Research Article

Commutators of Multilinear Calderón-Zygmund Operator and BMO Functions in Herz-Morrey Spaces with Variable Exponents

Canqin Tang, Qing Wu, and Jingshi Xu

1 Department of Mathematics, Dalian Maritime University, Dalian 116026, China
2 Department of Mathematics, Hainan Normal University, Haikou 571158, China

Correspondence should be addressed to Jingshi Xu; jingshixu@126.com

Received 25 December 2013; Accepted 25 April 2014; Published 25 May 2014

Academic Editor: Yongsheng S. Han

Copyright © 2014 Canqin Tang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We obtain the boundedness of a commutator generated by multilinear Calderón-Zygmund operator and BMO functions in Herz-Morrey spaces with variable exponents.

1. Introduction

In recent decades, variable exponent function spaces have attracted much attention. Since Kováčik and Rákosník [1] clarified fundamental properties of the variable Lebesgue and Sobolev spaces, there are many spaces studied, such as Besov and Triebel-Lizorkin spaces with variable exponents, Hardy spaces with variable exponents, Bessel potential spaces with a variable exponent, and Herz-Morrey spaces with variable exponents; see [2–13]. Recently, multilinear operators and their commutators in variable exponent function spaces are also intensively studied by a significant number of authors, such as multilinear commutators of multilinear singular integral with Lipschitz functions and BMO functions, respectively, in [14–19], multilinear commutators of BMO functions and multilinear singular integral operators with nonsmooth kernels in [20, 21], a vector-estimate of higher order commutators on Herz-Morrey spaces with variable exponent in [22], maximal multilinear commutators and maximal iterated commutators generated by multilinear operators and Lipschitz functions in [23], and weighted estimates for vector-valued commutators of multilinear operators in [24].

Motivated by the above results, in this paper, we will consider the boundedness of a commutator generated by a multilinear Calderón-Zygmund operator and BMO functions on the variable Herz-Morrey spaces.

To state the main result of this paper, we need to recall more notations.

Let T be a multilinear singular integral operator which is initially defined on the m-fold product of the Schwartz space $\mathcal{S}(\mathbb{R}^n)$. Its values are taken in the space of tempered distributions $\mathcal{S}'(\mathbb{R}^n)$ such that, for $x \notin \bigcap_{j=1}^m \text{supp } f_j$, $\hat{f} = (f_1, \ldots, f_m)$,

$$ T \hat{f}(x) = \int_{\mathbb{R}^{mn}} K(x, y_1, \ldots, y_m) \prod_{i=1}^m f_i(y_i) \, dy_1 \cdots dy_m, \quad (1) $$

where $f_1, \ldots, f_m \in L^\infty_0(\mathbb{R}^n)$ (the space of compactly supported bounded functions). Here, the kernel K is a function in $(\mathbb{R}^n)^{m+1}$ away from the diagonal $y_0 = y_1 = \cdots = y_m$ and satisfies the standard estimates

$$ |K(x, y_1, \ldots, y_m)| \leq A (|x-y_1| + \cdots + |x-y_m|)^{-mn}, $$

$$ |K(x, y_1, \ldots, y_m) - K(x', y_1, \ldots, y_m)| \leq \frac{A |x-x'|^p}{(|x-y_1| + \cdots + |x-y_m|)^{mn+\varepsilon}} \quad (2) $$

provided that $|x-x'| \leq (1/2) \max(|x-y_1| + \cdots + |x-y_m|)$, and, for each $1 \leq i \leq m$,

$$ |K(x, y_1, \ldots, y_i, \ldots, y_m) - K(x, y_1, \ldots, y_i', \ldots, y_m)| \leq \frac{A |y_i - y_i'|^p}{(\sum_{j=1}^m |x-y_j|)^{mn+\varepsilon}} \quad (3) $$

1. Introduction

In recent decades, variable exponent function spaces have attracted much attention. Since Kováčik and Rákosník [1] clarified fundamental properties of the variable Lebesgue and Sobolev spaces, there are many spaces studied, such as Besov and Triebel-Lizorkin spaces with variable exponents, Hardy spaces with variable exponents, Bessel potential spaces with a variable exponent, and Herz-Morrey spaces with variable exponents; see [2–13]. Recently, multilinear operators and their commutators in variable exponent function spaces are also intensively studied by a significant number of authors, such as multilinear commutators of multilinear singular integral with Lipschitz functions and BMO functions, respectively, in [14–19], multilinear commutators of BMO functions and multilinear singular integral operators with nonsmooth kernels in [20, 21], a vector-estimate of higher order commutators on Herz-Morrey spaces with variable exponent in [22], maximal multilinear commutators and maximal iterated commutators generated by multilinear operators and Lipschitz functions in [23], and weighted estimates for vector-valued commutators of multilinear operators in [24].

Motivated by the above results, in this paper, we will consider the boundedness of a commutator generated by a multilinear Calderón-Zygmund operator and BMO functions on the variable Herz-Morrey spaces.

To state the main result of this paper, we need to recall more notations.

Let T be a multilinear singular integral operator which is initially defined on the m-fold product of the Schwartz space $\mathcal{S}(\mathbb{R}^n)$. Its values are taken in the space of tempered distributions $\mathcal{S}'(\mathbb{R}^n)$ such that, for $x \notin \bigcap_{j=1}^m \text{supp } f_j$, $\hat{f} = (f_1, \ldots, f_m)$,

$$ T \hat{f}(x) = \int_{\mathbb{R}^{mn}} K(x, y_1, \ldots, y_m) \prod_{i=1}^m f_i(y_i) \, dy_1 \cdots dy_m, \quad (1) $$

where $f_1, \ldots, f_m \in L^\infty_0(\mathbb{R}^n)$ (the space of compactly supported bounded functions). Here, the kernel K is a function in $(\mathbb{R}^n)^{m+1}$ away from the diagonal $y_0 = y_1 = \cdots = y_m$ and satisfies the standard estimates

$$ |K(x, y_1, \ldots, y_m)| \leq A (|x-y_1| + \cdots + |x-y_m|)^{-mn}, $$

$$ |K(x, y_1, \ldots, y_m) - K(x', y_1, \ldots, y_m)| \leq \frac{A |x-x'|^p}{(|x-y_1| + \cdots + |x-y_m|)^{mn+\varepsilon}} \quad (2) $$

provided that $|x-x'| \leq (1/2) \max(|x-y_1| + \cdots + |x-y_m|)$, and, for each $1 \leq i \leq m$,

$$ |K(x, y_1, \ldots, y_i, \ldots, y_m) - K(x, y_1, \ldots, y_i', \ldots, y_m)| \leq \frac{A |y_i - y_i'|^p}{(\sum_{j=1}^m |x-y_j|)^{mn+\varepsilon}} \quad (3) $$
provided that \(|y_i - y'_i| \leq (1/2) \max|\{x - y_1| + \cdots + |x - y_m|\}|, \)
where \(A\) and \(e\) are positive constants.

Such kernels are called the \(m\)-linear Calderón-Zygmund kernels and the collection of such functions is denoted by \(m\)-CZK(A, e) in \([25]\).

Let \(T\) be as in (1) with an \(m\)-CZK(A, e) kernel. If, for some \(1 < q_1, q_2, \ldots, q_m < \infty, T\) is bounded from \(L^{q_1} \times L^{q_2} \times \cdots \times L^{q_m}\) to \(L^q\) with \(1/q_1 + 1/q_2 + \cdots + 1/q_m = 1/q\), then we say \(T\) is an \(m\)-linear Calderón-Zygmund operator. Grafakos and Torres in \([25]\) showed that if \(T\) is an \(m\)-linear Calderón-Zygmund operator, then \(T\) is bounded from \(L^{q_1} \times L^{q_2} \times \cdots \times L^{q_m}\) to \(L^q\) for any \(1 < q_1, q_2, \ldots, q_m < \infty\) such that \(1/q_1 + 1/q_2 + \cdots + 1/q_m = 1/q\). Then, Grafakos and Torres in \([26]\) obtained weighted norm inequalities for multilinear Calderón-Zygmund operators.

If \(f \in L^1_{\text{loc}}(\mathbb{R}^n)\) (the set of all complex-valued locally integrable functions on \(\mathbb{R}^n\)), set
\[
\|b\|_* := \sup_B \frac{1}{|B|} \int_B |b(x) - b_B| \, dx,
\]
where the supremum is taken over all balls in \(\mathbb{R}^n\), \(b_B\) is the mean of \(b\) on \(B\), and what follows \([E]\) is the Lebesgue measure of measurable set \(E\) in \(\mathbb{R}^n\). A function \(b\) is called bounded mean oscillation if \(\|b\|_* < \infty\) and \(\text{BMO}(\mathbb{R}^n)\) is the set of all locally integrable functions \(b\) on \(\mathbb{R}^n\) such that \(\|b\|_* < \infty\).

Let \(\mathring{b} = (b_1, \ldots, b_m)\) and \(b_j \in \text{BMO}(\mathbb{R}^n)\) for \(1 \leq j \leq m\).

We will consider the commutator \([\mathring{b}, T]\), which is defined for suitable functions \(f_1, \ldots, f_m\) by
\[
[\mathring{b}, T]f(x) := \sum_{\sigma} (-1)^{\sigma'} b_\sigma (x) T b_{\sigma'} f(x),
\]
where \(\sigma = (s_1, \ldots, s_m)\), \(\sigma'\) denotes a subset of \(\{1, 2, \ldots, m\}\), \(\sigma'\) denotes the complement of \(\sigma\) in \(\{1, 2, \ldots, m\}\), \(|\sigma'|\) denotes the number of elements of \(\sigma'\), \(b_\sigma (x) = \prod_{j \in \sigma} b_j (x), b_{\sigma'} = (g_1, \ldots, g_m), \) when \(j \notin \sigma', g_j = b_j f_j, \) otherwise, \(g_j = f_j\).

Definition 1. Let \(p(\cdot) : \mathbb{R}^n \rightarrow [1, \infty)\) be a measurable function.

(i) The Lebesgue space with variable exponent \(L^{p(\cdot)}(\mathbb{R}^n)\) is defined by
\[
L^{p(\cdot)}(\mathbb{R}^n) := \left\{ f \; \text{is measurable:} \int_{\mathbb{R}^n} \left(\frac{|f(x)|}{\lambda} \right)^{p(x)} \, dx < \infty \right\}
\]
for some \(\lambda > 0\).

(ii) The space \(L^{p(\cdot)}_{\text{loc}}(\mathbb{R}^n)\) is defined by
\[
L^{p(\cdot)}_{\text{loc}}(\mathbb{R}^n) := \left\{ f : f|_K \in L^{p(\cdot)}(\mathbb{R}^n) \; \text{for all compact subsets} \; K \subset \mathbb{R}^n \right\},
\]
where, and in what follows, \(\chi_S\) denotes the characteristic function of a measurable set \(S \subset \mathbb{R}^n\).

\(L^{p(\cdot)}(\mathbb{R}^n)\) is a Banach function space when equipped with the norm
\[
\|f\|_{L^{p(\cdot)}} := \inf \left\{ \lambda > 0 : \int_{\mathbb{R}^n} \left(\frac{|f(x)|}{\lambda} \right)^{p(x)} \, dx \leq 1 \right\}.
\]

Letting \(p(\cdot) : \mathbb{R}^n \rightarrow (0, \infty)\), we denote
\[
p_+ := \inf_{x \in \mathbb{R}^n} p(x), \quad p_+ := \inf_{x \in \mathbb{R}^n} p(x).
\]

The set \(\mathcal{P}(\mathbb{R}^n)\) consists of all \(p(\cdot)\) satisfying \(p_+ > 1\) and \(p_+ < \infty\); \(\mathcal{P}^0(\mathbb{R}^n)\) consists of all \(p(\cdot)\) satisfying \(p_+ > 0\) and \(p_+ < \infty\). \(L^{p(\cdot)}\) can be similarly defined as mentioned above for \(p(\cdot) \in \mathcal{P}(\mathbb{R}^n)\). \(p(\cdot)\) means the conjugate exponent of \(p(\cdot)\) that means \(1/p(\cdot) + 1/p'(\cdot) = 1\).

Let \(f \in L^{1}_{\text{loc}}(\mathbb{R}^n)\). Then the standard Hardy-Littlewood maximal function of \(f\) is defined by
\[
Mf (x) = \sup_{x \in B} \frac{1}{|B|} \int_B |f(y)| \, dy, \quad \forall x \in \mathbb{R}^n,
\]
Definition 3 (see [29, Definition 2]). Let $q \in (0, \infty]$, $p(\cdot) \in P(R^n)$, and $\alpha(\cdot) : R^n \to R$ with $\alpha \in L^\infty(R^n)$. The homogeneous Herz space $K^\alpha_{q,p}(R^n)$ is defined as the set of all $f \in L^p_{loc}(R^n \setminus \{0\})$ such that
\[
\left\| f \right\|_{K^\alpha_{q,p}(R^n)} := \left\{ \sum_{k \in Z} \left\| 2^{k\alpha} f \chi_k \right\|_{p(\cdot)} \right\}^{1/q} < \infty, \tag{15}
\]
with the usual modifications when $q = \infty$.

Definition 4 (see [30, Definition 2]). Let $q < \infty$, $p(\cdot) \in P(R^n)$, $0 \leq \lambda < \infty$, and $\alpha(\cdot) : R^n \to R$ with $\alpha \in L^\infty(R^n)$. The Herz-Morrey space $MK^\alpha_{q,p}(R^n)$ with variable exponents is defined by
\[
MK^\alpha_{q,p}(R^n) := \left\{ f \in L^p_{loc}(R^n \setminus \{0\}) : \left\| f \right\|_{MK^\alpha_{q,p}(R^n)} < \infty \right\}, \tag{16}
\]
where
\[
\left\| f \right\|_{MK^\alpha_{q,p}(R^n)} := \sup_{L \in Z} 2^{-LA} \left(\sum_{k=-\infty}^L \left\| 2^{k\alpha} f \chi_k \right\|_{L^p(\cdot)(R^n)} \right)^{1/q} \tag{17}
\]
If $\alpha(\cdot)$ is a constant, then $MK^\alpha_{q,p}(R^n) = MK^\alpha_{\lambda}(R^n)$ was defined in [30]. If $\lambda = 0$, then $MK^\alpha_{q,p}(R^n) = MK^\alpha_{q,p}(R^n)$. If both $\alpha(\cdot)$ and $p(\cdot)$ are constant and $\lambda = 0$, then $MK^\alpha_{q,p}(R^n) = MK^\alpha_{\lambda}(R^n)$ is the classical Herz space in [31].

Lemma 5 (see [30, Lemma 1 and (10)]). If $p(\cdot) \in B(R^n)$, then there exist constants $\delta_1, \delta_2 \in (0, 1)$ and $C > 0$ such that, for all balls $B \in R^n$ and all measurable subsets $S \subset B$,
\[
\begin{align*}
\left\| x \right\|_{L^p(\cdot)(R^n)} &\leq C \left\| \frac{S}{|B|} \right\|_{\delta_1}, \tag{18} \\
\left\| x \right\|_{L^p(\cdot)(R^n)} &\leq C \left\| \frac{S}{|B|} \right\|_{\delta_2}.
\end{align*}
\]
There is a position to state our result.

Theorem 6. Let $b_1 \in BMO(R^n)$ and $p(\cdot), p_i(\cdot) \in B(R^n)$ satisfy $1/p(x) = 1/p_1(x) + 1/p_2(x) + \cdots + 1/p_m(x)$, $1 < p_i \leq p_i^* < n/A_i$, $(p_i(\cdot)/p_i^*)^i \in B(R^n)$ for some $0 < p_* < p_\ast$, $i = 1, 2, \ldots, m$. Let $\lambda_i < q_i < \infty$, $0 \leq \lambda_i < \infty$ and $\alpha(\cdot) \in L^\infty(R^n) \cap \mathcal{S}_{0}^\log\infty(R^n) \cap \mathcal{S}_{\infty}^\log\infty(R^n)$ for $i = 1, 2, \ldots, m$ with
\[
\lambda_j - n\delta_1 < \alpha^i_j < \alpha^i_+ < n\delta_2, \tag{19}
\]
where $\delta_1, \delta_2 \in (0, 1)$ are the constants appearing in (18). Suppose that $\lambda = \sum_{i=1}^m \lambda_i$, $\alpha = \sum_{i=1}^m \alpha_i$, and $1/q = \sum_{i=1}^m (1/q_i)$. Then
\[
\left\| f \right\|_{MK^\alpha_{q,p}(R^n)} \leq C \left\| b \right\| \left\| f \right\|_{MK^\alpha_{q,p}(R^n)} \tag{20}
\]
with the constant $C > 0$ independent of $\tilde{f} = (f_1, f_2, \ldots, f_m)$.

Remark 7. Let $\lambda_j = 0$, and then the commutator $[\tilde{b}, T]$ is bounded from the product of variable exponents Herz spaces $K^\alpha_{q_1,p_1}(R^n) \times K^\alpha_{q_2,p_2}(R^n) \times \cdots \times K^\alpha_{q_m,p_m}(R^n)$ to variable exponents Herz space $K^\alpha_{q_1,p_1}(R^n)$ when $-n\delta_1 < \alpha^i_+ < n\delta_2$.

Finally, we point out that C denotes a positive constant which may be different at different occurrences.

2. Proof of the Main Result

To give our proof, we need some lemmas.

Lemma 8 (see [32, Proposition 2]). If $\alpha(\cdot) \in L^\infty(R^n) \cap \mathcal{S}_{0}^\log\infty(R^n) \cap \mathcal{S}_{\infty}^\log\infty(R^n)$, $0 \leq \lambda < \infty$, $p(\cdot) \in B(R^n)$, and $q \in (0, \infty)$, then
\[
\left\| f \right\|_{MK^\alpha_{q,p}(R^n)} \leq C \left\{ \sup_{L \in Z} 2^{-LA} \left(\sum_{k=-\infty}^L \left\| 2^{k\alpha} f \chi_k \right\|_{L^p(\cdot)(R^n)} \right)^{1/q} \right\}, \tag{21}
\]
where C is a positive constant.

Lemma 9 (see [30, Lemma 2]). If $p(\cdot) \in B(R^n)$, then there exists a constant $C > 0$ such that, for all balls $B \in R^n$,
\[
C^{-1} \leq \left\| \frac{X_B}{X_{L^p(\cdot)(R^n)}} \right\|_{\lambda} \leq C. \tag{22}
\]

Lemma 10 (see [29, Lemma 3]). Let k be a positive integer. Then one has that, for all $b \in BMO(R^n)$ and all $i, j \in Z$ with $j > i$,
\[
C^{-1} \left\{ \left\| b \right\| \right\}^k \leq \left\{ \frac{1}{R_{ball}} \left\| \frac{X_B}{X_{L^p(\cdot)(R^n)}} \right\| \left(\left\| b - b_B \right\| X_B \right) \right\} \leq C \left\{ \left\| b \right\| \right\}^k \tag{23}
\]
where $\left\| b \right\|$ is the k-th norm of b.

In fact, if $k = 1$, then, from inequalities (23), for all balls B and $i, j \in Z$ with $j > i$, we have
\[
\left\| \left(b - b_B \right) X_B \right\|_{L^p(\cdot)(R^n)} \leq C \left\| b \right\| \left\| X_B \right\|_{L^p(\cdot)(R^n)} \tag{24}
\]
and
\[
\left\| \left(b - b_B \right) X_B \right\|_{L^p(\cdot)(R^n)} \leq C \left\| b \right\| \left\| X_B \right\|_{L^p(\cdot)(R^n)} \tag{25}
\]
where $\left\| b \right\|$ is the k-th norm of b.
Lemma 12 (see [14, Theorem 2.3]). Let $p, p_1, p_2 \in \mathcal{P}(\mathbb{R}^n)$ such that $1/p(x) = 1/p_1(x) + 1/p_2(x)$. Then there exists a constant C_{p,p_1} independent of the functions f and g such that

$$\|fg\|_{L^p(\mathbb{R}^n)} \leq C_{p,p_1} \|f\|_{L^{p_1}(\mathbb{R}^n)} \|g\|_{L^{p_2}(\mathbb{R}^n)}$$

(26)

holds for every $f \in L^{p_1}(\mathbb{R}^n)$ and $g \in L^{p_2}(\mathbb{R}^n)$.

Lemma 13 (see [14, Corollary 2.2]). Let T be a 2-linear Calderón-Zygmund operator and let b_1 and b_2 be BMO functions. Let $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$ such that there exists $0 < p_0 < p_\ast$ with $(p(\cdot)/p_\ast)^{\prime} \in \mathcal{B}(\mathbb{R}^n)$. If $p_1(\cdot), p_2(\cdot) \in \mathcal{B}(\mathbb{R}^n)$ such that $1/p(x) = 1/p_1(x) + 1/p_2(x)$, then there exists a constant C independent of functions $f_i \in L^{p_i}(\mathbb{R}^n)$ for $i = 1, 2$ such that

$$\|b_1, b_2, T\|_{L^{p_1}(\mathbb{R}^n)} \leq C \|b_1\|_{L^{p_0}(\mathbb{R}^n)} \|b_2\|_{L^{p_0}(\mathbb{R}^n)} \|f_1\|_{L^{p_1}(\mathbb{R}^n)} \|f_2\|_{L^{p_1}(\mathbb{R}^n)}$$

(27)

Proof of Theorem 6. Although our method is suitable for any multilinear operator, for simplicity, we only consider 2-linear operators. Let b_1 and b_2 be BMO functions. Since the set of all bounded compactly supported functions is dense in Herz-Morrey spaces with variable exponents, we let f_1 and f_2 be bounded compactly supported functions; then, for $x \in \mathbb{R}^n$, we write

$$[b_1, b_2, T](f_1, f_2)(x) = b_1(x)b_2(x)T(f_1, f_2)(x) - b_1(x)T(b_1f_1, f_2)(x)$$

(28)

$$- b_2(x)T(b_1f_1, b_2f_2)(x).$$

We write

$$f_i(x) = \sum_{i=\infty}^{\infty} f_i(x) \chi_i(x) =: \sum_{i=\infty}^{\infty} f_i(x), \quad i = 1, 2.$$

(29)

Then, for each $k \in \mathbb{Z}$, if $l_i \leq k - 1$, from Lemma 11, we obtain

$$\int_{\mathbb{R}^n} [b_1(x) - b_1(y)] f_i(y) \, dy$$

$$\leq C \int_{\mathbb{R}^n} [b_1(x) - b_1(y)] f_i(y) \, dy$$

$$+ \int_{\mathbb{R}^n} [b_2 - b_1(y)] f_i(y) \, dy$$

$$\leq C \|f_i\|_{L^{p_1}(\mathbb{R}^n)} \|b_1 - b_1\|_{L^{p_1}(\mathbb{R}^n)} \|\chi_i\|_{L^{p_1}(\mathbb{R}^n)}$$

(30)

and by using inequalities (18), (22), and (24), it follows that

$$\int_{\mathbb{R}^n} [b_1(x) - b_1(y)] f_i(y) \, dy \chi_i \leq C \|f_i\|_{L^{p_1}(\mathbb{R}^n)} \|b_1 - b_1\|_{L^{p_1}(\mathbb{R}^n)} \|\chi_i\|_{L^{p_1}(\mathbb{R}^n)}$$

$$+ \|b_2 - b_1\|_{L^{p_1}(\mathbb{R}^n)} \|\chi_i\|_{L^{p_1}(\mathbb{R}^n)}$$

$$\leq C \|f_i\|_{L^{p_1}(\mathbb{R}^n)} \|b_1 - b_1\|_{L^{p_1}(\mathbb{R}^n)} \|\chi_i\|_{L^{p_1}(\mathbb{R}^n)}$$

$$+ \|b_2 - b_1\|_{L^{p_1}(\mathbb{R}^n)} \|\chi_i\|_{L^{p_1}(\mathbb{R}^n)}$$

(31)

Similarly, if $l_i \geq k + 1$, we have

$$\int_{\mathbb{R}^n} [b_1(x) - b_1(y)] f_i(y) \, dy \chi_i$$

$$\leq C \|f_i\|_{L^{p_1}(\mathbb{R}^n)} \|b_1 - b_1\|_{L^{p_1}(\mathbb{R}^n)} \|\chi_i\|_{L^{p_1}(\mathbb{R}^n)}$$

$$+ \|b_2 - b_1\|_{L^{p_1}(\mathbb{R}^n)} \|\chi_i\|_{L^{p_1}(\mathbb{R}^n)}$$

$$\leq C \|b_i\|_{L^{p_1}(\mathbb{R}^n)} \|f_i\|_{L^{p_1}(\mathbb{R}^n)} (l_i - k) \|b_1\|_{L^{p_1}(\mathbb{R}^n)} \|b_2 - b_1\|_{L^{p_1}(\mathbb{R}^n)} \|\chi_i\|_{L^{p_1}(\mathbb{R}^n)}$$

(32)

As for the case $l_i = k$, we get

$$\int_{\mathbb{R}^n} [b_1(x) - b_1(y)] f_i(y) \, dy \chi_i \leq C \|f_i\|_{L^{p_1}(\mathbb{R}^n)} \|b_1 - b_1\|_{L^{p_1}(\mathbb{R}^n)} \|\chi_i\|_{L^{p_1}(\mathbb{R}^n)}$$

$$+ \|b_2 - b_1\|_{L^{p_1}(\mathbb{R}^n)} \|\chi_i\|_{L^{p_1}(\mathbb{R}^n)}$$

$$\leq C \|f_i\|_{L^{p_1}(\mathbb{R}^n)} \|b_1 - b_1\|_{L^{p_1}(\mathbb{R}^n)} \|\chi_i\|_{L^{p_1}(\mathbb{R}^n)}$$

$$+ \|b_2 - b_1\|_{L^{p_1}(\mathbb{R}^n)} \|\chi_i\|_{L^{p_1}(\mathbb{R}^n)}$$

(33)
where
\[E := \sup_{L \leq 0, L \in \mathbb{Z}} 2^{-\lambda \cdot L} \]
\[\times \left(\sum_{k=-\infty}^{L} \sum_{l_1=-\infty}^{L} \sum_{l_2=-\infty}^{L} [b_1, b_2, T] \right) \]
\[\times (f_1, f_2) \chi_k \left\| \right\|_{L^1(\mathbb{R}^n)}^{1/q} \]
\[F := \sup_{L > 0, L \in \mathbb{Z}} 2^{-\lambda \cdot L} \left(\sum_{k=-\infty}^{L} \sum_{l_1=-\infty}^{L} \sum_{l_2=-\infty}^{L} [b_1, b_2, T] (f_1, f_2) \chi_k \left\| \right\|_{L^1(\mathbb{R}^n)}^{1/q} \right) \]
\[+ 2^{-\lambda \cdot L} \left(\sum_{k=0}^{L} \sum_{l_1=-\infty}^{L} \sum_{l_2=-\infty}^{L} [b_1, b_2, T] (f_1, f_2) \chi_k \left\| \right\|_{L^1(\mathbb{R}^n)}^{1/q} \right) \]
\[(35) \]

Since the estimate of F is essentially similar to that of E, so it suffices to prove that E is bounded in Herz-Morrey spaces with variable exponents. It is easy to see that
\[E \leq C \sum_{i=1}^{9} I_i \]
\[(36) \]

where
\[I_1 := \sup_{L \leq 0, L \in \mathbb{Z}} 2^{-\lambda \cdot L} \]
\[\times \left(\sum_{k=-\infty}^{L} \sum_{l_1=-\infty}^{L} \sum_{l_2=-\infty}^{L} [b_1, b_2, T] \right) \]
\[\times (f_1, f_2) \chi_k \left\| \right\|_{L^1(\mathbb{R}^n)}^{1/q} \]
\[
I_8 := \sup_{L \leq 0, L \in Z} 2^{-LA} \left(\sum_{k=0}^{l} 2^{ka(0)q} \left(\sum_{l_1+k+2 \leq l_2=\infty}^{\infty} [b_1, b_2, T] \right) \right) \frac{1}{q_i} \times (f_{i_1}, f_{i_2}) \chi_k \left\| \right\|_{L^{p_i}(\mathbb{R}^n)}^{1/q_i},
\]

\[
I_9 := \sup_{L \leq 0, L \in Z} 2^{-LA} \left(\sum_{k=0}^{l} 2^{ka(0)q} \left(\sum_{l_1+k+2 \leq l_2=\infty}^{\infty} [b_1, b_2, T] \right) \right) \frac{1}{q_i} \times (f_{i_1}, f_{i_2}) \chi_k \left\| \right\|_{L^{p_i}(\mathbb{R}^n)}^{1/q_i}.
\]

Using the symmetry of \(f_{i_1} \) and \(f_{i_2} \), we only need to estimate \(I_1, I_2, I_3, I_4, I_5, I_6 \), because the estimates of \(I_2, I_3, \) and \(I_4 \) are analogous to those of \(I_5, I_7, \) and \(I_8 \), respectively. In what follows, we divide it into 6 steps.

Step 1. To estimate the term of \(I_1 \), we note that \(l_i \leq k - 2 \) for \(i = 1, 2 \). Thus, for \(x \in D_k, y_i \in D_{l_i} \),

\[
|x - y_i| \geq |x| - |y_i| > 2^{k-1} - 2^l \geq 2^{-2}. \tag{38}
\]

Then, for \(x \in D_k \), we get

\[
|K(x, y_1, y_2)| \leq C|x - y_1| + |x - y_2| \leq 2^{2k}. \tag{39}
\]

Therefore,

\[
[b_1, b_2, T] (f_{i_1}, f_{i_2}) (x) \leq C 2^{-2k} \sum_{i=1}^{2} \int_{\mathbb{R}^n} [b_i (x) - b_i (y_i)] f_{i_1} (y_i) dy_i. \tag{40}
\]

By Lemma 12 and inequality (31), we obtain

\[
\left\| \sum_{l_1+k+2 \leq l_2=\infty}^{\infty} [b_1, b_2, T] (f_{i_1}, f_{i_2}) \chi_k \right\|_{L^{p_i}(\mathbb{R}^n)} \leq C 2^{-2k} \sum_{i=1}^{2} \int_{\mathbb{R}^n} [b_i (x) - b_i (y_i)] f_{i_1} (y_i) dy_i \chi_k \leq C 2^{-2k} \left\| \sum_{l_1+k+2 \leq l_2=\infty}^{\infty} [b_1, b_2, T] (f_{i_1}, f_{i_2}) \chi_k \right\|_{L^{p_i}(\mathbb{R}^n)}
\]

\[
\leq C 2^{-2k} \left\| \sum_{i=1}^{2} \int_{\mathbb{R}^n} [b_i (x) - b_i (y_i)] f_{i_1} (y_i) dy_i \chi_k \right\|_{L^{p_i}(\mathbb{R}^n)} \leq C 2^{-2k} \left\| \sum_{i=1}^{2} \int_{\mathbb{R}^n} [b_i (x) - b_i (y_i)] f_{i_1} (y_i) dy_i \chi_k \right\|_{L^{p_i}(\mathbb{R}^n)} \leq C 2^{-2k} \left\| \sum_{i=1}^{2} \int_{\mathbb{R}^n} [b_i (x) - b_i (y_i)] f_{i_1} (y_i) dy_i \chi_k \right\|_{L^{p_i}(\mathbb{R}^n)}.
\]

Since \(1/q = 1/q_1 + 1/q_2 \), it follows that

\[
I_1 \leq C \sup_{L \leq 0, L \in Z} 2^{-LA} \left(\sum_{k=0}^{l} 2^{ka(0)q} \left[\prod_{i=1}^{2} \sum_{l_1+k+2 \leq l_2=\infty}^{\infty} (k - l_i) 2^{(l_i-k)\mu_i} \right] \right) \frac{1}{q_i} \times \left\| f_{i_1} \right\|_{L^{p_i}(\mathbb{R}^n)}^{1/q_i} \]

\[
\leq C \sup_{L \leq 0, L \in Z} \left(\sum_{k=0}^{l} 2^{ka(0)q} \left[\prod_{i=1}^{2} \sum_{l_1+k+2 \leq l_2=\infty}^{\infty} (k - l_i) 2^{(l_i-k)\mu_i} \right] \right) \frac{1}{q_i} \times \left\| f_{i_1} \right\|_{L^{p_i}(\mathbb{R}^n)}^{1/q_i}
\]

\[
= C \sup_{L \leq 0, L \in Z} \left(I_{11} (L) I_{12} (L) \right), \tag{42}
\]

where

\[
I_{11} (L) := 2^{-LA} \left(\sum_{k=0}^{l} 2^{ka(0)q} \left[\prod_{i=1}^{2} \sum_{l_1+k+2 \leq l_2=\infty}^{\infty} (k - l_i) 2^{(l_i-k)\mu_i} \right] \right) \frac{1}{q_i} \times \left\| f_{i_1} \right\|_{L^{p_i}(\mathbb{R}^n)}^{1/q_i}
\]

\[
\leq C 2^{-2k} \left\| \sum_{i=1}^{2} \int_{\mathbb{R}^n} [b_i (x) - b_i (y_i)] f_{i_1} (y_i) dy_i \chi_k \right\|_{L^{p_i}(\mathbb{R}^n)}
\]

\[
\leq C 2^{-2k} \left\| \sum_{i=1}^{2} \int_{\mathbb{R}^n} [b_i (x) - b_i (y_i)] f_{i_1} (y_i) dy_i \chi_k \right\|_{L^{p_i}(\mathbb{R}^n)} \cdot \left\| f_{i_1} \right\|_{L^{p_i}(\mathbb{R}^n)}^{1/q_i}\].

(41)
Thus, for any $0 < q_i < \infty$,

$$I_1 \leq C \sup_{L \leq 0, L \in Z} I_{11}(L) I_{12}(L) \leq C \|b_1\|_\ast \|b_2\|_\ast \|f_1\|_{L^{p_1}((R^n)')} \|f_2\|_{\mathcal{M}^w_{q_1,p_1}((R^n)')}.$$

(47)

Step 2. To estimate I_2, for $x \in D_{k_i}, y_1 \in D_{l_i}, i = 1, 2$ and $l_1 \leq k - 2, k - 1 \leq l_2 \leq k + 1$, we have

$$|x - y_2| \geq |x - y_1| \geq |x| - |y_1| > 2^{k-2}.$$

(48)

Since $l_1 \leq k - 2$, it follows from inequality (31) that

$$\left\| \sum_{k=1}^{k+1} \sum_{l_2=k-1}^{k} [b_1(b) - b_1(y_1)] f_1(y_1) dy_1 \right\|_{L^{p_1}((R^n)')} \leq C \sum_{l_2=k-1}^{k} \sum_{l_1}^{k} \sum_{l_2=k-1}^{k} \sum_{l_1}^{k} 2^{(k-l_1)nd} \|b_1\|_\ast \|f_1\|_{L^{p_1}((R^n)')} \|f_2\|_{L^{p_1}((R^n)')}.$$

(49)

For $k - 1 \leq l_2 \leq k + 1$, combining the above term and

$$I_2 \leq C \sup_{L \leq 0, L \in Z} 2^{-L1_i} \|b_1\|_\ast \|b_2\|_\ast \|f_1\|_{L^{p_1}((R^n)')} \|f_2\|_{L^{p_1}((R^n)')}.$$

(46)
\[\times 2^{-L1}\|b_k\| \left\{ \sum_{k=-\infty}^{L} \left(\sum_{l_1=0}^{k+1} 2^{kn_0}2^{L-k+n} \right) \times \|f_2\|_{L^{p_2}(\mathbb{R}^n)} \right\}^{1/q_2} \]
\[=: C \sup_{L \leq 0, L \in \mathbb{Z}} I_{21}(L) I_{22}(L). \quad (50) \]

Here, we used \(2^{-\delta} < 1\) and \(2^{(L-k)n(1-\delta_1)} < 2^{(L-k)n}\) in the first inequality. Obviously,

\[I_{21}(L) = I_{11}(L) \leq C \|b_1\| \|f_1\|_{\text{MK}^{\alpha_1, \lambda_1}_{q_1, p_1}(\mathbb{R}^n)}. \quad (51) \]

Therefore, we only need to estimate \(I_{22}(L)\):

\[I_{22}(L) \]
\[= 2^{-L1}\|b_2\| \left\{ \sum_{k=-\infty}^{L} \left(\sum_{l_2=0}^{k+1} 2^{kn_0} \right) \times \left(\sum_{l_2=0}^{k+1} 2^{L-k+n} \right) \right\}^{1/q_2} \]
\[\leq C \|b_2\| \times 2^{-L1} \left(\sum_{k=-\infty}^{L} \left(\sum_{l_1=0}^{k} 2^{kn_0} \right) \right) \times \left(\sum_{l_2=0}^{k+1} 2^{L-k+n} \right) \]
\[\leq C \|b_2\| \times \|f_2\|_{\text{MK}^{\alpha_1, \lambda_1}_{q_1, p_1}(\mathbb{R}^n)}. \quad (52) \]

Step 3. To estimate \(I_{31}\), for \(x \in D_{1i}, y_i \in D_{1i}, i = 1, 2,\) and \(l_1 \leq k - 2, l_2 \geq k + 2,\) then we have

\[|x - y_1| \geq |x| - |y_1| > 2^{k-2}, \quad |x - y_2| \geq |y_2| - |x| > 2^{k-2}. \quad (53) \]

Thus, for \(x \in C_1\), we get

\[[b_1, b_2, T] (f_{1i}, f_{2i})(x) \]
\[\leq C 2^{-kn} \int_{\mathbb{R}^n} [b_1 (x) - b_1 (y_1)] f_{1i} (y_1) dy_1 2^{-kn} \]
\[\times \int_{\mathbb{R}^n} [b_2 (x) - b_2 (y_2)] f_{2i} (y_2) dy_2. \quad (54) \]

From inequalities (31) and (32), we obtain

\[\|
\]
\[\leq C \sum_{l_1=-\infty}^{k-2} (k-l_1) 2^{(l_1-k)n_0} \|b_1\| \|f_1\|_{L^{p_1}(\mathbb{R}^n)} \]
\[\times \sum_{l_2=k+2}^{\infty} (l_2 - k) 2^{(k-l_2)n_0} \|b_2\| \|f_2\|_{L^{p_2}(\mathbb{R}^n)}. \]

Consequently, it follows that

\[I_3 \leq C \sup_{L \leq 0, L \in \mathbb{Z}} 2^{-L1} \|b_1\| \|b_2\|. \]
\[\]
\[\times \left\{ \sum_{k=-\infty}^{L} \left(\sum_{l_1=-\infty}^{k-2} (k-l_1) 2^{(l_1-k)n_0} \|f_1\|_{L^{p_1}(\mathbb{R}^n)} \right) \right\}^{q_1} \]
\[\times \left\{ \sum_{l_2=k+2}^{\infty} (l_2 - k) 2^{(k-l_2)n_0} \|f_2\|_{L^{p_2}(\mathbb{R}^n)} \right\}^{q_2} \]
\[\times 2^{-L1} \|b_2\|. \]
\[\times \left\{ \sum_{k=-\infty}^{L} \left(\sum_{l_1=-\infty}^{k-2} (k-l_1) 2^{(l_1-k)n_0} \|f_1\|_{L^{p_1}(\mathbb{R}^n)} \right) \right\}^{q_1} \]
\[\times \left\{ \sum_{l_2=k+2}^{\infty} (l_2 - k) 2^{(k-l_2)n_0} \|f_2\|_{L^{p_2}(\mathbb{R}^n)} \right\}^{q_2} \]
\[=: C \sup_{L \leq 0, L \in \mathbb{Z}} I_{31}(L) I_{32}(L). \quad (56) \]

Note that

\[I_{31}(L) = I_{21}(L) \leq C \|b_1\| \|f_1\|_{\text{MK}^{\alpha_1, \lambda_1}_{q_1, p_1}(\mathbb{R}^n)}. \quad (57) \]
so we only compute $I_{32}(L)$. From inequality (19) and $\alpha_1 + \alpha_2(0) - \lambda_2 > 0$, we obtain

$$I_{32}(L) = 2^{-L \lambda_2} \|b_2\|_* \left\{ \sum_{k=-\infty}^{L} \left(\sum_{l_2=k+2}^{\infty} (l_2 - k) 2^{(k-l_2)(\alpha_1 + \alpha_2(0))} \right) \frac{q_1}{q_2} \right\}^{1/q_2} \times \left\{ \sum_{l_2=k-1}^{k+1} \frac{\|f_2\|_{L^p(\mathbb{R}^n)}}{\|b_2\|_*} \right\}^{1/q_2}

\leq C 2^{-L \lambda_2} \|b_2\|_* \left\{ \sum_{k=-\infty}^{L} \left(\sum_{l_2=k+2}^{\infty} (l_2 - k) 2^{(k-l_2)(\alpha_1 + \alpha_2(0)-\lambda_2)} \right) \frac{q_1}{q_2} \right\}^{1/q_2} \times \left\{ \sum_{l_2=k-1}^{k+1} \frac{\|f_2\|_{L^p(\mathbb{R}^n)}}{\|b_2\|_*} \right\}^{1/q_2}

\leq C 2^{-L \lambda_2} \|b_2\|_* \left\{ \sum_{k=-\infty}^{L} \left(\sum_{l_2=k+2}^{\infty} 2^{(l_2-k)\alpha_1} \right) \frac{q_1}{q_2} \right\}^{1/q_2} \times \left\{ \sum_{l_2=k-1}^{k+1} \frac{\|f_2\|_{L^p(\mathbb{R}^n)}}{\|b_2\|_*} \right\}^{1/q_2}

\leq C \|b_2\|_* 2^{-L \lambda_1} \left(\sum_{k=-\infty}^{L} 2^{k \lambda_2} \right) \frac{q_1}{q_2} \times \left\{ \sum_{l_2=k-1}^{k+1} \frac{\|f_2\|_{L^p(\mathbb{R}^n)}}{\|b_2\|_*} \right\}^{1/q_2}

\leq C \|b_2\|_* \|f_2\|_{\mathcal{M}^{(k+1)\lambda_2}_{q_2,p_2}([\mathbb{R}^n])}

(58)

Therefore,

$$I_3 \leq C \sup_{L \in \mathbb{N}} I_{31}(L) I_{32}(L)

\leq C \|b_1\|_* \|b_2\|_* \|f_1\|_{\mathcal{M}^{\alpha_1+\alpha_2}_{q_1,p_1}([\mathbb{R}^n])} \|f_2\|_{\mathcal{M}^{(k+1)\lambda_2}_{q_2,p_2}([\mathbb{R}^n])}

(59)

Step 4. It turns to estimate the term I_5. Applying the Hölder inequality and Lemma 13, we have

$$I_5 \leq C \sup_{L \in \mathbb{N}} 2^{-L \lambda_1} \left\{ \sum_{k=-\infty}^{L} 2^{k \alpha_1} \left(\sum_{l_1=k+1}^{L} \sum_{l_2=k+2}^{L} \|b_1, b_2, T\| \right) \right\}^{1/q_2} \times \left\{ \sum_{l_1=k-1}^{k+1} \sum_{l_2=k+2}^{L} \|f_1, f_2\|_{L^p(\mathbb{R}^n)} \right\}^{1/q_2}

\leq C \sup_{L \in \mathbb{N}} 2^{-L \lambda_1} \left\{ \sum_{k=-\infty}^{L} 2^{k \alpha_1} \left(\sum_{l_1=k+1}^{L} \sum_{l_2=k+2}^{L} \|b_1, b_2, T\| \right) \right\}^{1/q_2} \times \left\{ \sum_{l_1=k-1}^{k+1} \sum_{l_2=k+2}^{L} \|f_1, f_2\|_{L^p(\mathbb{R}^n)} \right\}^{1/q_2}

\leq C \|b_1\|_* \|b_2\|_* \left\{ \sum_{k=-\infty}^{L} 2^{k \alpha_1} \left(\sum_{l_1=k+1}^{L} \sum_{l_2=k+2}^{L} \|b_1, b_2, T\| \right) \right\}^{1/q_2} \times \left\{ \sum_{l_1=k-1}^{k+1} \sum_{l_2=k+2}^{L} \|f_1, f_2\|_{L^p(\mathbb{R}^n)} \right\}^{1/q_2}

(60)

Step 5. Now it goes to the estimate of I_6.

It is clear that, for $x \in D_k$ and $k-1 \leq l_1 \leq k+1$ and $l_2 \geq k+2$,

$$\|b_1, b_2, T\| (f_1, f_2) (x)

\leq C 2^{-k \alpha_1} \int_{\mathbb{R}^n} [b_1 (x) - b_1 (y_1)] f_1 (y_1) d y_1 2^{-l_2 \alpha_2} \int_{\mathbb{R}^n} [b_2 (x) - b_2 (y_2)] f_2 (y_2) d y_2.

(61)

Therefore,

$$\left\| \sum_{l_1=k-1}^{k+1} \sum_{l_2=k+2}^{L} [b_1, b_2, T] (f_1, f_2) \chi_k \right\|_{L^{p_1}(\mathbb{R}^n)}$$

\leq C \|b_1\|_* \|b_2\|_* \left\{ \sum_{l_1=k-1}^{k+1} \sum_{l_2=k+2}^{L} \|b_1, b_2, T\| \right\}^{1/q_2} \times \left\{ \sum_{l_1=k-1}^{k+1} \sum_{l_2=k+2}^{L} \|f_1, f_2\|_{L^p(\mathbb{R}^n)} \right\}^{1/q_2}

\leq C \|b_1\|_* \|b_2\|_* \left\{ \sum_{l_1=k-1}^{k+1} \sum_{l_2=k+2}^{L} \|b_1, b_2, T\| \right\}^{1/q_2} \times \left\{ \sum_{l_1=k-1}^{k+1} \sum_{l_2=k+2}^{L} \|f_1, f_2\|_{L^p(\mathbb{R}^n)} \right\}^{1/q_2} \times (l_2 - k) 2^{(l_2-k) \delta_1} \|b_2\|_* \|f_2\|_{L^p(\mathbb{R}^n)}\]
\[I_6 \leq C \sup_{L \leq 0, L \in \mathbb{Z}} 2^{-LA} \times \left\{ \sum_{k=-\infty}^{L} 2^{kn(0)} \left(\sum_{l_k=k-1}^{k+1} \sum_{l_{k+2}=k+2}^{\infty} \left\| b_1, b_2, T \right\| \right) \| f_{i_1} \|_{L^{p_1}(\mathbb{R}^n)} \times (f_{i_2}, f_{i_3}) \|_{L^q(\mathbb{R}^n)} \right\}^{1/q} \]

\[\leq C \sup_{L \leq 0, L \in \mathbb{Z}} 2^{-LA} \| b_1 \|_* \| b_2 \|_* \]

\[\times \left\{ \sum_{k=-\infty}^{L} 2^{kn(0)} \left(\sum_{l_k=k-1}^{k+1} \sum_{l_{k+2}=k+2}^{\infty} 2^{(l_k-k)n} \| f_{i_1} \|_{L^{p_1}(\mathbb{R}^n)} \times (l_k-k) 2^{(l_k-k)n} \| f_{i_2} \|_{L^{p_1}(\mathbb{R}^n)} \right) \right\}^{1/q} \]

\[\leq C \sup_{L \leq 0, L \in \mathbb{Z}} 2^{-LA} \| b_1 \|_* \]

\[\times \left\{ \sum_{k=-\infty}^{L} \left(\sum_{l_k=k-1}^{k+1} \sum_{l_{k+2}=k+2}^{\infty} (l_k-k) 2^{(l_k-k)n} \| f_{i_1} \|_{L^{p_1}(\mathbb{R}^n)} \times 2^{(l_k-k)n} \| f_{i_2} \|_{L^{p_1}(\mathbb{R}^n)} \right) \right\}^{1/q} \]

\[\leq C \sup_{L \leq 0, L \in \mathbb{Z}} \sum_{i=1}^{2} 2^{-LA} \| b_2 \|_* \]

\[\times \left\{ \sum_{k=-\infty}^{L} \left(\sum_{l_k=k-1}^{k+1} \sum_{l_{k+2}=k+2}^{\infty} (l_k-k) 2^{(l_k-k)n} \| f_{i_1} \|_{L^{p_1}(\mathbb{R}^n)} \times 2^{(l_k-k)n} \| f_{i_2} \|_{L^{p_1}(\mathbb{R}^n)} \right) \right\}^{1/q} \]

Thus,

\[I_9 \leq C \sup_{L \leq 0, L \in \mathbb{Z}} 2^{-LA} \times \left\{ \sum_{k=-\infty}^{L} 2^{kn(0)} \left(\sum_{l_k=k-1}^{k+1} \sum_{l_{k+2}=k+2}^{\infty} (l_k-k) 2^{(l_k-k)n} \| f_{i_1} \|_{L^{p_1}(\mathbb{R}^n)} \times (f_{i_2}, f_{i_3}) \|_{L^q(\mathbb{R}^n)} \right) \right\}^{1/q} \]

\[\leq C \sup_{L \leq 0, L \in \mathbb{Z}} \prod_{i=1}^{2} 2^{-LA} \| b_2 \|_* \]

\[\times \left\{ \sum_{k=-\infty}^{L} \left(\sum_{l_k=k-1}^{k+1} \sum_{l_{k+2}=k+2}^{\infty} (l_k-k) 2^{(l_k-k)n} \| f_{i_1} \|_{L^{p_1}(\mathbb{R}^n)} \times 2^{(l_k-k)n} \| f_{i_2} \|_{L^{p_1}(\mathbb{R}^n)} \right) \right\}^{1/q} \]

\[\leq C \sup_{L \leq 0, L \in \mathbb{Z}} \| b_1 \|_* \| b_2 \|_* \| f_{i_1} \|_{\text{MK}_{\alpha^2(\cdot),\lambda^2}^{(1,1)}(\mathbb{R}^n)} \times \| f_{i_2} \|_{\text{MK}_{\alpha^2(\cdot),\lambda^2}^{(1,1)}(\mathbb{R}^n)} \]

\[\leq C \sup_{L \leq 0, L \in \mathbb{Z}} \| b_1 \|_* \| b_2 \|_* \| f_{i_1} \|_{\text{MK}_{\alpha^2(\cdot),\lambda^2}^{(1,1)}(\mathbb{R}^n)} \times \| f_{i_2} \|_{\text{MK}_{\alpha^2(\cdot),\lambda^2}^{(1,1)}(\mathbb{R}^n)} \]

Here, the estimate of \(I_{61} \) is similar to that of \(I_{62} \) and \(I_{62} (L) = I_{62} (L) \).

\[\text{Step 6.} \] Finally, we will finish the estimation of the last term \(I_9 \).

Note that \(l_2 \geq k + 2 \) and \(|x - y| > 2^{l_2-2} \) for \(x \in D_k \), \(y_1 \in D_{l_1} \), \(i = 1, 2 \); we get

\[[b_1, b_2, T] \left(f_{i_1}, f_{i_2} \right) (x) \leq C 2^{-ln} \int_{\mathbb{R}^n} \left[b_1 (x) - b_1 (y_1) \right] f_{i_1} (y_1) dy_1 \cdot 2^{-ln} \]

\[\times \int_{\mathbb{R}^n} \left[b_2 (x) - b_2 (y_2) \right] f_{i_2} (y_2) dy_2. \]

Applying the Hölder inequality to the last integral, we obtain

\[\left\| \sum_{l_1=k-1}^{k+2} \sum_{l_2=k+2}^{\infty} \left[b_1, b_2, T \right] (f_{i_1}, f_{i_2}) \|_{L^{p_1}(\mathbb{R}^n)} \right\| \leq C \| b_1 \|_* \| b_2 \|_* \]

This finishes the proof of Theorem 6. \(\square \)
Conflict of Interests
The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments
The authors would like to thank the referee for his suggestion. The first author was supported by the National Natural Science Foundation of China (Grant no. 11021043) and the Fundamental Research Funds for the Central Universities. The third author was supported by the National Natural Science Foundation of Hainan Province (no.113004).

References

Submit your manuscripts at http://www.hindawi.com