 \right) + v_x + w_x \right]
\times (s, \omega(s, t, x)) \, ds \right)
+ \int_{e(t,x)} \left(m u_x + l w_x \right)(r, \omega(r, t, x))
\times \exp \left(\int_r^{e(t,x)} \left[2 \left(p_x + \partial_x G * B_1 \right) + v_x + w_x \right]
\times \left(s', \omega(s', t, x) \right) \, ds' \right) \, dr,
\]
\[n(t, x) = n_l(\psi(t, x)) \times \exp\left(\int_{t_l}^t [2(q_x + \partial_x G * B_2) + u_x + w_x] \times (s, \omega(s, t, x)) ds \right) \]

\[+ \int_{t_l}^t (m_{u_x} + l\omega_x)(s, \omega(s, t, x)) \times \exp\left(\int_s^t [2(q_x + \partial_x G * B_2) + u_x + w_x] \times (s', \omega(s', t, x)) ds' \right) ds, \]

\[l(t, x) = l_l(\psi(t, x)) \times \exp\left(\int_{t_l}^t [2(r_x + \partial_x G * B_3) + u_x + v_x] \times (s, \omega(s, t, x)) ds \right) \]

\[+ \int_{t_l}^t (m_{u_x} + n\omega_x)(s, \omega(s, t, x)) \times \exp\left(\int_s^t [2(r_x + \partial_x G * B_3) + u_x + v_x] \times (s', \omega(s', t, x)) ds' \right) ds. \]

(18)

Lemma 8. Since \((m, n, l) \in L^\infty(\Omega_T) \times L^\infty(\Omega_T) \times L^\infty(\Omega_T)\) and satisfies (8), we immediately get that \((m, n, l)\) is the weak solution of (8) and \((m, n, l) \in W^{1,\infty}(0, T; H^{-1}(0, 1)) \times W^{1,\infty}(0, T; H^{-1}(0, 1)) \times W^{1,\infty}(0, T; H^{-1}(0, 1)).\) However, the functions \(m, n, l\) satisfy the following estimates:

\[\|m\|_{C^0(\Omega_T)} \leq 2 \max \left[\|m_0\|_{L^\infty} + \|m\|_{L^\infty}, \|m_t\|_{L^\infty} \right] \times e^{T \|p + G * B_1\|_{L^\infty(0, T; L^1(0, 1))} + \|v\|_{L^\infty(0, T; L^1(0, 1))} + \|w\|_{L^\infty(0, T; L^1(0, 1))}} \]

\[\|n\|_{C^0(\Omega_T)} \leq 2 \max \left[\|n_0\|_{L^\infty}, \|n_t\|_{L^\infty}, \|n_{\omega_x}\|_{L^\infty(0, 1)} \right] \times e^{T \|q + G * B_2\|_{L^\infty(0, T; L^1(0, 1))} + \|v_x\|_{L^\infty(0, 1)} + \|w_x\|_{L^\infty(0, 1)}} \]

\[\|l\|_{C^0(\Omega_T)} \leq 2 \max \left[\|l_0\|_{L^\infty}, \|l_t\|_{L^\infty}, \|l_{\omega_x}\|_{L^\infty(0, 1)} \right] \times e^{T \|r + G * B_3\|_{L^\infty(0, T; L^1(0, 1))} + \|v_x\|_{L^\infty(0, 1)} + \|w_x\|_{L^\infty(0, 1)}} \]
\[+ \left(\| v \|_{L^\infty(\Omega_T)} + \| \frac{\partial^2 v}{\partial x^2} \|_{L^\infty(\Omega_T)} \right)^2 \]
\[+ \left(\| w \|_{L^\infty(\Omega_T)} + \| \frac{\partial^2 w}{\partial x^2} \|_{L^\infty(\Omega_T)} \right)^2 \]
\[\times \left(1 + 2 \left(\| r + G \ast B_1 \|_{L^\infty([0,T];\text{Lip}(0,1))} \right) \right)
\[+ \| p \|_{L^\infty([0,T];\text{Lip}(0,1))} \]
\[+ \| q \|_{L^\infty([0,T];\text{Lip}(0,1))} \right) \right) T \}
\[\times \exp \left(2T \left(\| r + G \ast B_1 \|_{L^\infty(\Omega_T)} \right) \right)
\[+ \| u \|_{L^\infty(\Omega_T)} + \| v \|_{L^\infty(\Omega_T)} \right) \right) . \]

Definition 9. We can define operator \(E \) and a domain for the system (8) by: for all \(p, q, r \in L^\infty((0,T);C^{1,1}([0,1])) \) \(\cap \) \(\text{Lip}([0,T];H^1_0(0,1)) \),

\[E (p) = \tilde{p} \in L^\infty(0,T);C^{1,1}([0,1]) \]
\[\cap \text{Lip}([0,T];H^1_0(0,1)) \],

\[E (q) = \tilde{q} \in L^\infty(0,T);C^{1,1}([0,1]) \]
\[\cap \text{Lip}([0,T];H^1_0(0,1)) \],

\[E (r) = \tilde{r} \in L^\infty(0,T);C^{1,1}([0,1]) \]
\[\cap \text{Lip}([0,T];H^1_0(0,1)) \]
\[C_{M_0,M_1,T} \]
\[= \{ p, q, r \in L^\infty((0,T);C^{1,1}([0,1])) \}
\[\cap \text{Lip}([0,T];H^1_0(0,1)) \mid \| d \|_{L^\infty([0,T];C^{1,1}([0,1]))} \leq M_0, \| d \|_{\text{Lip}([0,T];H^1_0(0,1))} \leq M_1 \} \],

where

\[d (t,x) = \max \left(\begin{array}{l}
\left(p (t,x) , q (t,x) , r (t,x) \right),
\end{array} \right) \]
\[(t,x) \in [0,T] \times [0,1] \].

Obviously \(C_{M_0,M_1,T} \) is convex and \(C_{M_0,M_1,T} \) is compact with respect to the norm \(\| \cdot \|_{L^\infty([0,T];\text{Lip}(0,1))} \). We will endow \(C_{M_0,M_1,T} \) with the norm \(\| \cdot \|_{L^\infty([0,T];\text{Lip}(0,1))} \). There exist positive numbers \(M_0, M_1, \) and \(T \) such that \(E \) maps \(C_{M_0,M_1,T} \) into itself.

Theorem 10. There exists \(T > 0 \), and \((m,n,l)\) is a weak solution of (8) with \(p, q, r \in L^\infty((0,T);C^{1,1}([0,1])) \) \(\cap \) \(\text{Lip}([0,T];H^1_0(0,1)) \) and \(m, n, l \in L^\infty(\Omega_T) \). Moreover, any such solution \((p, q, r)\) is in fact in \(C^1([0,T];W^{1,p}(0,1)) \) for all \(p < +\infty \). Furthermore, the existence time of a maximal solution \(T \geq \min(T^*, \tilde{T}) \), with

\[T^* = \max_{\alpha > 0, \beta > 0} \left(\frac{1}{\sqrt{\alpha}} \ln \left(\frac{1}{\alpha} \left(\frac{1}{4(1 + \cosh(1))} \right) \right) \right) , \]
\[\tilde{T} = \max_{\alpha > 0, \beta > 0} \left(\frac{1}{\sqrt{\alpha}} \ln \left(\frac{1}{\alpha} \left(\frac{1}{12\alpha^2} \right) \right) \right) , \]

\[C_1 = \max \left[\frac{\cosh(1)}{\sinh(1)} \right] \left(\| v \|_{L^\infty(0,T)} + \| u \|_{L^\infty(0,T)} \right) , \]

\[i = 1, 2, 3. \]

Proof. For \(\tilde{T} > 0 \), we consider \(m, n, l, \) and \(L \) in \(C^0((0,\tilde{T})) \) such that the sets \(P_i \) and \(P_I \) have only a finite number of connected components.

Let \(C_0 = \max(\| m \|_{L^\infty([0,1])}, \| n \|_{L^\infty([0,1])}, \| l \|_{L^\infty([0,1])}) \), where \(i = 0, r, l \) and

\[C_1 = \max \left[\frac{\cosh(1)}{\sinh(1)} \right] \left(\| v \|_{L^\infty(0,T)} + \| u \|_{L^\infty(0,T)} \right) , \]

\[i = 1, 2, 3. \]

Now, if \(u, v, w \in C_{M_0,M_1,T} \) (see (21)), we have

\[\| 2(p + G \ast B_1) + v + w \|_{C^{0}(\Omega_T)} \leq 2 \| \frac{\partial u}{\partial \tau} \|_{C^{0}(\Omega_T)} + \| \frac{\partial v}{\partial \tau} \|_{C^{0}(\Omega_T)} + \| \frac{\partial w}{\partial \tau} \|_{C^{0}(\Omega_T)} , \]

\[\| 2(q + G \ast B_2) + u + w \|_{C^{0}(\Omega_T)} \leq 2 \| \frac{\partial u}{\partial \tau} \|_{C^{0}(\Omega_T)} + \| \frac{\partial v}{\partial \tau} \|_{C^{0}(\Omega_T)} + \| \frac{\partial w}{\partial \tau} \|_{C^{0}(\Omega_T)} , \]

\[\| 2(r + G \ast B_3) + u + w \|_{C^{0}(\Omega_T)} \leq 2 \| \frac{\partial u}{\partial \tau} \|_{C^{0}(\Omega_T)} + \| \frac{\partial v}{\partial \tau} \|_{C^{0}(\Omega_T)} + \| \frac{\partial w}{\partial \tau} \|_{C^{0}(\Omega_T)} , \]

\[\| 2(p + G \ast B_1) + v + w \|_{C^{0}(\Omega_T)} \leq 2 \| \frac{\partial u}{\partial \tau} \|_{C^{0}(\Omega_T)} + \| \frac{\partial v}{\partial \tau} \|_{C^{0}(\Omega_T)} + \| \frac{\partial w}{\partial \tau} \|_{C^{0}(\Omega_T)} , \]

\[\| 2(q + G \ast B_2) + u + w \|_{C^{0}(\Omega_T)} \leq 2 \| \frac{\partial u}{\partial \tau} \|_{C^{0}(\Omega_T)} + \| \frac{\partial v}{\partial \tau} \|_{C^{0}(\Omega_T)} + \| \frac{\partial w}{\partial \tau} \|_{C^{0}(\Omega_T)} , \]

\[\| 2(r + G \ast B_3) + u + w \|_{C^{0}(\Omega_T)} \leq 2 \| \frac{\partial u}{\partial \tau} \|_{C^{0}(\Omega_T)} + \| \frac{\partial v}{\partial \tau} \|_{C^{0}(\Omega_T)} + \| \frac{\partial w}{\partial \tau} \|_{C^{0}(\Omega_T)} , \]
\[\| \partial_t w \|_{L^\infty(\Omega_T)} \leq 2 \sqrt{\| w \|_{L^\infty(\Omega_T)} \| \partial^2_{xx} w \|_{L^\infty(\Omega_T)}} \]

\[\leq (\| w \|_{L^\infty(\Omega_T)} + \| \partial^2_{xx} w \|_{L^\infty(\Omega_T)})^2 + \| \partial^2_{xx} w \|_{L^\infty(\Omega_T)}^2 + \left(\| \partial_x w \|_{L^\infty(\Omega_T)} + \| \partial^2_{xx} w \|_{L^\infty(\Omega_T)} \right)^2, \]

\[\| m u_x + l w_x \|_{L^\infty(\Omega_T)} \leq \left[(\| id \|_{L^\infty(\Omega_T)} + \| \partial^2_{xx} u \|_{L^\infty(\Omega_T)})^2 + \| \partial^2_{xx} v \|_{L^\infty(\Omega_T)}^2 + \left(\| \partial_x v \|_{L^\infty(\Omega_T)} + \| \partial^2_{xx} w \|_{L^\infty(\Omega_T)} \right)^2, \right) \]

\[\| m u_x + n v_x \|_{L^\infty(\Omega_T)} \leq \left[(\| id \|_{L^\infty(\Omega_T)} + \| \partial^2_{xx} u \|_{L^\infty(\Omega_T)})^2 + \| \partial^2_{xx} v \|_{L^\infty(\Omega_T)}^2 + \left(\| \partial_x v \|_{L^\infty(\Omega_T)} + \| \partial^2_{xx} w \|_{L^\infty(\Omega_T)} \right)^2. \right] \]

(25)

We also define that \(\bar{d}(t, x) = \max(\bar{p}(t, x), \bar{q}(t, x), \bar{r}(t, x)) \), \((t, x) \in \Omega_T\). If \(p, q, \bar{r} \in C_{M_p, M_\bar{r}, T} \), then from Lemmas 2 and 8, we derive that

\[\| \bar{d} \|_{L^\infty(\Omega_T)} \leq 2 \sqrt{\left(C_0 + 12 T^* (M_0 + C_1) \right)^2 + \exp \left(6 T^* (M_0 + C_1) \right)}, \]

(26)

\[\| \partial_x \bar{d} \|_{C^0(\Omega_T)} \leq \left[6 C_0 (M_0 + C_1) + 12 (M_0 + 2 C_1)^2 \right] \times \left(1 + 6 \left(M_0 + C_1 \sqrt{T^*} \right) \right) \text{exp} \left(6 T^* (M_0 + C_1) \right). \]

Finally, to obtain \(\bar{p}, \bar{q}, \bar{r} \in C_{M_p, M_\bar{r}, T} \), it is sufficient to show that

\[2 \sqrt{(C_0 + 12 T^* (M_0 + C_1))^2 + \exp \left(6 T^* (M_0 + C_1) \right)} \leq M_0, \]

\[M_0 + \left[6 C_0 (M_0 + C_1) + 12 (M_0 + C_1)^2 \right] \left(1 + 6 T^* (M_0 + C_1) \right) \text{exp} \left(6 T^* (M_0 + C_1) \right) \leq M_1, \]

(27)

if we have chosen \(T \) and \(M_0 \); it is easy to choose \(M_1 \) to satisfy the second inequality. For the above two inequalities, we just choose \(M_0 \) and \(M_1 \) sufficiently large and then \(T \) close to 0. More precisely:

\[M_0 > 2 \left(1 + \cosh (1) \right) C_0, \]

\[T^* \leq \frac{1}{6} \frac{M_0}{(M_0 + C_1)}, \]

(28)

\[\bar{T} \leq \frac{1}{6} \frac{M_1 - M_0}{(M_0 + C_1)} \]

Maximizing the bound of \(T \), we can get minimum existence. Then, we get the result announced, where \(\alpha = M_0 + C_1, \beta = M_1 - M_0. \]

Lemma 11. The operator \(E : C_{M_p, M_\bar{r}, T} \rightarrow C_{M_p, M_\bar{r}, T} \) is continuous with respect to \(\| \cdot \|_{L^\infty((0, T), H^1_0(0, 1))} \).

Proof. The proof is omitted here; one can see a similar proof in [8, Proposition 2.4].

Now, we can apply Shauder’s fixed point theorem to the operator \(E \), and we get the result that there exist fixed points \(p, q, r \) such that \(E(p) = p, E(q) = q, \) and \(E(r) = r, \) so we know that there exists a wake solution of (9).

\[p, q, r \in L^\infty(0, T); C^{1,1}([0, 1]) \cap \text{Lip} \left([0, T]; H^1_0(0, 1) \right), \]

(29)

2.1. Uniqueness. We will prove the weak-strong uniqueness of weak solution of (8) in the following.

Theorem 12. Let \((p, m), (q, n), (r, l) \in L^\infty((0, T); C^{1,1}([0, 1])) \cap \text{Lip}((0, T); H^1_0(0, 1) \times L^\infty((0, T); \text{Lip}([0, 1])))\) be the weak solution of (7)-(8), then it is unique in \(L^\infty((0, T); C^{1,1}([0, 1]) \times L^\infty(\Omega_T)). \)

Proof. Define \(\Phi = m - \bar{m}, \Psi = n - \bar{n}, Y = l - \bar{l} \) and \(P = p - \bar{p}, Q = q - \bar{q}, H = r - \bar{r}, \) then we have

\[P(t, \cdot) = G * \Phi(t, \cdot), \]

\[Q(t, \cdot) = G * \Psi(t, \cdot), \]

\[H(t, \cdot) = G * Y(t, \cdot), \]

(30)
where \(P, Q, H \in \text{Lip}([0, T]; H^1_0(0, 1)) \), and \((\Phi, \Psi, \Upsilon) \in L^\infty(\Omega_T) \times L^\infty(\Omega_T) \times L^\infty(\Omega_T) \) is the unique weak solution of

\[
\Phi_t = (p + G * B + v + w) \Phi_x
+ [2(p + G * B_1)_x + v_x + w_x] \Phi
+ (P + Q + H) \bar{m}_x + (2P_x + Q_x + H_x) \bar{m}
+ \Psi u_x + \bar{m} \Psi x + \bar{H} \Psi_x,
\]

\[
\Psi_t = (q + G * B + u + w) \Psi_x
+ [2(q + G * B_2)_x + u_x + w_x] \Psi
+ (P + Q + H) \bar{n}_x + (2P_x + Q_x + H_x) \bar{n}
+ \Phi u_x + \bar{m} \Phi_x + \Psi u_x + \bar{Q} \Psi_x,
\]

\[
\Upsilon_t = (r + G * B + u + v) \Upsilon_x
+ [2(r + G * B_3)_x + u_x + v_x] \Upsilon
+ (P + Q + H) \bar{\ell}_x + (P_x + Q_x + 2H_x) \bar{\ell}
+ \Phi u_x + \bar{m} \Phi_x + \Psi u_x + \bar{Q} \Psi_x.
\]

\[
Y_t = (r + G * B + u + v) Y_x
+ [2(r + G * B_3)_x + u_x + v_x] Y
+ (P + Q + H) \bar{\ell}_x + (P_x + Q_x + 2H_x) \bar{\ell}
+ \Phi u_x + \bar{m} \Phi_x + \Psi u_x + \bar{Q} \Psi_x.
\]

Let

\[
b_1 = 2(p + G * B_1)_x + v_x + w_x,
\]

\[
b_2 = 2(q + G * B_2)_x + u_x + w_x,
\]

\[
b_3 = 2(r + G * B_3)_x + u_x + v_x,
\]

\[
f_1 = (P + Q + H) \bar{m}_x + (2P_x + Q_x + H_x) \bar{m}
+ \Psi u_x + \bar{m} \Psi x + \bar{H} \Psi_x,
\]

\[
f_2 = (P + Q + H) \bar{n}_x + (P_x + Q_x + H_x) \bar{n}
+ \Phi u_x + \bar{m} \Phi_x + \Psi u_x + \bar{Q} \Psi_x,
\]

\[
f_3 = (P + Q + H) \bar{\ell}_x + (P_x + Q_x + 2H_x) \bar{\ell}
+ \Phi u_x + \bar{m} \Phi_x + \Psi u_x + \bar{Q} \Psi_x.
\]

Y(t, x) = \int_0^t f_3(s, \omega(s, t, x))
\times \exp \left(\int_r^t b_3(s', \omega(s', t, x)) ds' \right) ds.

(33)

For \((t, x) \in L\), we have

\[
\Phi(t, x) = \int_{r(t, x)}^t f_1(s, \omega(s, t, x))
\times \exp \left(\int_r^t b_1(s', \omega(s', t, x)) ds' \right) ds,
\]

\[
\Psi(t, x) = \int_{r(t, x)}^t f_2(s, \omega(s, t, x))
\times \exp \left(\int_r^t b_2(s', \omega(s', t, x)) ds' \right) ds,
\]

\[
Y(t, x) = \int_{r(t, x)}^t f_3(s, \omega(s, t, x))
\times \exp \left(\int_r^t b_3(s', \omega(s', t, x)) ds' \right) ds.
\]

(34)

Then, we get the uniqueness result.

For \((t, x) \in I\), we have

\[
\Phi(t, x) = \int_0^t f_1(s, \omega(s, t, x))
\times \exp \left(\int_r^t b_1(s', \omega(s', t, x)) ds' \right) ds,
\]

\[
\Psi(t, x) = \int_0^t f_2(s, \omega(s, t, x))
\times \exp \left(\int_r^t b_2(s', \omega(s', t, x)) ds' \right) ds,
\]

\[
Y(t, x) = \int_0^t f_3(s, \omega(s, t, x))
\times \exp \left(\int_r^t b_3(s', \omega(s', t, x)) ds' \right) ds.
\]

(35)

Now since \(\|P(t, \cdot)\|_{L^\infty(0,1)} \leq 5\|\Phi(t, \cdot)\|_{L^\infty(0,1)}, \|Q(t, \cdot)\|_{L^\infty(0,1)} \leq 5\|\Psi(t, \cdot)\|_{L^\infty(0,1)}\), \(\|H(t, \cdot)\|_{L^\infty(0,1)} \leq 5\|Y(t, \cdot)\|_{L^\infty(0,1)}\) and \(\bar{m}, \bar{\ell}, \bar{m}, \bar{\ell}, \bar{m}, \bar{\ell}, \bar{\ell}, \bar{\ell}\) bounded, we see that for some \(\lambda_1 > 0, \lambda_2 > 0, \lambda_3 > 0,\)

\[
\|f_1(t, \cdot)\|_{L^\infty(0,1)}
\leq \lambda_1 \left(\|\Phi(t, \cdot)\|_{L^\infty(0,1)} + \|\Psi(t, \cdot)\|_{L^\infty(0,1)} + \|Y(t, \cdot)\|_{L^\infty(0,1)} \right),
\]

\[
\|f_2(t, \cdot)\|_{L^\infty(0,1)}
\leq \lambda_2 \left(\|\Phi(t, \cdot)\|_{L^\infty(0,1)} + \|\Psi(t, \cdot)\|_{L^\infty(0,1)} + \|Y(t, \cdot)\|_{L^\infty(0,1)} \right),
\]

\[
\|f_3(t, \cdot)\|_{L^\infty(0,1)}
\leq \lambda_3 \left(\|\Phi(t, \cdot)\|_{L^\infty(0,1)} + \|\Psi(t, \cdot)\|_{L^\infty(0,1)} + \|Y(t, \cdot)\|_{L^\infty(0,1)} \right).
\]

(36)
since $p, q, r,$ and B_i ($i = 1, 2, 3$) are bounded, we get that for some $\lambda_1 > 0, \lambda_2 > 0, \lambda_3 > 0$,

$$
\|\Phi(t, \cdot)\|_{L^\infty(0,1)} \\
\leq \lambda_1 \int_0^t (\|\Phi(s, \cdot)\|_{L^\infty(0,1)} + \|\Psi(s, \cdot)\|_{L^\infty(0,1)}) ds, \\
\|\Psi(t, \cdot)\|_{L^\infty(0,1)} \leq \lambda_2 \int_0^t (\|\Phi(s, \cdot)\|_{L^\infty(0,1)} + \|\Psi(s, \cdot)\|_{L^\infty(0,1)}) \ ds, \\
\|\Psi(t, \cdot)\|_{L^\infty(0,1)} + \|\Psi(s, \cdot)\|_{L^\infty(0,1)} ds, \\
\|\Pi(t, \cdot)\|_{L^\infty(0,1)} \leq \lambda_3 \int_0^t (\|\Phi(s, \cdot)\|_{L^\infty(0,1)} + \|\Psi(s, \cdot)\|_{L^\infty(0,1)}) ds.
$$

We can obtain that

$$
\|\Phi(t, \cdot)\|_{L^\infty(0,1)} + \|\Psi(t, \cdot)\|_{L^\infty(0,1)} \leq (\lambda_1 + \lambda_2 + \lambda_3) \int_0^t (\|\Phi(s, \cdot)\|_{L^\infty(0,1)} + \|\Psi(s, \cdot)\|_{L^\infty(0,1)}) ds.
$$

As a result, we get the result of the uniqueness by Gronwall’s inequality when $(t, x) \in I, (t, x) \in L_i, (t, x) \in R$. Then, we complete the proof of the uniqueness results.

3. Asymptotic Stabilization

3.1. Preliminary Results. The equilibrium state that we want to stabilize is $m = n = l = 0$, $p = q = r = G \ast B_i = 0$, and $i = 1, 2, 3$. A natural idea is using Lyapunov indirection method to investigate whether the linearized system around the equilibrium state is stable or not. Its stabilization would provide a local stabilization result on the nonlinear system. However, there is a difficulty in the stabilization problem. We have to prescribe y_l, and we just need to make a continuous transition at $(t, x) = (0, 0)$, and that y_l asymptotically converge in time. For convenience, the system (6)–(8) can rewrite in the following

$$
\begin{align*}
\dot{y}(t, x) &= b(t, x) y + f(t, x), \\
y(0, \cdot) &= y_0, \quad y(\cdot, 0) = y_l, \quad y(1, \cdot) = y_r, \\
\tilde{g}(t, x) &= G \ast y(t, x), \quad \tilde{g}(t, 0) = \tilde{g}(t, 1) = 0, \\
\tilde{B}(t, x) &= 0, \quad G \ast \tilde{B}(t, 0) = v_l(t), \\
G \ast \tilde{B}(t, 1) &= v_r(t),
\end{align*}
$$

where

$$
b(t, x) = \begin{pmatrix} 2(p + G \ast \tilde{B})_y + v_y + w_y \\
0 \\
0 \\
2(q + G \ast \tilde{B})_y + u_y + w_y \\
0 \\
2(r + G \ast \tilde{B})_y + u_y + v_y
\end{pmatrix},
$$

$$
a(t, x) = \begin{pmatrix} p + G \ast \tilde{B} + v + w \\
0 \\
0 \\
0 \\
0 \\
u + q + G \ast \tilde{B} + w + r + G \ast \tilde{B}
\end{pmatrix},
$$

$$
y = \begin{pmatrix} m \\
l \\
0 \\
\mu \\
n \\
l
\end{pmatrix}, \quad y_0 = \begin{pmatrix} m_0 \\
l_0 \\
\end{pmatrix},
$$

$$
\tilde{f}(t, x) = \begin{pmatrix} m u_x + l w_x \\
0 \\
m u_x + m u_x \\
\end{pmatrix}, \quad u = \begin{pmatrix} 0 & 1 & 0 \\
m & 0 & 1 \\
m & n & 0 \\
\end{pmatrix}, \quad \mu = \begin{pmatrix} 0 & \mu \\
0 & 0 & \mu \\
\end{pmatrix},
$$

$$
\tilde{g}(t, x) = \begin{pmatrix} p \\
q \\
r
\end{pmatrix}, \quad y_l = \begin{pmatrix} m_l \\
l_l \\
\end{pmatrix}, \quad y_r = \begin{pmatrix} m_r \\
l_r \\
\end{pmatrix}.
$$

Our feedback law for (3) reads

$$
y \in C^0([0, 1]) \rightarrow \begin{pmatrix} v_l(t, y) = A_l y \in C^0([0, 1]) \\
v_r(t, y) = A_r y \in C^0([0, 1]), \\
\end{pmatrix}
$$

where $A_l > 2 \sinh(1), A_r > A_l \cosh(1) + \sinh(2), M > 0, T > 0$, and $M = \begin{pmatrix} 0 & \mu \\
0 & 0 & \mu \\
\end{pmatrix}$, $\mu < 0$, a symmetric matrix, is the unique matrix solution to the matrix function:

$$
PM + M^T P = -Z,
$$

for some symmetric positive-definite matrices P and Z. Indeed, let $V(t, y_l) = y^T_l P y_l$ be the Lyapunov candidate, and that y_l asymptotically converges in time is equivalent to that the time derivative of the $V, V(t, y_l) = -y^T_l Z y_l$ is strictly negative. A fixed-point strategy will be used again to prove the existence of a solution to the closed-loop system, we begin by defining the domain of the operator.

Definition 13. Let X be the space of $(g, N) \in C^0([0, T] \times [0, 1]) \times C^0([0, 1])$ satisfying

$$
\begin{align*}
(1) & \text{ for all } (t, x) \in [0, T] \times [0, 1], g(0, x) = y_0(x), g(t, 0) = y_0(0) e^{\lambda_0 t}, \\
(2) & \text{ for all } t \in [0, T], \|g(t, \cdot)\|_{C^0([0, 1])} \leq N(t),
\end{align*}
$$

where

$$
\begin{pmatrix} 2(p + G \ast \tilde{B})_y + v_y + w_y \\
0 \\
0 \\
2(q + G \ast \tilde{B})_y + u_y + w_y \\
0 \\
2(r + G \ast \tilde{B})_y + u_y + v_y
\end{pmatrix},
$$

$$
\begin{pmatrix} p + G \ast \tilde{B} + v + w \\
0 \\
0 \\
0 \\
0 \\
0 + (u + q + G \ast \tilde{B} + w + r + G \ast \tilde{B})
\end{pmatrix},
$$

$$
\begin{pmatrix} m \\
l \\
0 \\
\mu \\
n \\
l
\end{pmatrix}, \quad y_0 = \begin{pmatrix} m_0 \\
l_0 \\
\end{pmatrix},
$$

$$
\begin{pmatrix} m u_x + l w_x \\
0 \\
m u_x + m u_x \\
\end{pmatrix}, \quad u = \begin{pmatrix} 0 & 1 & 0 \\
m & 0 & 1 \\
m & n & 0 \\
\end{pmatrix}, \quad \mu = \begin{pmatrix} 0 & \mu \\
0 & 0 & \mu \\
\end{pmatrix},
$$

$$
\begin{pmatrix} p \\
q \\
r
\end{pmatrix}, \quad y_l = \begin{pmatrix} m_l \\
l_l \\
\end{pmatrix}, \quad y_r = \begin{pmatrix} m_r \\
l_r \\
\end{pmatrix}.
$$
(3) N is nonincreasing, and $N(0) \leq \|\gamma_0\|_{C([0,1]) \times C([0,1]) \times C([0,1])}$.

Lemma 14. The domain X is nonempty, convex, bounded, and closed with respect to the uniform topology.

The proof is elementary and one notices that $(\gamma_0(x)e^{\lambda t}, \|\gamma_0\|_{C([0,1]) \times C([0,1]) \times C([0,1])}e^{\lambda t}) \in X$, so X is nonempty.

Now for $(y, N) \in X$, we define \bar{g} and $G \ast \bar{B}$ as the solutions of

$$\bar{g}(t, 0) = \bar{g}(t, 1) = 0, \quad \bar{B}(t, x) = 0,$$

$$(43) \quad G \ast \bar{B}(t, 0) = A_t N(t), \quad G \ast \bar{B}(t, 1) = A_t N(t).$$

One has the following exact formulas:

$$\forall (t, x) \in \Omega_T, \quad \bar{g}(t, x) = \frac{1}{\sinh(1)} \int_0^x \sinh(x - \tilde{x}) \gamma(\tilde{x}, t, x) d\tilde{x} - \frac{\sinh(x)}{\sinh(1)} \int_0^1 \sinh(\tilde{x} - 1) \gamma(\tilde{x}, t, x) d\tilde{x},$$

$$G \ast \bar{B}(t, x) = \frac{N(t)}{\sinh(1)} (A_t \sinh(x) + A_t \sinh(1 - x)).$$

(44)

Therefore, we have the following inequalities:

$$\forall (t, x) \in [0, T] \times [0, 1],$$

$$\left| \bar{g}(t, x) \right| \leq 2 (1 + \cosh(1)) \left\| \gamma(t, \cdot) \right\|_{C([0,1]) \times C([0,1]) \times C([0,1])},$$

$$\left| \partial_x \bar{g}(t, x) \right| \leq 2 \cosh(1) \left\| \gamma(t, \cdot) \right\|_{C([0,1]) \times C([0,1]) \times C([0,1])},$$

$$\left| \partial_{xx} \bar{g}(t, x) \right| \leq [2 (\cosh(1) + 1) + 1] \left\| \gamma(t, \cdot) \right\|_{C([0,1]) \times C([0,1]) \times C([0,1])},$$

$$\left| \partial_x (G \ast \bar{B})(t, x) \right| \geq \frac{A_t - 2 \cosh(1) A_t}{\sinh(1)} N(t),$$

$$\left| G \ast \bar{B}(t, x) \right| \geq A_t N(t).$$

(45)

Let $\dot{c}(t, x) = G \ast \bar{B}(t, x) + \dot{g}(t, x)$, where $\dot{c}(t, x) = \left(\frac{\dot{u}}{\dot{w}}\right)(t, x)$, and in turn those provide

$$\dot{c}(t, x) \leq \left[2 (1 + \cosh(1)) \frac{\cosh(1)}{\sinh(1)} (A_t + A_t)\right]$$

$$\times \left\| y(t, \cdot) \right\|_{C([0,1]) \times C([0,1]) \times C([0,1])},$$

$$\partial_x \dot{c}(t, x) \leq \frac{\sinh(2) + 2 A_t \cosh(1) - A_t}{\sinh(1)}$$

$$\times \left\| y(t, \cdot) \right\|_{C([0,1]) \times C([0,1]) \times C([0,1])},$$

$$\partial_{xx} \dot{c}(t, x) \leq \left[2 (1 + \cosh(1)) + 1 + \frac{\cosh(1)}{\sinh(1)} (A_t + A_t)\right]$$

$$\times \left\| y(t, \cdot) \right\|_{C([0,1]) \times C([0,1]) \times C([0,1])}.$$

(46)

Now, if ω is the flow of \dot{c}, ω is C^1, and since $\dot{c} \geq 0$, $\omega(s, t, x)$ is nondecreasing. This allows us to define the entrance time and then the operator S as follows. Let $e(t, x) = \min \{s \in [0, T] \mid \omega(s, t, x) = 0\}$.

Now, for all $(t, x) \in [0, T] \times [0, 1]$, $S(y, N) = (\bar{y}, \bar{N})$ with the following:

1. if $x \geq \omega(t, 0, 0)$,

$$y(t, x) = \gamma_0 \omega(0, t, x) \exp \left(\int_0^t f \omega(r, \omega(r, t, x)) dr\right)$$

$$+ \int_0^t f \omega(r, \omega(r, t, x)) dr$$

$$\times \exp \left(\int_r^t b \left(\omega(r', \omega(r', t, x)) dr'\right)\right) dr,$$

(47)

2. if $x \leq \omega(t, 0, 0)$,

$$y(t, x) = \gamma_0 \omega(0, t, x) \exp \left(\int_0^t f \omega(r, \omega(r, t, x)) dr\right)$$

$$+ \int_{e(t, x)}^t f \omega(r, \omega(r, t, x))$$

$$\times \exp \left(\int_r^t b \left(\omega(r', \omega(r', t, x)) dr'\right)\right) dr,$$

(48)

3. $N(t) = \|\bar{y}(t, \cdot)\|_{L^\infty([0,1])}$.

Lemma 15. (1) The operator S maps X to X.

(2) The family $S(X)$ is uniformly bounded and equicontinuous.
(3) S is continuous w.r.t. the uniform topology. The proof is very similar to [10], except for the state y here is a three-component vector and the proof is omitted. Now, we can apply Schauder’s fixed point theorem to S and get (y, N) fixed point of S.

3.2. Stabilization and Global Existence

Theorem 16. For any $y_0 \in C^0([0, 1]) \times C^0([0, 1]) \times C^0([0, 1])$, there exists $y \in C^0(\Omega_T) \times C^0([0, T], C^1([0, 1]))$ a weak solution of (39) satisfying

$$
\forall x \in [0, 1], \quad y(0, x) = y_0(x). \tag{49}
$$

Furthermore, any maximal solution of (39) and (41) is global, and if we let

$$
k = \max \left(2 \left(1 + \cosh(1) \right) + 1 + \frac{\cosh(1)}{\sinh(1)} (A_r + A_t), \frac{\sinh(2) + 2A_r \cosh(1) - A_t}{\sinh(1)} \right), \tag{50}
$$

$$
\tau = \frac{1}{\|M\|_3} \ln \left(\frac{\|M\|_3^3}{8k^3 \|y_0\|_{C^0([0,1])}^3} \right),
$$

then we have

$$
\forall t \geq \tau, \quad \|y(t, \cdot)\|_{C^0([0,1])} \leq \frac{\|M\|_3}{2k} \left(1 + 2k \|M\|_3 \right) e^{kM(t-x)}. \tag{51}
$$

To finish the proof of Theorem 39, we have to prove the global existence of a maximal solution and the estimate (51).

Proof. First, we rewrite (46) as the following:

$$
\forall (t, x) \in \Omega_T, \quad \frac{\partial y}{\partial t} (t, x) \leq k \|y(t, \cdot)\|_{C^0([0,1])},
$$

$$
\partial_x \frac{\partial y}{\partial t} (t, x) \leq k \|y(t, \cdot)\|_{C^0([0,1])},
$$

$$
\partial_{xx} \frac{\partial y}{\partial t} (t, x) \leq k \|y(t, \cdot)\|_{C^0([0,1])}, \tag{52}
$$

where $k = \max(2(1 + \cosh(1)) + 1 + \cosh(1)/\sinh(1))(A_r + A_t), (\sinh(2) + 2A_r \cosh(1) - A_t)/\sinh(1))$.

For y is the solution of the transport (39) and it satisfies

$$
y(t, x) = y(s, \omega(s, t, x)) \exp \left(\int_0^t b(r, \omega(r, t, x)) dr \right) + \int_0^t f(r, \omega(r, t, x)) dr
$$

$$
\times \exp \left(\int_r^t b(r', \omega(r', t, x)) dr' \right) dr.
$$

Combining those facts, we get for $t \geq s$ the following:

$$
\left| y(t, x) \right|
\leq \left| y(s, \omega(s, t, x)) \right| \left(1 + 4k^2 \|y(s, \omega(s, t, x))\|_t \right)
\times \exp \left(2k \int_s^t \|y(r, \cdot)\|_{C^0([0,1])}^3 \right) dr.
$$

We have also imposed $y(t, 0) = y(s, 0) e^{kM(t-s)}$ and thanks to the existence theorem that a maximal solution of the closed loop system is global. To get a more precise statement, we consider all the between time t and s, and we obtain.

For $0 \leq s \leq t$,

$$
\|y(t, \cdot)\|_{C^0([0,1])} \leq \|y(s, \cdot)\|_{C^0([0,1])} \leq \max \left[e^{kM(t-s)} \left(1 + 4k^2 \|y(s, \cdot)\|_{C^0([0,1])}^3 \right) \right]
\times \exp \left(2k \int_s^t \|y(\cdot, \cdot)\|_{C^0([0,1])}^3 \right) \right) d\alpha.
$$

We define

$$
g(r) = e^{kM(t-x)} \left(1 + 4k^2 \|y(r, \cdot)\|_{C^0([0,1])}^3 \right)
\times \exp \left(2k \int_0^t \|y(\cdot, \cdot)\|_{C^0([0,1])}^3 \right) \right) d\alpha,
$$

and we set $g(r) = g_1(r) + g_2(r)$, where

$$
g_1(r) = e^{kM(t-x)}
\times \exp \left(2k \int_0^t \|y(\cdot, \cdot)\|_{C^0([0,1])}^3 \right) \right) \right) d\alpha,
$$

$$
g_2(r) = e^{kM(t-x)} \left(1 + 4k^2 \|y(r, \cdot)\|_{C^0([0,1])}^3 \right)
\times \exp \left(2k \int_0^t \|y(\cdot, \cdot)\|_{C^0([0,1])}^3 \right) \right) \right) d\alpha.
$$

Then, we have

$$
g'(r) = \left(\|M\|_3 - 2k \|y(r, \cdot)\|_{C^0([0,1])}^3 \right) g_1(r)
+ \left(\frac{1}{r} + \|M\|_3 - 2k \|y(r, \cdot)\|_{C^0([0,1])}^3 \right)
\times g_2(r),
$$

as long as the quantity $\|y(r, \cdot)\|_{C^0([0,1])}$ is not equal to zero, it strictly decreases, so if $\|y(0, \cdot)\|_{C^0([0,1])}^3 > 0$.
\(\|M\|_{\frac{3}{2}}\), for \(t\) small enough \(\|y(t,\cdot)\|_{C^0([0,1]) \times C^0([0,1]) \times C^0([0,1])}\) \(\leq e^{3\mathcal{K}T}\|m_0(\cdot) - l_0(\cdot)\|\), \(\|n(t,\cdot) - l(\cdot)\|\leq e^{3\mathcal{K}T}\|n_0(\cdot) - l_0(\cdot)\|\).

From Definition 3, we can also define

\[
\omega_s = -(u + v + w)(t, \omega(t, y)),
\]

\((t, x) \in [0, T] \times [0, 1]\), where \(u, v,\) and \(w\) denote the solution to (62). Applying classical results in the theory of ordinary differential equations, one can obtain a result on which is crucial in studying blow-up phenomena.

From (62), we obtain that

\[
m_t - \partial_x (mu + mv + mw) = mu_x + nw_x + lw_x,
\]
\[
n_t - \partial_x (mu + mv + mw) = mu_x + nw_x + lw_x,
\]
\[
l_t - \partial_x (lu + lv + lw) = mu_x + mv_x + lw_x.
\]

Lemma 17. Let \(u, v, w \in C([0,T]; H^s) \cap C^1([0,T]; H^{s-1}), (s \geq 2), then (64) has a unique solution \(\omega \in C([0,T] \times [0,1]).\)

Moreover, the map \(\omega(t, \cdot)\) is an increasing diffeomorphism with

\[
\omega_x(t, x) = \exp \left\{-\int_0^t \left(u_x(s, \omega(s, x)) + v_x(s, \omega(s, x)) + w_x(s, \omega(s, x)) ds \right) \right\} > 0,
\]

\(\omega_x(0, x) = 1, \forall x \in [0,1].\) (66)

Proof. The proof is omitted here, one can see a similar proof in [12].

Now, we have the following lemma that the potential \(m - n - l, m - l\) with compactly supported initial datum \(m_0 - n_0 - l_0\), \(m_0 - l_0\) also has compact support as long as it exists.

Lemma 18. Assume that \(u_0(t, x), v_0(t, x), w_0(t, x) \in H^s \times H^s\) with \(s > (3/2), (u, v, w)\) is the corresponding solution, if \(m_0 - n_0 - l_0\) has compact support, then \(m - n\) also has compact support, moreover, we can obtain that

\[
\|m(t, \cdot) - n(t, \cdot)\| \leq e^{3\mathcal{K}T}\|m_0(\cdot) - n_0(\cdot)\|,\]
\[
\|m(t, \cdot) - l(t, \cdot)\| \leq e^{3\mathcal{K}T}\|m_0(\cdot) - l_0(\cdot)\|,\]
\[
\|n(t, \cdot) - l(t, \cdot)\| \leq e^{3\mathcal{K}T}\|n_0(\cdot) - l_0(\cdot)\|.\]
Proof. Since
\[
\frac{d}{dt}(m(t,\omega(t,x))\omega_x) = (m_t + m_x\omega_t)\omega_x + m\omega_x t
\]
\[= \left[m_t - \partial_x (m u + m v + m w) \right] \omega_x + m\omega_x t
\]
\[= (m u_x + m v_x + l w_x)\omega_x.
\]
(68)
Similarly,
\[
\frac{d}{dt}(n(t,\omega(t,x))\omega_x) = (m u_x + m v_x + l w_x)\omega_x,
\]
\[
\frac{d}{dt}(l(t,\omega(t,x))\omega_x) = (m u_x + m v_x + l w_x)\omega_x.
\]
(69)
So it follows that
\[
\frac{d}{dt}\left((m(t,\omega(t,x)) - n(t,\omega(t,x)))\omega_x\right) = 0,
\]
\[
\frac{d}{dt}\left((m(t,\omega(t,x)) - l(t,\omega(t,x)))\omega_x\right) = 0,
\]
\[
\frac{d}{dt}\left((n(t,\omega(t,x)) - l(t,\omega(t,x)))\omega_x\right) = 0.
\]
(70)
We obtain
\[
[m(t,\omega(t,x)) - n(t,\omega(t,x))]\omega_x = m_0(x) - n_0(x),
\]
\[
[m(t,\omega(t,x)) - l(t,\omega(t,x))]\omega_x = m_0(x) - l_0(x),
\]
\[
[n(t,\omega(t,x)) - l(t,\omega(t,x))]\omega_x = n_0(x) - l_0(x).
\]
(71)
From Lemma 17, we have
\[
\omega_x = \exp \left(-\int_0^t u_x(s,\omega(s,x)) + v_x(s,\omega(s,x)) + w_x(s,\omega(s,x))ds \right).
\]
(72)
If there exist four constants K, K_1, K_2, and K_3 such that $u_x \leq K_1, v_x \leq K_2, w_x \leq K_3$, and $K = \max(K_1, K_2, K_3)$, we can get that
\[
\|m(t,\cdot) - n(t,\cdot)\|_{L^\infty} = \|m(t,\omega(t,\cdot)) - n(t,\omega(t,\cdot))\|_{L^\infty}
\]
\[
= \left\| \exp \left(\int_0^t u_x(s,\omega(s,x)) + v_x(s,\omega(s,x)) + w_x(s,\omega(s,x))ds \right) \times (m_0(x) - n_0(x)) \right\|_{L^\infty}
\]
\[
\leq e^{3Kt}\|m_0(\cdot) - n_0(\cdot)\|.
\]
(73)
Similarly,
\[
\|m(t,\cdot) - l(t,\cdot)\| \leq e^{3Kt}\|m_0(\cdot) - l_0(\cdot)\|,
\]
\[
\|n(t,\cdot) - l(t,\cdot)\| \leq e^{3Kt}\|n_0(\cdot) - l_0(\cdot)\|.
\]
(74)
\[
Theorem 19.\text{ Let } u_0(x), v_0(x), \text{ and } w_0(x), s > 3/2 \text{ and } u(t,x), v(t,x), w(t,x) \text{ be the solution in (62) with time } T. \text{ Then, } T \text{ is finite if and only if }
\]
\[
\liminf_{t \to T} \left\{ \inf_{x \in [0,1]} [u_0(x,t)] \right\} = -\infty
\]
(75)
or
\[
\liminf_{t \to T} \left\{ \inf_{x \in [0,1]} [v_0(x,t)] \right\} = -\infty
\]
(76)
or
\[
\liminf_{t \to T} \left\{ \inf_{x \in [0,1]} [w_0(x,t)] \right\} = -\infty.
\]
(77)
Proof. Let $u_0(x), u_1(x)$, and $u_2(x), s > 3/2$ and $u(t,x), v(t,x), w(t,x)$ be the solution (62) with time T. We know that $u(t,0) = u(t,1), v(t,0) = v(t,1)$, and $w(t,0) = w(t,1)$. By the definition of $m, n,$ and l, we have
\[
\|m\|_{L^2} = \int_0^1 (u - u_{xx})^2dx = \int_0^1 (u^2 + 2u_x^2 + u_{xx}^2)dx,
\]
\[
\|n\|_{L^2} = \int_0^1 (v - v_{xx})^2dx = \int_0^1 (v^2 + 2v_x^2 + v_{xx}^2)dx,
\]
(78)
\[
\|l\|_{L^2} = \int_0^1 (w - w_{xx})^2dx = \int_0^1 (w^2 + 2w_x^2 + w_{xx}^2)dx.
\]
Hence, $\|u\|_{L^2} \leq \|m\|_{L^2} \leq 2\|u\|_{H^1}^2, \|v\|_{L^2} \leq \|n\|_{L^2} \leq 2\|v\|_{H^1}^2, \|w\|_{L^2} \leq \|l\|_{L^2} \leq 2\|w\|_{H^1}^2$.

Multiplying the first equation by m, the second one by n, and the third one by l, after integration by parts and adding up the results, we see that
\[
\frac{1}{2} \frac{d}{dt} \int_0^1 (m^2 + n^2 + l^2)dx
\]
\[
= \int_0^1 \left[(2u_x + v_x + w_x) m^2 + (2v_x + u_x + w_x) n^2 + (2w_x + u_x + v_x) l^2 + (mn_x + m_x + ll_x) \right.
\]
\[
\left. + (u + v + w) mn + (u_x + v_x) m + (v_x + w_x) n + (w_x + u_x) l \right] dx
\]
\[
= \int_0^1 \left[(2u_x + v_x + w_x - \frac{1}{2}u_x - \frac{1}{2}v_x - \frac{1}{2}w_x) m^2
\]
\[
+ (2v_x + u_x + w_x - \frac{1}{2}u_x - \frac{1}{2}v_x - \frac{1}{2}w_x) n^2
\]
\[
+ (2w_x + u_x + v_x - \frac{1}{2}u_x - \frac{1}{2}v_x - \frac{1}{2}w_x) l^2 \right] dx
\]
+ \left(2v_x + u_x + w_x - \frac{1}{2}u_x - \frac{1}{2}v_x - \frac{1}{2}w_x \right)^2 \\
+ \left(2w_x + u_x + v_x - \frac{1}{2}u_x - \frac{1}{2}v_x - \frac{1}{2}w_x \right)^2 \\
+ mn(u_x + v_x) + \ln(u_x + v_x) \right] d\chi \\
= \int_0^1 \left(\frac{3}{2}u_x + v_x + w_x \right)^2 m^2 + \left(\frac{3}{2}v_x + u_x + w_x \right)^2 n^2 \\
+ \left(\frac{3}{2}w_x + u_x + \frac{1}{2}v_x \right)^2 l^2 + mn(u_x + v_x) \\
+ ln(u_x + w_x) + ln(v_x + w_x) \] d\chi \\
= \int_0^1 \left(\frac{1}{2}(u_x + v_x)(m + n)^2 + \frac{1}{2}(u_x + w_x)(m + l)^2 \\
+ \frac{1}{2}(v_x + w_x)(l + n)^2 + \frac{1}{2}u_x m^2 \\
+ \frac{1}{2}v_x n^2 + \frac{1}{2}w_x l^2 \right] d\chi \\
(79)

So, we have

\frac{d}{d\tau} \int_0^1 (m^2 + n^2 + l^2) d\chi \\
\leq (K_1 + K_2 + K_3) \\
\times \int_0^1 \left((m + n)^2 + (m + l)^2 \\
+ (l + n)^2 + m^2 + n^2 + l^2 \right] d\chi \\
\leq 5(K_1 + K_2 + K_3) \int_0^1 \left(m^2 + n^2 + l^2 \right) d\chi. \\
(80)

By Gronwall's inequality, we get

\|u\|^2_{H^2} + \|v\|^2_{H^2} + \|w\|^2_{H^2} \\
\leq \int_0^1 \left(m^2 + n^2 + l^2 \right) d\chi \\
\leq \exp \left[5T(K_1 + K_2 + K_3) \right]

The above inequality, Soblev's embedding theorem, ensure that the solution \((u(t, x), v(t, x), w(t, x))\) cannot blow up in finite time.

On the other hand, if

\liminf_{\tau \to T} \left\{ \inf_{x \in [0,1]} \left[u_x(x, \tau) \right] \right\} = -\infty \\
\text{or} \\
\liminf_{\tau \to T} \left\{ \inf_{x \in [0,1]} \left[v_x(x, \tau) \right] \right\} = -\infty \\
\text{or} \\
\liminf_{\tau \to T} \left\{ \inf_{x \in [0,1]} \left[w_x(x, \tau) \right] \right\} = -\infty, \\
(84)

then the solution will blow up in finite time. □

Acknowledgments

The paper is supported by the National Nature Science Foundation of China (nos. 71073072 and 11171135) and the National Nature Science Foundation of Jiangsu (no. BK 2010329) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

Submit your manuscripts at http://www.hindawi.com