Research Article

Oscillatory Criteria for Higher Order Functional Differential Equations with Damping

Peiguang Wang¹ and Hai Cai²

¹ College of Electronic and Information Engineering, Hebei University, Baoding 071002, China
² College of Mathematics and Computer Science, Hebei University, Baoding 071002, China

Correspondence should be addressed to Peiguang Wang; pgwang@mail.hbu.edu.cn

Received 19 September 2012; Accepted 25 November 2012

Academic Editor: Feliz Minhós

Copyright © 2013 P. Wang and H. Cai. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We investigate a class of higher order functional differential equations with damping. By using a generalized Riccati transformation and integral averaging technique, some oscillation criteria for the differential equations are established.

1. Introduction

In this paper, we consider the following higher order functional differential equations with distributed deviating arguments of the form as follows:

\[x^{(n)}(t) + p(t)x^{(n-1)}(t) + \int_{a}^{b} q(t,\xi)x(t)\,d\mu(\xi) = 0, \quad t \geq t_0, \]

where \(n \geq 2 \) is an even number, \(p(t) \in C^{1}([t_0,\infty),R_+) \), \(q(t,\xi) \in C([t_0,\infty) \times [a,b],R_+) \), \(g_i(t,\xi) \in C([t_0,\infty) \times [a,b],R) \), \(\lim_{\xi \to \infty} g_i(t,\xi) = \infty \) for \(i \in \{1,2,\ldots,m\} \), and \(f(u_1,\ldots,u_m) \in C(R^m,R) \) has the same sign as \(u_1,\ldots,u_m \); when they have the same sign, \(\mu(\xi) \in C([a,b],R) \) is nondecreasing, and the integral of (1) is a Stieltjes one.

We restrict our attention to those solutions \(x(t) \) of (1) which exist on some half linear \([t_\mu,\infty) \) with \(\sup \{x(t) : t \geq T\} \neq \emptyset \) for any \(T \geq t_\mu \) and satisfy (1). As usual, a solution \(x(t) \) of (1) is called oscillatory if the set of its zeros is unbounded from above, otherwise, it is called nonoscillatory. Equation (1) is called oscillatory if all solutions are oscillatory.

In recent years, there has been an increasing interest in studying the oscillation behavior of solutions for the differential equations with distributed deviating arguments, and a number of results have been obtained (refer to [1–3] and their references). However, to the best of our knowledge, very little is known for the case of higher order differential equations with damping. The purpose of this paper is to establish some new oscillation criteria for (1) by introducing a class of functions \(\Phi(t,s,r) \) defined in [2] and a generalized Riccati technique.

Firstly, we define the following two class functions.

We say that a function \(\Phi = \Phi(t,u,v) \) belongs to the function class \(X \), denoted by \(\Phi \in X \), if \(\Phi \in C(E,R) \), where \(E = \{ (t,u,v) : t_0 \leq u \leq v \leq t < \infty \} \), which satisfies \(\Phi(t,v,v) = 0, \Phi(t,u,v) \neq 0, v < u < t \) and has the partial derivative \(\partial \Phi/\partial u \) integrable with respect to \(u \) on \(E \) that is locally integrable with respect to \(u \) in \(E \).

Let \(D_0 = \{ (t,u) : t_0 \leq u < t \} \), \(D = \{ (t,u) : t_0 \leq u \leq t \} \). We say that a function \(H = H(t,u) \) belongs to the function class \(Y \), denoted by \(H \in Y \), if \(H(t,t) = 0 \) for \(t \geq t_0 \), \(H(t,u) \neq 0 \) in \(D_0 \), \(H \) has continuous partial derivative in \(D_0 \) with respect to \(t \) and \(s \).

In order to prove the main theorems, we need the following lemmas.

Lemma 1 (see [4]). Let \(x(t) \in C^n([t_0,\infty),R_+) \), if \(x^{(n)}(t) \) is of constant sign and not identically zero on any ray \([t_\mu,\infty) \) for \(t_\mu \geq t_0 \), then there exists a \(t_\sigma \geq t_\mu \), an integer \(0 \leq l \leq n \), with \(n + l \) even for \(x(t)x^{(n)}(t) \geq 0 \) or \(n + l \) odd for \(x(t)x^{(n)}(t) \leq 0 \); and for \(t \geq t_\sigma \geq t_\mu \), \(x(t)x^{(k)}(t) > 0, 0 \leq k \leq l \), and \((-1)^{k+1}x(t)x^{(k)}(t) > 0, 0 \leq k \leq n \).
Lemma 2 (see [5]). If the function $x(t)$ is as in Lemma 1 and $x^{(n-1)}(t)x^{(n)}(t) \leq \ldots \leq k y_1(t)$, then there exists a constant $\theta \in (0, 1)$ such that for sufficiently large t, there exists a constant $M_\theta > 0$, satisfying

$$x'(\theta t) \geq M_\theta t^{n-2} x^{(n-1)}(t).$$

(2)

Lemma 3 (see [3]). Suppose that $x(t)$ is a nonoscillatory solution of (1). If

$$\lim_{t \to \infty} \int_{T_0}^t \exp \left\{ -\int_{T_0}^r p(t) \, dt \right\} ds = \infty, \quad T_0 \geq t_0,$$

(3)

then $x(t)x^{(n-1)}(t) > 0$ for any large t.

2. Main Results

Theorem 4. Assume that (3) holds, and

(A1) there exists a function $\sigma(t) \in C^1((t_0, \infty), R_+)$ such that

$$\sigma(t) = \min_{t \leq s \leq a} \{r(t, s)g_1(t, \xi)\}, \quad \lim_{t \to \infty} \sigma(t) = \infty, \quad \sigma'(t) \geq \sigma_0 > 0, \quad \sigma^{(n-2)}(t) \geq \rho^{(n-2)} > 0.$$

$k > 0$, where $\sigma, \rho, p,$ and k are constants.

(A2) $f(u_1, \ldots, u_m)$ is nondecreasing with $u_i \in L_m$, and there exists constants $N > 0$ and $\lambda > 0$ such that

$$\lim_{i \to \infty} \inf_{u_i \geq N} \frac{f(u_1, \ldots, u_m)}{u_i} \geq \lambda, \quad u_i \geq N, \quad i \neq i_0.$$

(4)

If there exists a function $\Phi(t, u, v) \in X$, such that for any $l(t) \in C^1((t_0, \infty), R_+)$, $r(t) \in C^1((t_0, \infty), R)$ and $T_0 \geq t_0$,

$$\limsup_{t \to \infty} \int_{T_0}^t \left\{ \Phi^2(s, u, v) \psi(s) \frac{\phi(s)}{k} \right\} ds > 0,$$

where

$$\phi(t) = l(t) \exp \left\{ -2k \int_{T_0}^t r(s) \, ds \right\},$$

$$\psi(t) = \phi(t) \left\{ \lambda \int_{a}^{b} q(t, \xi) \, d\mu(\xi) + kr^2(t) \right\},$$

$$r'(t) - \frac{\rho'(t)}{2k} - \rho^2(t) \right\}.$$

(6)

Then (1) is oscillatory.

Proof. Suppose to the contrary that (1) has a nonoscillatory solution $x(t)$. Without loss of generality, we may suppose that $x(t)$ is an eventually positive solution. From the conditions of $g_i(t, \xi)$ and $f(u_1, \ldots, u_m)$, there exists a $T_0 \geq t_0$, such that

$$x(t) > 0, \quad x[g_i(t, \xi)] > 0,$$

$$f(x[g_1(t, \xi)], \ldots, x[g_m(t, \xi)]) > 0, \quad t \geq T_0, \quad i \in L_m.$$

(7)

By Lemma 3, there exists a $t_1 \geq T_0$ such that $x^{(n-1)}(t) > 0, \quad t \geq t_1$. Thus, we have

$$x^{(n)}(t) = -p(t)x^{(n-1)}(t)$$

$$-\int_{a}^{b} q(t, \xi) f(x[g_1(t, \xi)], \ldots, x[g_m(t, \xi)]) \, d\mu(\xi)$$

$$\times \exp \left\{ -\int_{a}^{b} q(t, \xi) f(x[g_1(t, \xi)], \ldots, x[g_m(t, \xi)]) \, d\mu(\xi) \right\}.$$

(8)

By Lemma 1, there exists a $t_2 > t_1$ such that $x'(t) > 0, t \geq t_2$. Further, by Lemma 2, there exist constant $M_\theta > 0$ and $t_3 \geq t_2$, such that

$$x'[\sigma(t)/2] \leq M_\theta t^{n-2} x^{(n-1)}[\sigma(t)]$$

$$\geq M_\theta t^{n-2} x^{(n-1)}(t), \quad t \geq t_3.$$

(9)

Set

$$y(t) = \phi(t) \left\{ \frac{x^{(n-1)}(t)}{x[\sigma(t)/2]} + r(t) + \frac{\rho(t)}{2k} \right\},$$

(10)

then

$$y'(t) = \frac{\phi'(t)}{\phi(t)} y(t) + \phi(t)$$

$$\times \left\{ -\int_{a}^{b} q(t, \xi) f(x[g_1(t, \xi)], \ldots, x[g_m(t, \xi)]) \right\} \frac{x^{(n-1)}(t)}{x[\sigma(t)/2]}$$

$$\times d\mu(\xi) - p(t) x^{(n-1)}(t)$$

$$\times \frac{\sigma(t)/2}{x[\sigma(t)/2]}$$

$$- \frac{\sigma'(t)x^{(n-1)}(t)x'[\sigma(t)/2]}{2k^2}$$

$$+ r'(t) + \frac{\rho'(t)}{2k}. $$

(11)

In view of (A1), (A2) and the definition of $y(t), \phi(t)$, we have

$$y'(t) \leq \frac{\phi'(t)}{\phi(t)} y(t) + \phi(t)$$

$$\times \left\{ -p(t) x^{(n-1)}(t) x'[\sigma(t)/2] - \lambda \int_{a}^{b} q(t, \xi) d\mu(\xi)$$

$$- k \left\{ \frac{x^{(n-1)}(t)}{x[\sigma(t)/2]} \right\}^2 + r'(t) + \frac{\rho'(t)}{2k} \right\}$$

$$= - \frac{k y^2(t)}{\phi(t)} + \frac{l'(t) y(t)}{l(t)} - \psi(t),$$

(12)

where $\psi(t) = \phi(t)\left\{ \lambda \int_{a}^{b} q(t, \xi) d\mu(\xi) + kr^2(t) - r'(t) - p(t)/2k - \rho^2(t)/4k \right\}$.

Multiplying (12) by $\Phi^2(t, u, v)$ and integrating from t_3 to t, we have
\[
\int_{t_3}^{t} \Phi^2(s, u, v) \psi(s) \, ds \\
\leq \int_{t_3}^{t} \Phi^2(s, u, v) \left[-y'(s) + \frac{l'(s)}{l(s)} y(s) \right] \, ds \\
- \int_{t_3}^{t} \Phi^2(s, u, v) \frac{k \gamma^2(s)}{\phi(s)} \, ds.
\]
Integrating by parts and using integral averaging technique, we have
\[
\int_{t_3}^{t} \Phi^2(s, u, v) \psi(s) \, ds \\
\leq \int_{t_3}^{t} \frac{\phi(s)}{k} \left[\Phi'(s, u, v) + \frac{l'(s)}{l(s)} \Phi(s, u, v) \right]^2 \, ds \\
- \int_{t_3}^{t} \Phi'(s, u, v) y(s) \left[\frac{k}{\phi(s)} - \frac{\phi(s)}{k} \right] \left[\Phi'(s, u, v) + \frac{l'(s)}{l(s)} \Phi(s, u, v) \right]^2 \, ds \\
\leq \int_{t_3}^{t} \frac{\phi(s)}{k} \left[\Phi'(s, u, v) + \frac{l'(s)}{l(s)} \Phi(s, u, v) \right]^2 \, ds,
\]
thus
\[
\limsup_{t \to \infty} \int_{t_3}^{t} \Phi^2(s, u, v) \psi(s) \, ds - \frac{\phi(s)}{k} \\
\times \left[\Phi'(s, u, v) + \frac{l'(s)}{l(s)} \Phi(s, u, v) \right]^2 \, ds \leq 0,
\]
which contradicts (5). This completes the proof of Theorem 4.

If we choose $\Phi(t, u, v) = \sqrt{H_1(t, u)H_2(u, v)}$, where $H_1, H_2 \in Y$. By Theorem 4, we have the following results.

Corollary 5. Assume that (3), (A1), and (A2) hold. If there exist $H_1, H_2 \in \mathcal{Y}$ such that for each $T_0 \geq t_0$,
\[
\limsup_{t \to \infty} \int_{t_0}^{t} H_1(s, u) H_2(u, v) \\
\times \left\{ \psi(s) - \frac{[h_1(s, u) + h_2(u, v)]^2}{4k} \right\} \, ds > 0,
\]
then (1) is oscillatory.

Corollary 6. Assume that (3), (A1), and (A2) hold. If there exists a constant $\alpha > 1/2$ such that for each $T_0 \geq t_0$,
\[
\limsup_{t \to \infty} \int_{t_0}^{t} \frac{s - u^2}{u^3} \psi(s) \, ds > \frac{\alpha}{2(1 - \alpha/2)},
\]
where $\psi(t)$ is defined as in Corollary 5. Then (1) is oscillatory.

Theorem 7. Assume that (3) holds, and
\[
(A_2) \quad \text{there exist functions } \gamma_i(t) \in C^1([t_0, \infty), R_+), \text{ such that } \gamma_i(t) \leq \min_{t \leq s \leq \infty} \left[\inf_{t \leq s \leq \infty} \{g_i(t, \xi)\} \right] \text{ and } \lim_{t \to \infty} \gamma_i(t) = \infty, \gamma_i'(t) \geq 0, \text{ where } \gamma_i \text{ are constants, } i \in I_m;
\]
\[
(A_3) \quad \text{there exist constants } \lambda_i \in [0, 1] \text{ and } \lambda > 0, \text{ such that } \sum_{i=1}^{m} \lambda_i y_i > 0, \frac{\sum_{i=1}^{m} \lambda_i}{\sum_{i=1}^{m} \lambda_i u_1 + \ldots + \lambda_m u_m} \geq \lambda.
\]
If there exists a function $\Phi \in X$, such that for any $l(t) \in C^1([t_0, \infty), R_+), r(t) \in C^1([t_0, \infty), R),$ and $T_0 \geq t_0$, and (5) holds, where $\phi(t)$ is defined as in Theorem 4:
\[
\psi(t) = \phi(t) \left\{ \int_{a}^{b} q(t, \xi) \, d\mu(\xi) \\
+ k \rho^2(t) - r'(t) - \frac{p'(t)}{2k} - \frac{p^2(t)}{4k} \right\},
\]
then (1) is oscillatory.

Proof. Suppose to the contrary that (1) has a nonoscillatory solution $x(t)$. Without loss of generality, we may suppose that $x(t)$ is an eventually positive solution. Similar to the proof of Theorem 4, there exists a $T_0 \geq t_0$ such that $x[g_i(t, \xi)] > 0$, $x[\gamma_i(t)] > 0$, $x'(t) > 0$, $f(x[g_i(t, \xi)], \ldots, x[g_m(t, \xi)]) > 0$, $x^{(n-1)}(t) > 0$, and $x^{(m)}(t) \leq 0$, for $t \geq T_0$, $i \in I_m$. Then
\[
y(t) = \phi(t) \left\{ \frac{x^{(n-1)}(t)}{\sum_{i=1}^{m} \lambda_i x \gamma_i(t) / 2} + r(t) + \frac{p(t)}{2k} \right\},
\]
where h_1 and h_2 are defined by $\partial H_1(t, u) / \partial u = h_1(t, u)H_1(t, u), \partial H_2(u, v) / \partial u = h_2(u, v)H_2(u, v), and$
\[
\psi(t) = \lambda \int_{a}^{b} q(t, \xi) \, d\mu(\xi) - \frac{p'(t)}{2k} - \frac{p^2(t)}{4k}.
\]
then

\[y'(t) = \frac{\phi'(t)}{\phi(t)} y(t) + \phi(t) \]

\[\times \left\{ - p(t) \frac{x^{(n-1)}(t)}{\sum_{j=1}^{m} \lambda_j x^{[\gamma_j](t)/2]} - \int_a^b q(t, \xi) f\left(x\left[g_1(t, \xi), \ldots, x[g_m(t, \xi)]\right]\right. \right. \]

\[\times \sum_{i=1}^{m} \lambda_i x^{[\gamma_i]}(t) y'(t) + r'(t) + \frac{\rho'(t)}{2k} \right\}. \]

(22)

In view of (A3), (A4) and the definition of \(y(t), \phi(t), \) we have

\[y'(t) \leq - \frac{ky_d(t)}{\phi(t)} + \frac{l'(t) y(t)}{l(t)} - \psi(t). \]

(23)

The following proof is similar to Theorem 4, and we omit the details. This completes the proof of Theorem 7.

Similar to Corollaries 5 and 6, we have the following corollaries.

Corollary 8. Assume that (3), (A3), and (A4) hold. If there exist \(H_1, H_2 \in Y \) such that for each \(T_0 \geq t_0, \) and (16) holds, where \(h_1, h_2 \) are defined as in Corollary 5:

\[\psi(t) = \int_a^b q(t, \xi) d\mu(\xi) - \frac{\rho'(t)}{2k} - \frac{\rho^2(t)}{4k}. \]

(24)

Then (1) is oscillatory.

Corollary 9. Assume that (3), (A3), and (A4) hold. If there exist a constant \(\alpha > 1/2 \) such that for each \(T_0 \geq t_0, \) and (18) holds, where \(\psi(t) \) is defined as in Corollary 8, then (1) is oscillatory.

For the case of the function \(f(u_1, \ldots, u_m) \) with monotonicity, we have the following theorem.

Theorem 10. Assume that (3), (A3) hold, and

\((A_3) \) there exist \(\partial f/\partial u_i \) and \(\partial f/\partial u_i \geq \lambda_i \geq 0, \) such that \(\sum_{i=1}^{m} \lambda_i y_i(t) > 0, \) where \(\lambda_i \) is constants. \(y_i^{(n-2)} \geq \rho_i^{(n-2)} \geq 0, (M_0/2) \sum_{j=1}^{m} \lambda_j y_j^{(n-2)}(t) =: k > 0, \) in which \(\rho_i \) and \(k \) are constants, \(i \in I_m. \)

If there exists a function \(\Phi \in X, \) such that for any \(l(t) \in C^1([t_0, \infty), R), r(t) \in C^1([t_0, \infty), R), \) and (5) holds, where \(\phi(t) \) is defined as in Theorem 4:

\[\psi(t) = \phi(t) \left\{ \int_a^b q(t, \xi) d\mu(\xi) \right. \]

\[+ kr^2(t) - r'(t) - \frac{\rho'(t)}{2k} - \frac{\rho^2(t)}{4k} \].

(25)

Then (1) is oscillatory.

Proof. Suppose to the contrary that (1) has a nonoscillatory solution \(x(t). \) Without loss of generality, we may suppose that \(x(t) \) is an eventually positive solution. Similar to the proof of Theorem 4, there exists a \(T_0 \geq t_0, \) when \(t \geq T_0, \) and we have \(x[g_1(t, \xi)], \ldots, x[g_m(t, \xi)] > 0, r'(t) > 0, \)

\(f(x[g_1(t, \xi)], \ldots, x[g_m(t, \xi)]) > 0, x^{(n-1)}(t) > 0, \) and \(x^{(n)}(t) \leq 0, i \in I_m. \) Set

\[y(t) = \phi(t) \left\{ \int_a^b q(t, \xi) d\mu(\xi) \right. \]

\[+ r(t) + \frac{\rho(t)}{2k} \].

(26)

then

\[y'(t) \]

\[= \frac{\phi'(t)}{\phi(t)} y(t) + \phi(t) \]

\[\times \left\{ - p(t) \frac{x^{(n-1)}(t)}{f(x[y_1(t)/2] + \cdots + x[y_m(t)/2])} \right. \]

\[- \int_a^b q(t, \xi) f\left(x[g_1(t, \xi)], \ldots, x[g_m(t, \xi)]\right) f(x[y_1(t)/2] + \cdots + x[y_m(t)/2]) \]

\[\times \sum_{i=1}^{m} \lambda_i x^{[\gamma_i]}(t) y'(t) + r'(t) + \frac{\rho'(t)}{2k} \right\}. \]

(27)

In view of (A3), (A4) and the definition of \(y(t), \phi(t), \) we have

\[y'(t) \leq - \frac{ky^2(t)}{\phi(t)} + \frac{l'(t) y(t)}{l(t)} - \psi(t). \]

(28)

The following proof is similar to Theorem 4, we omit the details. This completes the proof of Theorem 10.

Similar to Corollaries 5 and 6, we have the following corollaries.
Corollary 11. Assume that (3), (A3), and (A5) hold. If there exist \(H_1, H_2 \in Y\) such that for each \(T_0 \geq t_0\), and (16) holds, where \(h_1, h_2\) are defined as in Corollary 5:

\[
\psi(t) = \int_a^b q(t, \xi) d\mu(\xi) - \frac{p'(t)}{2k} - \frac{p^2(t)}{4k} - \frac{M_\Theta}{2s^2}.
\]

Then (1) is oscillatory.

Corollary 12. Assume that (3), (A3), and (A5) hold. If there exists a constant \(\alpha > 1/2\) such that for each \(T_0 \geq t_0\), and (18) holds, where \(\psi(t)\) is defined as in Corollary 11. Then (1) is oscillatory.

3. Examples

Example 13. Consider the following equation

\[
\dot{x}^{(4)}(t) + \frac{1}{t} x^{(3)}(t) + \int_0^{\pi/2} \frac{2x(t + \sin \xi)}{t^2 - \exp(-x^2(t + \cos \xi))} d\xi = 0,
\]

\(t \geq 1,
\]

(30)

where \(u_1 = x(t + \cos \xi), u_2 = x(t + \sin \xi)\), obviously \(f(u_1, u_2) = 1 + 3u_1^3 + u_2^5\), choosing \(\lambda_i = 1, \gamma_i = 1, \rho_i = 1, \) and \(i = 1, 2\), then \(k = M_\Theta\). By Corollary 12, then (30) is oscillatory.

Example 14. Consider the following equation

\[
x^{(4)}(t) + \frac{1}{t} x^{(3)}(t) + \int_0^{\pi/2} \frac{2x(t + \sin \xi)}{t^2 - \exp(-x^2(t + \cos \xi))} d\xi = 0,
\]

(33)

where \(f(u_1, u_2) = 1 + 3u_1^3 + u_2^5\), obviously \(\partial f/\partial u_1 = 1 + 3u_1^2 \geq 1, \partial f/\partial u_2 = 1 + 5u_2^4 \geq 1\). Choosing \(\lambda_i = 1, \gamma_i = 1, \rho_i = 1, \) and \(i = 1, 2\), then \(k = M_\Theta\). By Corollary 12, then (33) is oscillatory.

Acknowledgments

The authors would like to thank the reviewers for their valuable suggestions and comments. The research was supported by the Natural Science Foundation of China (11271106).

References
