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Abstract. 
We study the existence of multiple solutions for the following elliptic problem: 
	
		
			
				−
				Δ
			

			

				𝑝
			

			
				𝑢
				−
				𝜇
				(
				|
				𝑢
				|
			

			
				𝑝
				−
				2
			

			
				𝑢
				/
				|
				𝑥
				|
			

			

				𝑝
			

			
				)
				=
				(
				|
				𝑢
				|
			

			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
				−
				2
			

			
				/
				|
				𝑥
				|
			

			

				𝑡
			

			
				)
				𝑢
				+
				𝜆
				(
				|
				𝑢
				|
			

			
				𝑞
				−
				2
			

			
				/
				|
				𝑥
				|
			

			

				𝑠
			

			
				)
				𝑢
				,
			

		
	
 
	
		
			
				𝑢
				∈
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
				.
			

		
	
 We prove that if 
	
		
			
				1
				≤
				𝑞
				<
				𝑝
				<
				𝑁
			

		
	
, then there is a 
	
		
			

				𝜇
			

			

				0
			

		
	
, such that for any 
	
		
			
				𝜇
				∈
				(
				0
				,
				𝜇
			

			

				0
			

			

				)
			

		
	
, the above mentioned problem possesses infinitely many weak solutions. Our result generalizes a similar result (Azorero and Alonso, 1991).


1. Introduction and Main Results
In this paper, we study the existence of multiple solutions to the following elliptic problem:
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				−
				Δ
			

			

				𝑝
			

			
				𝑢
				−
				𝜇
				|
				𝑢
				|
			

			
				𝑝
				−
				2
			

			

				𝑢
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑝
			

			
				=
				|
				𝑢
				|
			

			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
				−
				2
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑡
			

			
				𝑢
				+
				𝜆
				|
				𝑢
				|
			

			
				𝑞
				−
				2
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑠
			

			
				𝑢
				,
				𝑥
				∈
				Ω
				,
				𝑢
				(
				𝑥
				)
				=
				0
				,
				𝑥
				∈
				𝜕
				Ω
				,
			

		
	

					where 
	
		
			
				Ω
				⊂
				ℜ
			

			

				𝑁
			

			
				(
				𝑁
				≥
				3
				)
			

		
	
 is a smooth bounded domain containing the origin 
	
		
			

				0
			

		
	
, 
	
		
			

				Δ
			

			

				𝑝
			

			
				𝑢
				=
				d
				i
				v
				(
				|
				∇
				𝑢
				|
			

			
				𝑝
				−
				2
			

			
				∇
				𝑢
				)
			

		
	
 is the p-Laplacian of 
	
		
			

				𝑢
			

		
	
, 
	
		
			
				1
				<
				𝑝
				<
				𝑁
			

		
	
, 
	
		
			
				0
				≤
				𝜇
				<
			

			
				
			
			
				𝜇
				≡
				(
				(
				𝑁
				−
				𝑝
				)
				/
				𝑝
				)
			

			

				𝑝
			

		
	
, 
	
		
			
				0
				≤
				𝑡
			

		
	
, 
	
		
			
				𝑠
				<
				𝑝
			

		
	
, 
	
		
			
				1
				≤
				𝑞
				<
				𝑝
			

		
	
, and 
	
		
			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
				=
				𝑝
				(
				𝑁
				−
				𝑡
				)
				/
				(
				𝑁
				−
				𝑝
				)
			

		
	
 is the critical Sobolev-Hardy exponent; note that 
	
		
			

				𝑝
			

			

				∗
			

			
				(
				0
				)
				=
				𝑝
			

			

				∗
			

			
				≡
				𝑝
				𝑁
				/
				(
				𝑁
				−
				𝑝
				)
			

		
	
 is the critical Sobolev exponent.
Problem (1) is related to the well-known Sobolev-Hardy inequalities [1]: 
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				
				
			

			

				ℜ
			

			

				𝑁
			

			
				|
				𝑢
				|
			

			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑡
			

			
				
				𝑑
				𝑥
			

			
				𝑝
				/
				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			
				
				≤
				𝐶
			

			

				ℜ
			

			

				𝑁
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			
				𝑑
				𝑥
				,
				∀
				𝑢
				∈
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
				.
			

		
	

					As 
	
		
			
				𝑡
				=
				𝑝
			

		
	
, 
	
		
			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
				=
				𝑝
			

		
	
, then the well-known Hardy inequality holds [1, 2]:
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			

				
			

			

				ℜ
			

			

				𝑁
			

			
				|
				𝑢
				|
			

			

				𝑝
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑝
			

			
				1
				𝑑
				𝑥
				≤
			

			
				
			
			
				
			
			
				𝜇
				
			

			

				ℜ
			

			

				𝑁
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			
				𝑑
				𝑥
				,
				∀
				𝑢
				∈
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
				.
			

		
	

In this paper, we use 
	
		
			

				𝐿
			

			

				𝑞
			

			
				(
				Ω
				,
				|
				𝑥
				|
			

			

				𝑠
			

			

				)
			

		
	
 to denote the usual weighted 
	
		
			

				𝐿
			

			

				𝑞
			

			
				(
				Ω
				)
			

		
	
 space with the weight 
	
		
			
				|
				𝑥
				|
			

			

				𝑠
			

		
	
. In 
	
		
			

				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
, for 
	
		
			
				𝜇
				∈
				[
				0
				,
			

			
				
			
			
				𝜇
				)
			

		
	
, we use the norm 
						
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				‖
				𝑢
				‖
				=
				‖
				𝑢
				‖
			

			

				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

			
				=
				
				
			

			

				Ω
			

			
				
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			
				−
				𝜇
				|
				𝑢
				|
			

			

				𝑝
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑝
			

			
				
				
				𝑑
				𝑥
			

			
				1
				/
				𝑝
			

			

				.
			

		
	

					By (3), this norm is equivalent to the usual norm 
	
		
			
				(
				∫
			

			

				Ω
			

			
				|
				∇
				𝑢
				|
			

			

				𝑝
			

			
				𝑑
				𝑥
				)
			

			
				1
				/
				𝑝
			

		
	
. By the Hardy inequality and the Sobolev-Hardy inequality, for 
	
		
			
				0
				≤
				𝜇
				<
			

			
				
			
			

				𝜇
			

		
	
, 
	
		
			
				0
				≤
				𝑡
				<
				𝑝
			

		
	
, we can define the following best constants: 
						
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			

				𝐴
			

			
				𝜇
				,
				𝑡
			

			
				(
				Ω
				)
				=
				i
				n
				f
			

			
				𝑢
				∈
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
				⧵
				{
				0
				}
			

			
				‖
				𝑢
				‖
			

			

				𝑝
			

			
				
			
			
				
				∫
			

			

				Ω
			

			
				
				|
				𝑢
				|
			

			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			
				/
				|
				𝑥
				|
			

			

				𝑡
			

			
				
				
				𝑑
				𝑥
			

			
				𝑝
				/
				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			

				.
			

		
	

					Note that 
	
		
			

				𝐴
			

			
				𝜇
				,
				0
			

		
	
 is the best constant in the Sobolev inequality, that is, 
						
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			

				𝐴
			

			
				𝜇
				,
				0
			

			
				(
				Ω
				)
				=
				i
				n
				f
			

			
				𝑢
				∈
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
				⧵
				{
				0
				}
			

			

				∫
			

			

				Ω
			

			
				
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			
				−
				𝜇
				(
				|
				𝑢
				|
			

			

				𝑝
			

			
				/
				|
				𝑥
				|
			

			

				𝑝
			

			
				)
				
				𝑑
				𝑥
			

			
				
			
			
				
				∫
			

			

				Ω
			

			
				|
				𝑢
				|
			

			

				𝑝
			

			

				∗
			

			
				
				𝑑
				𝑥
			

			
				𝑝
				/
				𝑝
			

			

				∗
			

			

				.
			

		
	

					The energy functional of (1) is defined as follows: 
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			
				1
				𝐼
				(
				𝑢
				)
				=
			

			
				
			
			
				𝑝
				
			

			

				Ω
			

			
				
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			
				−
				𝜇
				|
				𝑢
				|
			

			

				𝑝
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑝
			

			
				
				1
				𝑑
				𝑥
				−
			

			
				
			
			

				𝑝
			

			

				∗
			

			
				
				(
				𝑡
				)
			

			

				Ω
			

			
				|
				𝑢
				|
			

			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑡
			

			
				−
				𝜆
				𝑑
				𝑥
			

			
				
			
			
				𝑞
				
			

			

				Ω
			

			
				|
				𝑢
				|
			

			

				𝑞
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑠
			

			
				𝑑
				𝑥
				.
			

		
	

					Then, 
	
		
			
				𝐼
				(
				𝑢
				)
			

		
	
 is well defined on 
	
		
			

				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
 and belongs to 
	
		
			

				𝐶
			

			

				1
			

			
				(
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
				,
				ℜ
				)
			

		
	
. The solutions of problem (1) are then the critical points of the functional 
	
		
			

				𝐼
			

		
	
.
In recent years, the quasilinear problems related to Hardy inequality and Sobolev-Hardy inequality have been studied by some authors [3–7]. Ghoussoub and Yuan [5] studied problem (1) with 
	
		
			
				𝜇
				=
				0
			

		
	
, 
	
		
			
				𝑠
				=
				0
			

		
	
, and 
	
		
			
				𝑝
				≤
				𝑞
				≤
				𝑝
			

			

				∗
			

		
	
 and proved the existence results of positive solutions and sign-changing solutions. Kang in [3, 4] studied (1,1) when 
	
		
			
				𝑝
				≤
				𝑞
				≤
				𝑝
			

			

				∗
			

			
				(
				𝑠
				)
			

		
	
 and verified the existence of positive solutions of (1) when the parameters 
	
		
			

				𝑝
			

		
	
, 
	
		
			

				𝑞
			

		
	
, 
	
		
			

				𝑠
			

		
	
, 
	
		
			

				𝜆
			

		
	
, 
	
		
			

				𝜇
			

		
	
 satisfy suitable conditions. To the best of our knowledge, there are few results of problem (1) involving the p-sublinear of 
	
		
			
				1
				≤
				𝑞
				<
				𝑝
				<
				𝑁
			

		
	
. We are only aware of the works [6–9] which studied the existence and multiplicity of solution of problem (1) involving weight functions. Azorero and Alonso [9] studied problem (1) with 
	
		
			
				𝑠
				=
				𝑡
				=
				𝜇
				=
				0
			

		
	
, 
	
		
			
				1
				<
				𝑞
				<
				𝑝
			

		
	
 and proved that there exists 
	
		
			

				𝜆
			

			

				1
			

		
	
, such that (1) has infinitely many solutions for 
	
		
			
				𝜆
				∈
				(
				0
				,
				𝜆
			

			

				1
			

			

				)
			

		
	
. Hsu [7] studied problem (1) and proved that there exists 
	
		
			

				Λ
			

			

				0
			

			
				>
				0
			

		
	
 such that (1) has at least two positive solutions for 
	
		
			
				𝜆
				∈
				(
				0
				,
				Λ
			

			

				0
			

			

				)
			

		
	
. In this paper, we study (1) and extend the results of [7, 9].
Throughout this paper, let 
	
		
			

				𝑅
			

			

				0
			

		
	
 be the positive constant such that 
	
		
			
				Ω
				⊂
				𝐵
				(
				0
				,
				𝑅
			

			

				0
			

			

				)
			

		
	
, where 
	
		
			
				𝐵
				(
				0
				,
				𝑅
			

			

				0
			

			
				)
				=
				{
				𝑥
				∈
				ℜ
			

			

				𝑁
			

			
				∶
				|
				𝑥
				|
				<
				𝑅
			

			

				0
			

			

				}
			

		
	
. By Holder inequalities, for all 
	
		
			
				𝑢
				∈
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
, we obtain
						
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			

				
			

			

				Ω
			

			
				|
				𝑢
				|
			

			

				𝑞
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑠
			

			
				≤
				
				
				𝑑
				𝑥
			

			
				𝐵
				(
				0
				,
				𝑅
			

			

				0
			

			

				)
			

			
				|
				𝑥
				|
			

			
				(
				𝑡
				𝑞
				−
				𝑠
				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
				)
				/
				(
				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
				−
				𝑞
				)
			

			
				
				𝑑
				𝑥
			

			
				(
				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
				−
				𝑞
				)
				/
				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			
				×
				
				
			

			

				Ω
			

			
				|
				𝑢
				|
			

			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑡
			

			
				
				𝑑
				𝑥
			

			
				𝑞
				/
				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			
				≤
				
				𝑁
				𝜔
			

			

				𝑁
			

			

				
			

			

				𝑅
			

			

				0
			

			

				0
			

			

				𝑟
			

			
				(
				(
				𝑡
				𝑞
				−
				𝑠
				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
				)
				/
				(
				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
				−
				𝑞
				)
				)
				+
				𝑁
				−
				1
			

			
				
				𝑑
				𝑟
			

			
				(
				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
				−
				𝑞
				)
				/
				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			
				×
				
				
			

			

				Ω
			

			
				|
				𝑢
				|
			

			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑡
			

			
				
				𝑑
				𝑥
			

			
				𝑞
				/
				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			
				=
				
				𝑁
				𝜔
			

			

				𝑁
			

			

				𝑅
			

			
				(
				(
				𝑡
				𝑞
				−
				𝑠
				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
				)
				/
				(
				𝑝
			

			

				∗
			

			
				0
				(
				𝑡
				)
				−
				𝑞
				)
				)
				+
				𝑁
			

			
				
				𝑝
			

			

				∗
			

			
				
				(
				𝑡
				)
				−
				𝑞
			

			
				
			
			
				𝑞
				(
				𝑡
				−
				𝑁
				)
				+
				𝑝
			

			

				∗
			

			
				
				(
				𝑡
				)
				(
				𝑁
				−
				𝑠
				)
			

			
				(
				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
				−
				𝑞
				)
				/
				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			
				×
				
				
			

			

				Ω
			

			
				|
				𝑢
				|
			

			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑡
			

			
				
				𝑑
				𝑥
			

			
				𝑞
				/
				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			
				=
				𝑐
			

			

				0
			

			
				
				
			

			

				Ω
			

			
				|
				𝑢
				|
			

			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑡
			

			
				
				𝑑
				𝑥
			

			
				𝑞
				/
				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			

				,
			

		
	

					where 
	
		
			

				𝜔
			

			

				𝑁
			

			
				=
				2
				𝜋
			

			
				𝑁
				/
				2
			

			
				/
				𝑁
				Γ
				(
				𝑁
				/
				2
				)
			

		
	
 is the volume of the unit ball in 
	
		
			

				ℜ
			

			

				𝑁
			

		
	
. The following inequality comes from the paper [7]:
						
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			

				
			

			

				Ω
			

			
				|
				𝑢
				|
			

			

				𝑞
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑠
			

			
				
				𝑑
				𝑥
				≤
				𝑁
				𝜔
			

			

				𝑁
			

			

				𝑅
			

			
				0
				𝑁
				−
				𝑠
			

			
				
			
			
				
				𝑁
				−
				𝑠
			

			
				(
				𝑝
			

			

				∗
			

			
				(
				𝑠
				)
				−
				𝑞
				)
				/
				𝑝
			

			

				∗
			

			
				(
				𝑠
				)
			

			

				𝐴
			

			
				−
				𝑞
				/
				𝑝
				𝜇
				,
				𝑠
			

			
				‖
				𝑢
				‖
			

			

				𝑞
			

			

				.
			

		
	

Now we are ready to state our main results.
Theorem 1.  If 
	
		
			
				Ω
				⊂
				ℜ
			

			

				𝑁
			

		
	
 is a bounded domain in 
	
		
			

				ℜ
			

			

				𝑁
			

		
	
, and 
	
		
			
				1
				≤
				𝑞
				<
				𝑝
				<
				𝑁
			

		
	
, then there is a 
	
		
			

				𝜇
			

			

				0
			

			
				>
				0
			

		
	
 such that problem (1) possesses infinitely many weak solutions in 
	
		
			

				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
 for any 
	
		
			
				𝜇
				∈
				(
				0
				,
				𝜇
			

			

				0
			

			

				)
			

		
	
.
2.  The Palais-Smale Condition 
Let 
	
		
			

				𝑋
			

		
	
 be a Banach space and 
	
		
			

				𝑋
			

			
				−
				1
			

		
	
 be the dual space of 
	
		
			

				𝑋
			

		
	
. The functional 
	
		
			
				𝐼
				∈
				𝐶
			

			

				1
			

			
				(
				𝑋
				,
				ℜ
				)
			

		
	
 is said to satisfy the Palais-Smale condition at level 
	
		
			

				𝑐
			

		
	
 (
	
		
			
				(
				𝑃
				𝑆
				)
			

			

				𝑐
			

		
	
), if any sequence 
	
		
			
				(
				𝑢
			

			

				𝑛
			

			
				)
				⊂
				𝑋
			

		
	
 satisfying 
						
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				𝐼
				
				𝑢
			

			

				𝑛
			

			
				
				⟶
				𝑐
				,
				𝐼
			

			

				′
			

			
				
				𝑢
			

			

				𝑛
			

			
				
				⟶
				0
				s
				t
				r
				o
				n
				g
				l
				y
				i
				n
				𝑋
			

			
				−
				1
			

			
				a
				s
				𝑛
				⟶
				∞
			

		
	

					contains a subsequence converging in 
	
		
			

				𝑋
			

		
	
 to a critical point of the functional 
	
		
			

				𝐼
			

		
	
. In this paper, we will take 
	
		
			
				𝑋
				=
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
.
Lemma 2.  Let 
	
		
			
				{
				𝑢
			

			

				𝑛
			

			
				}
				⊂
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
 be a Palais-Smale sequence for 
	
		
			

				𝐼
			

		
	
 defined by (7), that is, 
							
	
 		
 			
				(
				1
				1
				)
			
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				𝐼
				
				𝑢
			

			

				𝑛
			

			
				
				𝐼
				⟶
				𝑐
				,
			

			

				′
			

			
				
				𝑢
			

			

				𝑛
			

			
				
				⟶
				0
				𝑖
				𝑛
				𝑊
			

			
				−
				1
				,
				𝑝
			

			

				′
			

			
				1
				(
				Ω
				)
				,
			

			
				
			
			
				𝑝
				+
				1
			

			
				
			
			

				𝑝
			

			

				′
			

			
				=
				1
				.
			

		
	

						If 
	
		
			
				1
				≤
				𝑞
				<
				𝑝
			

		
	
 and 
	
		
			
				𝑐
				<
				(
				𝑝
				−
				𝑡
				)
				/
				𝑝
				(
				𝑁
				−
				𝑡
				)
				(
				𝐴
			

			
				𝜇
				,
				𝑡
			

			

				)
			

			
				(
				𝑁
				−
				𝑡
				)
				/
				(
				𝑝
				−
				𝑡
				)
			

			
				−
				𝐾
				𝜆
			

			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
				/
				(
				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
				−
				𝑞
				)
			

		
	
, and 
	
		
			

				𝐾
			

		
	
 depends on 
	
		
			

				𝑝
			

		
	
, 
	
		
			

				𝑞
			

		
	
, 
	
		
			

				𝑁
			

		
	
, then, there exists a subsequence 
	
		
			
				{
				𝑢
			

			

				𝑛
			

			

				𝑘
			

			
				}
				⊂
				{
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
, strongly convergent in 
	
		
			

				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
.
Proof. By (11) and (12), it is easy to prove that the sequence 
	
		
			

				𝑢
			

			

				𝑛
			

		
	
 is bounded in 
	
		
			

				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
. Passing to a subsequence if necessary, we may assume that, as 
	
		
			
				𝑛
				→
				∞
			

		
	
,
							
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			

				𝑢
			

			

				𝑛
			

			
				⇀
				𝑢
				w
				e
				a
				k
				l
				y
				i
				n
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				𝑢
				(
				Ω
				)
				,
			

			

				𝑛
			

			
				⇀
				𝑢
				w
				e
				a
				k
				l
				y
				i
				n
				𝐿
			

			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			
				
				Ω
				,
				|
				𝑥
				|
			

			
				−
				𝑡
			

			
				
				,
				𝑢
			

			

				𝑛
			

			
				⇀
				𝑢
				w
				e
				a
				k
				l
				y
				i
				n
				𝐿
			

			

				𝑝
			

			
				(
				Ω
				,
				|
				𝑥
				|
			

			
				−
				𝑝
			

			
				𝑢
				)
				,
			

			

				𝑛
			

			
				⟶
				𝑢
				s
				t
				r
				o
				n
				g
				l
				y
				i
				n
				𝐿
			

			

				𝑞
			

			
				(
				Ω
				,
				|
				𝑥
				|
			

			
				−
				𝑠
			

			
				𝑢
				)
				,
			

			

				𝑛
			

			
				⟶
				𝑢
				s
				t
				r
				o
				n
				g
				l
				y
				i
				n
				𝐿
			

			

				𝑝
			

			
				𝑢
				(
				Ω
				)
				,
			

			

				𝑛
			

			
				⟶
				𝑢
				a
				.
				e
				.
				i
				n
				Ω
				.
			

		
	

						Then, 
	
		
			
				𝑢
				∈
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
 is a solution of problem (1). By the concentration compactness principle (see [10, 11]), there exists a subsequence, still denoted by 
	
		
			

				𝑢
			

			

				𝑛
			

		
	
, at the most countable set 
	
		
			

				𝚥
			

		
	
, a set of different points 
	
		
			
				{
				𝑥
			

			

				𝑗
			

			

				}
			

			
				𝑗
				∈
				𝚥
			

			
				⊂
				Ω
				⧵
				{
				0
				}
			

		
	
, sets of nonnegative real numbers 
	
		
			

				{
			

			

				∼
			

			

				𝜇
			

			

				𝑗
			

			

				}
			

			
				𝑗
				∈
				𝚥
				∪
				{
				0
				}
			

		
	
, 
	
		
			

				{
			

			

				∼
			

			

				𝜐
			

			

				𝑗
			

			

				}
			

			
				𝑗
				∈
				𝚥
				∪
				{
				0
				}
			

		
	
, and nonnegative real numbers 
	
		
			

				∼
			

			

				𝜏
			

			

				0
			

		
	
 and 
	
		
			

				∼
			

			

				𝛾
			

			

				0
			

		
	
, such that 
							
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				|
				|
				∇
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝑝
			

			
				⇀
				𝑑
			

			

				∼
			

			
				|
				|
				|
				|
				𝜇
				≥
				∇
				𝑢
			

			

				𝑝
			

			
				+
				
			

			
				∼
				𝑗
				∈
				𝚥
			

			

				𝜇
			

			

				𝑗
			

			

				𝛿
			

			

				𝑥
			

			

				𝑗
			

			

				+
			

			

				∼
			

			

				𝜇
			

			

				0
			

			

				𝛿
			

			

				0
			

			
				,
				|
				|
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝑝
			

			

				∗
			

			
				⇀
				𝑑
			

			

				∼
			

			
				𝜈
				=
				|
				𝑢
				|
			

			

				𝑝
			

			

				∗
			

			
				+
				
			

			
				∼
				𝑗
				∈
				𝚥
			

			

				𝜈
			

			

				𝑗
			

			

				𝛿
			

			

				𝑥
			

			

				𝑗
			

			

				+
			

			

				∼
			

			

				𝜈
			

			

				0
			

			

				𝛿
			

			

				0
			

			
				,
				|
				|
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑡
			

			
				⇀
				𝑑
			

			

				∼
			

			
				𝜏
				=
				|
				𝑢
				|
			

			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑡
			

			

				+
			

			

				∼
			

			

				𝜏
			

			

				0
			

			

				𝛿
			

			

				0
			

			
				,
				|
				|
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝑝
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑝
			

			
				⇀
				𝑑
			

			

				∼
			

			
				𝛾
				=
				|
				𝑢
				|
			

			

				𝑝
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑝
			

			

				+
			

			

				∼
			

			

				𝛾
			

			

				0
			

			

				𝛿
			

			

				0
			

			

				,
			

		
	

						where 
	
		
			

				𝛿
			

			

				𝑥
			

		
	
 is the Dirac mass at 
	
		
			

				𝑥
			

		
	
.Case 1 (
	
		
			
				𝑡
				=
				𝑠
				=
				0
			

		
	
  and 
	
		
			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
				=
				𝑝
			

			

				∗
			

		
	
).  We claim that 
	
		
			

				𝚥
			

		
	
 is finite, and, for any 
	
		
			
				𝑗
				∈
				𝚥
			

		
	
, either 
							
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			

				∼
			

			

				𝜈
			

			

				𝑗
			

			
				=
				0
				o
				r
			

			

				∼
			

			

				𝜈
			

			

				𝑗
			

			
				≥
				
				𝐴
			

			
				𝜇
				,
				0
			

			

				
			

			
				𝑁
				/
				𝑝
			

			

				.
			

		
	
In fact, let 
	
		
			
				𝜀
				>
				0
			

		
	
 be small enough such that 
	
		
			

				0
			

			
				
			
			
				∈
				𝐵
				(
				𝑥
			

			

				𝑗
			

			
				,
				𝜀
				)
			

		
	
 and 
	
		
			
				𝐵
				(
				𝑥
			

			

				𝑖
			

			
				⋂
				,
				𝜀
				)
				𝐵
				(
				𝑥
			

			

				𝑗
			

			
				,
				𝜀
				)
			

		
	
 
	
		
			
				=
				∅
			

		
	
 for 
	
		
			
				𝑖
				≠
				𝑗
			

		
	
, 
	
		
			
				𝑖
				,
				𝑗
				∈
				𝚥
			

		
	
. We consider 
	
		
			

				𝜑
			

			

				𝑗
			

			
				∈
				𝐶
			

			
				∞
				0
			

			
				(
				ℜ
			

			

				𝑁
			

			

				)
			

		
	
, such that 
							
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			

				𝜑
			

			

				𝑗
			

			
				
				𝑥
				≡
				1
				o
				n
				𝐵
			

			

				𝑗
			

			
				,
				𝜀
			

			
				
			
			
				2
				
				,
				𝜑
			

			

				𝑗
			

			
				
				𝑥
				≡
				0
				o
				n
				𝐵
			

			

				𝑗
			

			
				
				,
				𝜀
			

			

				𝑐
			

			
				,
				|
				|
				∇
				𝜑
			

			

				𝑗
			

			
				|
				|
				≤
				4
			

			
				
			
			
				𝜀
				,
				0
				≤
				𝜑
			

			

				𝑗
			

			
				≤
				1
				.
			

		
	

						It is clear that the sequence 
	
		
			
				{
				𝜑
			

			

				𝑗
			

			

				𝑢
			

			

				𝑛
			

			

				}
			

		
	
 is bounded in 
	
		
			

				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
. Note that
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				
				𝐼
			

			

				′
			

			
				
				𝑢
			

			

				𝑛
			

			
				
				,
				𝑢
			

			

				𝑛
			

			

				𝜑
			

			

				𝑗
			

			
				
				=
				
			

			

				Ω
			

			
				|
				|
				∇
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝑝
			

			

				𝜑
			

			

				𝑗
			

			
				+
				
				𝑑
				𝑥
			

			

				Ω
			

			

				𝑢
			

			

				𝑛
			

			
				|
				|
				∇
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			
				𝑝
				−
				2
			

			
				∇
				𝑢
			

			

				𝑛
			

			
				∇
				𝜑
			

			

				𝑗
			

			
				
				𝑑
				𝑥
				−
				𝜇
			

			

				Ω
			

			
				|
				|
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝑝
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑝
			

			

				𝜑
			

			

				𝑗
			

			
				−
				
				𝑑
				𝑥
			

			

				Ω
			

			
				|
				|
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝑝
			

			

				∗
			

			

				𝜑
			

			

				𝑗
			

			
				
				𝑑
				𝑥
				−
				𝜆
			

			

				Ω
			

			
				|
				|
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝑞
			

			

				𝜑
			

			

				𝑗
			

			
				𝑑
				𝑥
				.
			

		
	

						By (13), (16), and the Holder inequality, we obtain
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				0
				≤
				l
				i
				m
			

			
				𝜀
				→
				0
			

			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				|
				|
				|
				|
				
			

			

				Ω
			

			

				𝑢
			

			

				𝑛
			

			
				|
				|
				∇
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			
				𝑝
				−
				2
			

			
				∇
				𝑢
			

			

				𝑛
			

			
				∇
				𝜑
			

			

				𝑗
			

			
				|
				|
				|
				|
				𝑑
				𝑥
				≤
				𝐶
				l
				i
				m
			

			
				𝜀
				→
				0
			

			
				
				
			

			
				𝐵
				(
				𝑥
			

			

				𝑗
			

			
				,
				𝜀
				)
			

			
				|
				𝑢
				|
			

			

				𝑝
			

			

				∗
			

			
				
				𝑑
				𝑥
			

			
				1
				/
				𝑝
			

			

				∗
			

			
				=
				0
				,
				l
				i
				m
			

			
				𝜀
				→
				0
			

			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				|
				|
				|
				|
				
			

			

				Ω
			

			
				|
				|
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝑝
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑝
			

			

				𝜑
			

			

				𝑗
			

			
				|
				|
				|
				|
				𝑑
				𝑥
				≤
				l
				i
				m
			

			
				𝜀
				→
				0
			

			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				|
				|
				|
				|
				|
				
			

			

				𝐵
			

			

				𝜀
			

			
				(
				𝑥
			

			

				𝑗
			

			

				)
			

			
				|
				|
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝑝
			

			
				
			
			
				
				|
				|
				𝑥
			

			

				𝑗
			

			
				|
				|
				
				−
				𝜀
			

			

				𝑝
			

			

				𝜑
			

			

				𝑗
			

			
				|
				|
				|
				|
				|
				𝑑
				𝑥
				=
				0
				.
			

		
	

						From (12)
	
		
			

				∼
			

		
	
(18), we get that 
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				0
				=
				l
				i
				m
			

			
				𝜀
				→
				0
			

			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				
				𝐼
			

			

				′
			

			
				
				𝑢
			

			

				𝑛
			

			
				
				,
				𝑢
			

			

				𝑛
			

			

				𝜑
			

			

				𝑗
			

			
				
				≥
			

			

				∼
			

			

				𝜇
			

			

				𝑗
			

			

				−
			

			

				∼
			

			

				𝜈
			

			

				𝑗
			

			

				.
			

		
	

						By the Sobolev inequality, 
	
		
			

				𝐴
			

			
				0
				,
				0
			

			

				𝜈
			

			
				𝑝
				/
				𝑝
			

			

				∗
			

			

				𝑗
			

			

				≤
			

			

				∼
			

			

				𝜇
			

			

				𝑗
			

		
	
, hence, we deduce that
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				∼
			

			

				𝜈
			

			

				𝑗
			

			
				=
				0
				o
				r
			

			

				∼
			

			

				𝜈
			

			

				𝑗
			

			
				≥
				
				𝐴
			

			
				0
				,
				0
			

			

				
			

			
				𝑁
				/
				𝑝
			

			

				,
			

		
	

						which implies that 
	
		
			

				𝚥
			

		
	
 is finite.Now we consider the possibility of concentration at the origin. Let 
	
		
			
				𝜀
				>
				0
			

		
	
 be small enough such that 
	
		
			

				𝑥
			

			

				𝑗
			

			
				
			
			
				∈
				𝐵
				(
				0
				,
				𝜀
				)
			

		
	
, 
	
		
			
				∀
				𝑗
				∈
				𝚥
			

		
	
. Take 
	
		
			

				𝜑
			

			

				0
			

			
				∈
				𝐶
			

			
				∞
				0
			

			
				(
				ℜ
			

			

				𝑁
			

			

				)
			

		
	
 such that
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			

				𝜑
			

			

				0
			

			
				
				𝜀
				≡
				1
				o
				n
				𝐵
				0
				,
			

			
				
			
			
				2
				
				,
				𝜑
			

			

				0
			

			
				≡
				0
				o
				n
				𝐵
				(
				0
				,
				𝜀
				)
			

			

				𝑐
			

			
				,
				|
				|
				∇
				𝜑
			

			

				0
			

			
				|
				|
				≤
				4
			

			
				
			
			
				𝜀
				.
			

		
	

						By (13) and (14), we also get that 
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				0
				=
				l
				i
				m
			

			
				𝜀
				→
				0
			

			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				
				𝐼
			

			

				′
			

			
				
				𝑢
			

			

				𝑛
			

			
				
				,
				𝑢
			

			

				𝑛
			

			

				𝜑
			

			

				0
			

			
				
				=
				l
				i
				m
			

			
				𝜀
				→
				0
			

			
				
				
			

			

				Ω
			

			

				𝜑
			

			

				0
			

			

				𝑑
			

			

				∼
			

			
				
				𝜇
				−
			

			

				Ω
			

			

				𝜑
			

			

				0
			

			

				𝑑
			

			

				∼
			

			
				
				𝛾
				−
			

			

				Ω
			

			

				𝜑
			

			

				0
			

			

				𝑑
			

			

				∼
			

			
				𝜈
				
				−
				𝜆
			

			

				Ω
			

			

				𝜑
			

			

				0
			

			
				|
				𝑢
				|
			

			

				𝑞
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑠
			

			
				
				≥
				𝑑
				𝑥
			

			

				∼
			

			

				𝜇
			

			

				0
			

			
				−
				𝜇
			

			

				∼
			

			

				𝛾
			

			

				0
			

			

				−
			

			

				∼
			

			

				𝜈
			

			

				0
			

			

				.
			

		
	

						By the definition of 
	
		
			

				𝐴
			

			
				𝜇
				,
				0
			

		
	
, we deduce that 
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			

				𝐴
			

			
				∼
				𝜇
				,
				0
			

			

				𝜈
			

			
				𝑝
				/
				𝑝
			

			

				∗
			

			

				0
			

			

				≤
			

			

				∼
			

			

				𝜇
			

			

				0
			

			
				−
				𝜇
			

			

				∼
			

			

				𝛾
			

			

				0
			

			

				.
			

		
	

						From (22) we have
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			

				𝐴
			

			
				∼
				𝜇
				,
				0
			

			

				𝜈
			

			
				𝑝
				/
				𝑝
			

			

				∗
			

			

				0
			

			

				≤
			

			

				∼
			

			

				𝜇
			

			

				0
			

			
				−
				𝜇
			

			

				∼
			

			

				𝛾
			

			

				0
			

			

				≤
			

			

				∼
			

			

				𝜈
			

			

				0
			

			

				,
			

		
	

						which implies that 
	
		
			

				∼
			

			

				𝜈
			

			

				0
			

			
				=
				0
			

		
	
 or 
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			

				∼
			

			

				𝜈
			

			

				0
			

			
				≥
				
				𝐴
			

			
				𝜇
				,
				0
			

			

				
			

			
				𝑁
				/
				𝑝
			

			

				.
			

		
	

						We will prove that (25) and 
	
		
			

				∼
			

			

				𝜈
			

			

				𝑗
			

			
				≥
				(
				𝐴
			

			
				0
				,
				0
			

			

				)
			

			
				𝑁
				/
				𝑝
			

		
	
 are not possible. By (13) and (14), 
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				𝑐
				=
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝐼
				
				𝑢
			

			

				𝑛
			

			
				
				=
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				
				𝐼
				
				𝑢
			

			

				𝑛
			

			
				
				−
				1
			

			
				
			
			
				𝑝
				⟨
				𝐼
			

			

				′
			

			
				
				𝑢
			

			

				𝑛
			

			
				
				,
				𝑢
			

			

				𝑛
			

			
				⟩
				
				=
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				
				1
			

			
				
			
			
				𝑁
				
			

			

				Ω
			

			
				|
				|
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝑝
			

			

				∗
			

			
				
				1
				𝑑
				𝑥
				+
				𝜆
			

			
				
			
			
				𝑝
				−
				1
			

			
				
			
			
				𝑞
				
				
			

			

				Ω
			

			
				|
				|
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝑞
			

			
				
				≥
				1
				𝑑
				𝑥
			

			
				
			
			
				𝑁
				
				
			

			

				Ω
			

			
				|
				𝑢
				|
			

			

				𝑝
			

			

				∗
			

			
				
				𝑑
				𝑥
				+
			

			
				∼
				𝑗
				∈
				𝚥
			

			

				𝜈
			

			

				𝑗
			

			

				+
			

			

				∼
			

			

				𝜈
			

			

				0
			

			
				
				
				1
				+
				𝜆
			

			
				
			
			
				𝑝
				−
				1
			

			
				
			
			
				𝑞
				
				
			

			

				Ω
			

			
				|
				𝑢
				|
			

			

				𝑞
			

			
				≥
				1
				𝑑
				𝑥
			

			
				
			
			
				𝑁
				
			

			

				Ω
			

			
				|
				𝑢
				|
			

			

				𝑝
			

			

				∗
			

			
				1
				𝑑
				𝑥
				+
			

			
				
			
			
				𝑁
				
				
				𝐴
				m
				i
				n
			

			
				𝜇
				,
				0
			

			

				
			

			
				𝑁
				/
				𝑝
			

			
				,
				
				𝐴
			

			
				0
				,
				0
			

			

				
			

			
				𝑁
				/
				𝑝
			

			
				
				
				1
				+
				𝜆
			

			
				
			
			
				𝑝
				−
				1
			

			
				
			
			
				𝑞
				
				
			

			

				Ω
			

			
				|
				𝑢
				|
			

			

				𝑞
			

			
				≥
				1
				𝑑
				𝑥
			

			
				
			
			
				𝑁
				
			

			

				Ω
			

			
				|
				𝑢
				|
			

			

				𝑝
			

			

				∗
			

			
				1
				𝑑
				𝑥
				+
			

			
				
			
			
				𝑁
				
				𝐴
			

			
				𝜇
				,
				0
			

			

				
			

			
				𝑁
				/
				𝑝
			

			
				
				1
				+
				𝜆
			

			
				
			
			
				𝑝
				−
				1
			

			
				
			
			
				𝑞
				
				
			

			

				Ω
			

			
				|
				𝑢
				|
			

			

				𝑞
			

			
				𝑑
				𝑥
				.
			

		
	

						By applying the Holder inequality at (26), we have
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				1
				𝑐
				≥
			

			
				
			
			
				𝑁
				
				𝐴
			

			
				𝜇
				,
				0
			

			

				
			

			
				𝑁
				/
				𝑝
			

			
				+
				1
			

			
				
			
			
				𝑁
				
			

			

				Ω
			

			
				|
				𝑢
				|
			

			

				𝑝
			

			

				∗
			

			
				
				1
				𝑑
				𝑥
				−
				𝜆
			

			
				
			
			
				𝑞
				−
				1
			

			
				
			
			
				𝑝
				
				|
				|
				Ω
				|
				|
			

			
				(
				𝑝
			

			

				∗
			

			
				−
				𝑞
				)
				/
				𝑝
			

			

				∗
			

			
				
				
			

			

				Ω
			

			
				|
				𝑢
				|
			

			

				𝑝
			

			

				∗
			

			
				
				𝑑
				𝑥
			

			
				𝑞
				/
				𝑝
			

			

				∗
			

			

				.
			

		
	

						Let 
	
		
			

				𝑓
			

			

				1
			

			
				(
				𝑥
				)
				=
				𝑐
			

			

				1
			

			

				𝑥
			

			

				𝑝
			

			

				∗
			

			
				−
				𝜆
				𝑐
			

			

				2
			

			

				𝑥
			

			

				𝑞
			

		
	
, 
	
		
			

				𝑐
			

			

				1
			

			
				=
				1
				/
				𝑁
			

		
	
, 
	
		
			

				𝑐
			

			

				2
			

			
				=
				(
				1
				/
				𝑞
				)
				−
				(
				1
				/
				𝑝
				)
			

		
	
. This function obtains its absolute minimum (for 
	
		
			
				𝑥
				>
				0
			

		
	
) at point 
	
		
			

				𝑥
			

			

				0
			

			
				=
				(
				𝜆
				𝑐
			

			

				2
			

			
				𝑞
				/
				𝑝
			

			

				∗
			

			

				𝑐
			

			

				1
			

			

				)
			

			
				1
				/
				(
				𝑝
			

			

				∗
			

			
				−
				𝑞
				)
			

		
	
. That is, 
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			

				𝑓
			

			

				1
			

			
				(
				𝑥
				)
				≥
				𝑓
			

			

				1
			

			
				
				𝑥
			

			

				0
			

			
				
				=
				−
				𝐾
			

			

				1
			

			

				𝜆
			

			

				𝑝
			

			

				∗
			

			
				/
				(
				𝑝
			

			

				∗
			

			
				−
				𝑞
				)
			

			

				,
			

		
	

						where 
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			

				𝐾
			

			

				1
			

			
				=
				𝑐
			

			
				𝑝
				/
				(
				𝑝
			

			

				∗
			

			
				2
				−
				𝑞
				)
			

			

				𝑐
			

			
				−
				𝑞
				/
				(
				𝑝
			

			

				∗
			

			
				1
				−
				𝑞
				)
			

			
				×
				
				
				𝑞
			

			
				
			
			

				𝑝
			

			

				∗
			

			

				
			

			
				𝑞
				/
				(
				𝑝
			

			

				∗
			

			
				−
				𝑞
				)
			

			
				−
				
				𝑞
			

			
				
			
			

				𝑝
			

			

				∗
			

			

				
			

			

				𝑝
			

			

				∗
			

			
				/
				(
				𝑝
			

			

				∗
			

			
				−
				𝑞
				)
			

			
				
				>
				0
				,
			

		
	

						because of 
	
		
			
				1
				<
				𝑞
				<
				𝑝
				<
				𝑁
				𝑝
				/
				(
				𝑁
				−
				𝑝
				)
			

		
	
. But this result contradicts the hypothesis. Then, 
	
		
			

				∼
			

			

				𝜈
			

			

				𝑗
			

			
				=
				0
				∀
				𝑗
				∈
				𝚥
				∪
				{
				0
				}
			

		
	
 and we conclude. Case 2 (
	
		
			
				0
				<
				𝑡
				<
				𝑝
			

		
	
,   then 
	
		
			
				𝑝
				<
				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
				<
				𝑝
			

			

				∗
			

		
	
). We only need to consider the possibility of concentration at the origin. Let 
	
		
			
				𝜀
				>
				0
			

		
	
 be small enough such that 
	
		
			
				𝐵
				(
				0
				,
				𝜀
				)
				⊂
				Ω
			

		
	
. Take 
	
		
			

				𝜑
			

			

				0
			

		
	
 a smooth cut-off function centered at the origin such that 
	
		
			
				0
				≤
				𝜑
			

			

				0
			

			
				≤
				1
			

		
	
, 
	
		
			

				𝜑
			

			

				0
			

			
				=
				1
			

		
	
 for 
	
		
			
				|
				𝑥
				|
				≤
				𝜀
				/
				2
			

		
	
, 
	
		
			

				𝜑
			

			

				0
			

			
				=
				0
			

		
	
 for 
	
		
			
				|
				𝑥
				|
				≥
				𝜀
			

		
	
, and 
	
		
			
				|
				∇
				𝜑
			

			

				0
			

			
				|
				≤
				4
				/
				𝜀
			

		
	
. By (13) and (14), we get that 
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				0
				=
				l
				i
				m
			

			
				𝜀
				→
				0
			

			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				
				𝐼
			

			

				′
			

			
				
				𝑢
			

			

				𝑛
			

			
				
				,
				𝑢
			

			

				𝑛
			

			

				𝜑
			

			

				0
			

			
				
				=
				l
				i
				m
			

			
				𝜀
				→
				0
			

			
				
				
			

			

				Ω
			

			

				𝜑
			

			

				0
			

			

				𝑑
			

			

				∼
			

			
				
				𝜇
				−
				𝜇
			

			

				Ω
			

			

				𝜑
			

			

				0
			

			

				𝑑
			

			

				∼
			

			
				
				𝛾
				−
			

			

				Ω
			

			

				𝜑
			

			

				0
			

			

				𝑑
			

			

				∼
			

			
				
				𝜏
				−
				𝜆
			

			

				Ω
			

			

				𝜑
			

			

				0
			

			
				|
				𝑢
				|
			

			

				𝑞
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑠
			

			
				
				≥
				𝑑
				𝑥
			

			

				∼
			

			

				𝜇
			

			

				0
			

			
				−
				𝜇
			

			

				∼
			

			

				𝛾
			

			

				0
			

			

				−
			

			

				∼
			

			

				𝜏
			

			

				0
			

			

				.
			

		
	

						By the definition of 
	
		
			

				𝐴
			

			
				𝜇
				,
				𝑡
			

		
	
, we deduce that 
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			

				𝐴
			

			
				∼
				𝜇
				,
				𝑡
			

			

				𝜏
			

			
				𝑝
				/
				𝑝
			

			

				∗
			

			
				0
				(
				𝑡
				)
			

			

				≤
			

			

				∼
			

			

				𝜇
			

			

				0
			

			
				−
				𝜇
			

			

				∼
			

			

				𝛾
			

			

				0
			

		
	

						From (30), we have 
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			

				𝐴
			

			
				∼
				𝜇
				,
				𝑡
			

			

				𝜏
			

			
				𝑝
				/
				𝑝
			

			

				∗
			

			
				0
				(
				𝑡
				)
			

			

				≤
			

			

				∼
			

			

				𝜏
			

			

				0
			

			

				,
			

		
	

						which implies that 
	
		
			

				∼
			

			

				𝜏
			

			

				0
			

			
				=
				0
			

		
	
 or
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			

				∼
			

			

				𝜏
			

			

				0
			

			
				≥
				
				𝐴
			

			
				𝜇
				,
				𝑡
			

			

				
			

			
				(
				𝑁
				−
				𝑡
				)
				/
				(
				𝑝
				−
				𝑡
				)
			

			

				.
			

		
	

						We will prove (33) is not possible. From the above arguments and (8), we conclude that 
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				𝑐
				=
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				𝐽
				
				𝑢
			

			

				𝑛
			

			
				
				=
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				
				𝐽
				
				𝑢
			

			

				𝑛
			

			
				
				−
				1
			

			
				
			
			
				𝑝
				
				𝐽
				
				𝑢
			

			

				𝑛
			

			
				
				,
				𝑢
			

			

				𝑛
			

			
				
				
				≥
				𝑝
				−
				𝑡
			

			
				
			
			
				
				𝑝
				(
				𝑁
				−
				𝑡
				)
			

			

				Ω
			

			
				|
				𝑢
				|
			

			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑡
			

			
				𝑑
				𝑥
				+
				𝑝
				−
				𝑡
			

			
				
			
			
				
				𝐴
				𝑝
				(
				𝑁
				−
				𝑡
				)
			

			
				𝜇
				,
				𝑡
			

			

				
			

			
				(
				𝑁
				−
				𝑡
				)
				/
				(
				𝑝
				−
				𝑡
				)
			

			
				+
				𝜆
				𝑐
			

			

				0
			

			
				
				1
			

			
				
			
			
				𝑞
				−
				1
			

			
				
			
			
				𝑝
				
				
				
			

			

				Ω
			

			
				|
				𝑢
				|
			

			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑡
			

			
				
				𝑑
				𝑥
			

			
				𝑞
				/
				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			

				.
			

		
	

						Let 
	
		
			

				𝑓
			

			

				2
			

			
				(
				𝑥
				)
				=
				𝑐
			

			

				3
			

			

				𝑥
			

			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			
				−
				𝜆
				𝑐
			

			

				4
			

			

				𝑥
			

			

				𝑞
			

		
	
, 
	
		
			

				𝑐
			

			

				3
			

			
				=
				(
				𝑝
				−
				𝑡
				)
				/
				𝑝
				(
				𝑁
				−
				𝑡
				)
			

		
	
, 
	
		
			

				𝑐
			

			

				4
			

			
				=
				𝑐
			

			

				0
			

			
				(
				(
				1
				/
				𝑞
				)
				−
				(
				1
				/
				𝑝
				)
				)
			

		
	
. This function obtains its absolute minimum at point 
	
		
			

				𝑥
			

			

				0
			

			
				=
				(
				𝜆
				𝑐
			

			

				4
			

			
				𝑞
				/
				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
				𝑐
			

			

				3
			

			

				)
			

			
				1
				/
				(
				𝑝
			

			

				∗
			

			
				−
				𝑞
				)
			

		
	
. That is, 
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			

				𝑓
			

			

				2
			

			
				(
				𝑥
				)
				≥
				𝑓
			

			

				2
			

			
				
				𝑥
			

			

				0
			

			
				
				=
				−
				𝐾
			

			

				2
			

			

				𝜆
			

			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
				/
				(
				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
				−
				𝑞
				)
			

			

				.
			

		
	

						But this result contradicts the hypothesis. Hence, up to a subsequence, we obtain that 
	
		
			

				𝑢
			

			

				𝑛
			

			
				→
				𝑢
			

		
	
 strongly in 
	
		
			

				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
.Thus, the proof of the Lemma is completed.
3. Existence of Infinitely Many Solutions 
In this section, we will prove our main result of Theorem 1. We first recall some concepts and results in minimax theory.
Let 
	
		
			

				𝑋
			

		
	
 be a Banach space, and 
	
		
			

				Σ
			

		
	
 denote all closed subsets of 
	
		
			
				𝑋
				−
				{
				0
				}
			

		
	
 which are symmetric with respect to the origin. For 
	
		
			
				𝐴
				∈
				Σ
			

		
	
, we define the genus 
	
		
			
				𝛾
				(
				𝐴
				)
			

		
	
 by 
						
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			
				𝛾
				
				
				(
				𝐴
				)
				=
				m
				i
				n
				𝑘
				∈
				𝐍
				∶
				∃
				𝜙
				∈
				𝐶
				𝐴
				;
				𝐑
			

			

				𝑘
			

			
				
				
				,
				⧵
				{
				0
				}
				,
				𝜙
				(
				𝑥
				)
				=
				−
				𝜙
				(
				−
				𝑥
				)
			

		
	

					if the minimum exists, and if such a minimum does not exist, then we define 
	
		
			
				𝛾
				(
				𝐴
				)
				=
				∞
			

		
	
. The main properties of the genus are contained in the following lemma (see [12] for the details).
Lemma 3.  Let 
	
		
			
				𝐴
				,
				𝐵
				∈
				Σ
			

		
	
. Then one has the following. (1)If there exists 
	
		
			
				𝑓
				∈
				𝐶
				(
				𝐴
				,
				𝐵
				)
			

		
	
, odd, then 
	
		
			
				𝛾
				(
				𝐴
				)
				≤
				(
				𝐵
				)
			

		
	
.(2)If 
	
		
			
				𝐴
				⊂
				𝐵
			

		
	
, then 
	
		
			
				𝛾
				(
				𝐴
				)
				≤
				𝛾
				(
				𝐵
				)
			

		
	
.(3)If there exists an odd homeomorphism between 
	
		
			

				𝐴
			

		
	
 and 
	
		
			

				𝐵
			

		
	
, then 
	
		
			
				𝛾
				(
				𝐴
				)
				=
				𝛾
				(
				𝐵
				)
			

		
	
.(4)If 
	
		
			

				𝑆
			

			
				𝑁
				−
				1
			

		
	
 is the sphere in 
	
		
			

				ℜ
			

			

				𝑁
			

		
	
, then 
	
		
			
				𝛾
				(
				𝑆
			

			
				𝑁
				−
				1
			

			
				)
				=
				𝑁
			

		
	
.(5)Consider 
	
		
			
				𝛾
				(
				𝐴
				∪
				𝐵
				)
				≤
				𝛾
				(
				𝐴
				)
				+
				𝛾
				(
				𝐵
				)
			

		
	
.(6)If 
	
		
			
				𝛾
				(
				𝐵
				)
				<
				+
				∞
			

		
	
, then 
	
		
			
				𝛾
				(
			

			
				
			
			
				𝐴
				−
				𝐵
				)
				≥
				𝛾
				(
				𝐴
				)
				−
				𝛾
				(
				𝐵
				)
			

		
	
.(7)If 
	
		
			

				𝐴
			

		
	
 is compact, then 
	
		
			
				𝛾
				(
				𝐴
				)
				<
				+
				∞
			

		
	
, and there exists 
	
		
			
				𝛿
				>
				0
			

		
	
 such that 
	
		
			
				𝛾
				(
				𝑁
			

			

				𝛿
			

			
				(
				𝐴
				)
				)
				=
				𝛾
				(
				𝐴
				)
			

		
	
, where 
	
		
			

				𝑁
			

			

				𝛿
			

			
				(
				𝐴
				)
				=
				{
				𝑥
				∈
				𝑋
				∶
				𝑑
				(
				𝑥
				,
				𝐴
				)
				≤
				𝛿
				}
			

		
	
.(8)If 
	
		
			

				𝑋
			

			

				0
			

		
	
 is a subspace of 
	
		
			

				𝑋
			

		
	
 with codimension 
	
		
			

				𝑘
			

		
	
, and 
	
		
			
				𝛾
				(
				𝐴
				)
				<
				𝑘
			

		
	
, then 
	
		
			
				𝐴
				∩
				𝑋
			

			

				0
			

			
				≠
				∅
			

		
	
.
Let 
	
		
			

				𝑋
			

		
	
 be a Banach space and 
	
		
			

				𝐸
			

		
	
 be a 
	
		
			

				𝐶
			

			

				1
			

		
	
 functional on 
	
		
			

				𝑋
			

		
	
. Denote 
	
		
			

				𝐸
			

			

				𝑐
			

			
				=
				{
				𝑢
				∈
				𝑋
				∣
				𝐸
				(
				𝑢
				)
				≤
				𝑐
				}
			

		
	
, 
	
		
			

				Σ
			

			

				𝑘
			

			
				=
				{
				𝐶
				⊂
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
				−
				{
				0
				}
				,
				𝐶
				𝑖
				𝑠
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
				,
				𝐶
				=
				−
				𝐶
				,
				𝛾
				(
				𝐶
				)
				≥
				𝑘
				}
			

		
	
.
Given the functional 
	
		
			

				𝐼
			

		
	
, under the hypothesis 
	
		
			
				1
				<
				𝑞
				<
				𝑝
				<
				𝑛
			

		
	
, using Sobolev’s equality and (9), we obtain 
						
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			
				1
				𝐼
				(
				𝑢
				)
				≥
			

			
				
			
			
				𝑝
				‖
				𝑢
				‖
			

			

				𝑝
			

			
				−
				1
			

			
				
			
			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
				𝐴
			

			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
				/
				𝑝
				𝜇
				,
				𝑡
			

			
				‖
				𝑢
				‖
			

			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			
				−
				𝜆
				𝑐
			

			

				0
			

			
				
			
			
				𝑞
				‖
				𝑢
				‖
			

			

				𝑞
			

			

				.
			

		
	

					If we define for 
	
		
			
				𝑥
				≥
				0
			

		
	

	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				1
				ℎ
				(
				𝑥
				)
				=
			

			
				
			
			
				𝑝
				𝑥
			

			

				𝑝
			

			
				−
				1
			

			
				
			
			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
				𝐴
			

			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
				/
				𝑝
				𝜇
				,
				𝑡
			

			

				𝑥
			

			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			
				−
				𝜆
				𝑐
			

			

				0
			

			
				
			
			
				𝑞
				𝑥
			

			

				𝑞
			

			

				,
			

		
	

					then
						
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			
				𝐼
				(
				𝑢
				)
				≥
				ℎ
				(
				‖
				𝑢
				‖
				)
				.
			

		
	

					Because 
	
		
			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
				>
				𝑝
			

		
	
 and 
	
		
			
				ℎ
				(
				𝑥
				)
				→
				−
				∞
			

		
	
,  as 
	
		
			
				𝑥
				→
				+
				∞
			

		
	
, it is easy to see that there exists 
	
		
			
				0
				<
				𝜇
			

			

				0
			

			
				≤
				1
			

		
	
 such that, if 
	
		
			
				0
				<
				𝜇
				≤
				𝜇
			

			

				0
			

		
	
, 
	
		
			

				ℎ
			

		
	
 attains its positive maximum.
From the structure of 
	
		
			
				ℎ
				(
				𝑥
				)
			

		
	
, we see that there are constants 
	
		
			
				0
				<
				𝑅
			

			

				0
			

			
				<
				𝑅
			

			

				1
			

		
	
, such that 
	
		
			
				ℎ
				(
				𝑅
			

			

				0
			

			
				)
				=
				ℎ
				(
				𝑅
			

			

				1
			

			
				)
				=
				0
			

		
	
, 
	
		
			
				ℎ
				(
				𝑅
				)
				≤
				0
			

		
	
 if 
	
		
			
				𝑅
				<
				𝑅
			

			

				0
			

		
	
, 
	
		
			
				ℎ
				(
				𝑅
				)
				>
				0
			

		
	
 if 
	
		
			

				𝑅
			

			

				0
			

			
				<
				𝑅
				<
				𝑅
			

			

				1
			

		
	
, and 
	
		
			
				ℎ
				(
				𝑅
				)
				<
				0
			

		
	
 if 
	
		
			
				𝑅
				>
				𝑅
			

			

				1
			

		
	
. Following [9], let 
	
		
			
				𝜏
				∶
				𝐑
			

			

				+
			

			
				→
				[
				0
				,
				1
				]
				∈
				𝐶
			

			

				∞
			

		
	
 be nonincreasing, such that 
						
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			
				
				𝜏
				(
				𝑥
				)
				=
				1
				,
				i
				f
				0
				≤
				𝑥
				≤
				𝑅
			

			

				0
			

			
				,
				0
				,
				i
				f
				𝑥
				≥
				𝑅
			

			

				1
			

			

				,
			

		
	

					and let 
	
		
			
				𝜑
				(
				𝑢
				)
				=
				𝜏
				(
				‖
				𝑢
				‖
				)
			

		
	
; we consider the truncated functional
						
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			
				1
				𝐽
				(
				𝑢
				)
				=
			

			
				
			
			
				𝑝
				
			

			

				Ω
			

			
				
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			
				𝑢
				−
				𝜇
			

			

				𝑝
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑝
			

			
				
				−
				1
				𝑑
				𝑥
			

			
				
			
			

				𝑝
			

			

				∗
			

			
				
				(
				𝑡
				)
			

			

				Ω
			

			
				|
				𝑢
				|
			

			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			
				𝜑
				(
				𝑢
				)
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑡
			

			
				𝜆
				𝑑
				𝑥
				−
			

			
				
			
			
				𝑞
				
			

			

				Ω
			

			
				|
				𝑢
				|
			

			

				𝑞
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑠
			

			
				𝑑
				𝑥
				.
			

		
	

					Similar to (39), we have 
	
		
			
				𝐽
				(
				𝑢
				)
				≥
			

			
				
			
			
				ℎ
				(
				‖
				𝑢
				‖
				)
			

		
	
, where 
						
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			
				
			
			
				1
				ℎ
				(
				𝑥
				)
				=
			

			
				
			
			
				𝑝
				𝑥
			

			

				𝑝
			

			
				−
				𝜏
				(
				𝑥
				)
			

			
				
			
			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
				𝐴
			

			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
				/
				𝑝
				𝜇
				,
				𝑡
			

			

				𝑥
			

			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			
				−
				𝜆
				𝑐
			

			

				0
			

			
				
			
			
				𝑞
				𝑥
			

			

				𝑞
			

			

				.
			

		
	

					Clearly, 
	
		
			
				
			
			
				ℎ
				(
				𝑥
				)
				≥
				ℎ
				(
				𝑥
				)
			

		
	
 for 
	
		
			
				𝑥
				≥
				0
			

		
	
 and 
	
		
			
				
			
			
				ℎ
				(
				𝑥
				)
				=
				ℎ
				(
				𝑥
				)
			

		
	
 if 
	
		
			
				0
				≤
				𝑥
				≤
				𝑅
			

			

				0
			

		
	
, 
	
		
			
				
			
			
				ℎ
				(
				𝑥
				)
				≥
				ℎ
				(
				𝑥
				)
				≥
				0
			

		
	
, if 
	
		
			

				𝑅
			

			

				0
			

			
				<
				𝑅
				<
				𝑅
			

			

				1
			

		
	
, and if 
	
		
			
				𝑥
				>
				𝑅
			

			

				1
			

		
	
, 
	
		
			
				
			
			
				ℎ
				(
				𝑥
				)
				=
				(
				1
				/
				𝑝
				)
				𝑥
			

			

				𝑝
			

			
				−
				(
				𝜆
				𝑐
			

			

				0
			

			
				/
				𝑞
				)
				𝑥
			

			

				𝑞
			

		
	
 is strictly increasing, and so 
	
		
			
				
			
			
				ℎ
				(
				𝑥
				)
				>
				0
			

		
	
, if 
	
		
			
				𝑥
				>
				𝑅
			

			

				1
			

		
	
. Consequently, 
	
		
			
				
			
			
				ℎ
				(
				𝑥
				)
				≥
				0
			

		
	
 for 
	
		
			
				𝑥
				≥
				𝑅
			

			

				0
			

		
	
.
Lemma 4.  
	
		
			
				(
				1
				)
			

		
	
  Consider 
	
		
			
				𝐽
				∈
				𝐶
			

			

				1
			

			
				(
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
				,
				𝐑
				)
			

		
	
. 
	
		
			
				(
				2
				)
			

		
	
 If 
	
		
			
				𝐽
				(
				𝑢
				)
				≤
				0
			

		
	
, then 
	
		
			
				‖
				𝑢
				‖
				≤
				𝑅
			

			

				0
			

		
	
 and 
	
		
			
				𝐼
				(
				𝑣
				)
				=
				𝐽
				(
				𝑣
				)
			

		
	
 for all 
	
		
			

				𝑣
			

		
	
 in a small enough neighborhood of 
	
		
			

				𝑢
			

		
	
. 
	
		
			
				(
				3
				)
			

		
	
 There exists 
	
		
			

				𝜆
			

			

				0
			

			
				>
				0
			

		
	
, such that if 
	
		
			
				0
				<
				𝜆
				<
				𝜆
			

			

				0
			

		
	
, then 
	
		
			

				𝐽
			

		
	
 verifies a local Palais-Smale condition for 
	
		
			
				𝑐
				≤
				0
			

		
	
.
Proof. (1) and (2) are immediate. To prove (3), observe that all Palais-Smale sequences for 
	
		
			

				𝐽
			

		
	
 with 
	
		
			
				𝑐
				≤
				0
			

		
	
 must be bounded; then, by Lemma 2, if 
	
		
			

				𝜆
			

		
	
 verifies 
	
		
			
				(
				(
				𝑝
				−
				𝑡
				)
				/
				𝑝
				(
				𝑁
				−
				𝑡
				)
				)
				(
				𝐴
			

			
				𝜇
				,
				𝑡
			

			

				)
			

			
				(
				𝑁
				−
				𝑡
				)
				/
				(
				𝑝
				−
				𝑡
				)
			

			
				−
				𝐾
				𝜆
			

			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
				/
				(
				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
				−
				𝑞
				)
			

			
				≥
				0
			

		
	
, there exists a convergent subsequence.
Now, we use the idea in [9] to construct negative critical values of 
	
		
			

				𝐽
			

		
	
 via genus.
Lemma 5.  Given 
	
		
			
				𝑛
				∈
				𝑁
			

		
	
, there is an 
	
		
			
				𝜀
				(
				𝑛
				)
				>
				0
			

		
	
, such that 
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			
				𝛾
				
				
				𝑢
				∈
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
				∶
				𝐽
				(
				𝑢
				)
				≤
				−
				𝜀
				(
				𝑛
				)
				
				
				≥
				𝑛
				.
			

		
	

Proof. Fix 
	
		
			

				𝑛
			

		
	
; let 
	
		
			

				𝐸
			

			

				𝑛
			

		
	
 be an 
	
		
			

				𝑛
			

		
	
-dimensional subspace of 
	
		
			

				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
; we take 
	
		
			

				𝑢
			

			

				𝑛
			

			
				∈
				𝐸
			

			

				𝑛
			

		
	
 with norm 
	
		
			
				‖
				𝑢
			

			

				𝑛
			

			
				‖
				=
				1
			

		
	
 for 
	
		
			
				0
				<
				𝜌
				<
				𝑅
			

			

				0
			

		
	
; we have
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			
				𝐽
				
				𝜌
				𝑢
			

			

				𝑛
			

			
				
				
				=
				𝐼
				𝜌
				𝑢
			

			

				𝑛
			

			
				
				=
				1
			

			
				
			
			
				𝑝
				𝜌
			

			

				𝑝
			

			
				−
				1
			

			
				
			
			

				𝑝
			

			

				∗
			

			
				𝜌
				(
				𝑡
				)
			

			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			
				×
				
			

			

				Ω
			

			
				|
				|
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑡
			

			
				𝜆
				𝑑
				𝑥
				−
			

			
				
			
			
				𝑞
				𝜌
			

			

				𝑞
			

			

				
			

			

				Ω
			

			
				|
				|
				𝑢
			

			

				𝑛
			

			
				|
				|
			

			

				𝑞
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑠
			

			
				𝑑
				𝑥
				.
			

		
	

						Since 
	
		
			

				𝐸
			

			

				𝑛
			

		
	
 is a space of finite dimension, all the norms in 
	
		
			

				𝐸
			

			

				𝑛
			

		
	
 are equivalent. If we define 
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			

				𝛼
			

			

				𝑛
			

			
				
				
				=
				i
				n
				f
			

			

				Ω
			

			
				|
				𝑢
				|
			

			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑡
			

			
				𝑑
				𝑥
				∶
				𝑢
				∈
				𝐸
			

			

				𝑛
			

			
				
				𝛽
				,
				‖
				𝑢
				‖
				=
				1
				>
				0
				,
			

			

				𝑛
			

			
				
				
				=
				i
				n
				f
			

			

				Ω
			

			
				|
				𝑢
				|
			

			

				𝑞
			

			
				
			
			
				|
				𝑥
				|
			

			

				𝑠
			

			
				𝑑
				𝑥
				∶
				𝑢
				∈
				𝐸
			

			

				𝑛
			

			
				,
				
				‖
				𝑢
				‖
				=
				1
				>
				0
				,
			

		
	

						we have 
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			
				𝐽
				
				𝜌
				𝑢
			

			

				𝑛
			

			
				
				≤
				1
			

			
				
			
			
				𝑝
				𝜌
			

			

				𝑝
			

			
				−
				𝛼
			

			

				𝑛
			

			
				
			
			

				𝑝
			

			

				∗
			

			
				𝜌
				(
				𝑡
				)
			

			

				𝑝
			

			

				∗
			

			
				(
				𝑡
				)
			

			
				−
				𝜆
				𝛽
			

			

				𝑛
			

			
				
			
			
				𝑞
				𝜌
			

			

				𝑞
			

			

				,
			

		
	

						and we can choose 
	
		
			

				𝜀
			

		
	
 (which depends on 
	
		
			

				𝑛
			

		
	
), and 
	
		
			
				𝜂
				<
				𝑅
			

			

				0
			

		
	
, such that 
	
		
			
				𝐽
				(
				𝜂
				𝑢
				)
				≤
				−
				𝜀
			

		
	
 if 
	
		
			
				𝑢
				∈
				𝐸
			

			

				𝑛
			

		
	
 and 
	
		
			
				‖
				𝑢
				‖
				=
				1
			

		
	
.Let 
	
		
			

				𝑆
			

			

				𝜂
			

			
				=
				{
				𝑢
				∈
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
				∶
				‖
				𝑢
				‖
				=
				𝜂
				}
			

		
	
. Consider 
	
		
			

				𝑆
			

			

				𝜂
			

			
				∩
				𝐸
			

			

				𝑛
			

			
				⊂
				{
				𝑢
				∈
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
				∶
				𝐽
				(
				𝑢
				)
				≤
				−
				𝜀
				}
			

		
	
; therefore, by Lemma 3, we see that 
							
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			
				𝛾
				
				
				𝑢
				∈
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				
				𝑆
				(
				Ω
				)
				∶
				𝐽
				(
				𝑢
				)
				≤
				−
				𝜀
				(
				𝑛
				)
				
				
				≥
				𝛾
			

			

				𝜂
			

			
				∩
				𝐸
			

			

				𝑛
			

			
				
				=
				𝑛
				.
			

		
	

						We are now in a position to prove our main result.
Proof of Theorem 1. Let 
	
		
			

				Σ
			

			

				𝑘
			

			
				=
				{
				𝐶
				⊂
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
				−
				{
				0
				}
				,
				𝐶
				𝑖
				𝑠
				𝑐
				𝑙
				𝑜
				𝑠
				𝑒
				𝑑
				,
				𝐶
				=
				−
				𝐶
				,
				𝛾
				(
				𝐶
				)
				≥
				𝑘
				}
			

		
	
, 
	
		
			

				𝑐
			

			

				𝑘
			

			
				=
				i
				n
				f
			

			
				𝐶
				∈
				Σ
			

			

				𝑘
			

			
				s
				u
				p
			

			
				𝑢
				∈
				𝐶
			

			
				𝐽
				(
				𝑢
				)
			

		
	
, 
	
		
			

				𝐾
			

			

				𝑐
			

			
				=
				{
				𝑢
				∈
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
				,
				𝐽
			

			

				′
			

			
				(
				𝑢
				)
				=
				0
				,
				𝐽
				(
				𝑢
				)
				=
				𝑐
				}
			

		
	
, and suppose that 
	
		
			
				0
				<
				𝜆
				<
				𝜆
			

			

				0
			

		
	
 where 
	
		
			

				𝜆
			

			

				0
			

		
	
 is the constant given by Lemma 4. We claim that if 
	
		
			
				𝑘
				,
				𝑟
				∈
				𝑁
			

		
	
 are such that 
	
		
			
				𝑐
				=
				𝑐
			

			

				𝑘
			

			
				=
				𝑐
			

			
				𝑘
				+
				1
			

			
				=
				⋅
				⋅
				⋅
				=
				𝑐
			

			
				𝑘
				+
				𝑟
			

		
	
, then 
	
		
			
				𝛾
				(
				𝐾
			

			

				𝑐
			

			
				)
				≥
				𝑟
				+
				1
			

		
	
.In fact, denote 
	
		
			

				𝐽
			

			
				−
				𝜀
			

			
				=
				{
				𝑢
				∈
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
				∶
				𝐽
				(
				𝑢
				)
				≤
				−
				𝜀
				}
			

		
	
; by Lemma 5, we see that for any 
	
		
			
				𝑘
				∈
				𝑁
			

		
	
, there is a 
	
		
			
				𝜀
				(
				𝑘
				)
				>
				0
			

		
	
, such that 
	
		
			
				𝛾
				(
				𝐽
			

			
				−
				𝜀
				(
				𝑘
				)
			

			
				)
				≥
				𝑘
			

		
	
. Since 
	
		
			

				𝐽
			

		
	
 is continuous and even, 
	
		
			

				𝐽
			

			
				−
				𝜀
				(
				𝑘
				)
			

			
				∈
				Σ
			

			

				𝑛
			

		
	
 and 
	
		
			

				𝑐
			

			

				𝑘
			

			
				≤
				−
				𝜀
				(
				𝑛
				)
				<
				0
			

		
	
. As 
	
		
			

				𝐽
			

		
	
 is bounded from below, we see that 
	
		
			

				𝑐
			

			

				𝑘
			

			
				>
				−
				∞
			

		
	
 for all 
	
		
			
				𝑘
				∈
				𝑁
			

		
	
.Suppose that 
	
		
			
				𝑐
				=
				𝑐
			

			

				𝑘
			

			
				=
				𝑐
			

			
				𝑘
				+
				1
			

			
				=
				⋅
				⋅
				⋅
				=
				𝑐
			

			
				𝑘
				+
				𝑟
			

			
				<
				0
			

		
	
; then 
	
		
			

				𝐽
			

		
	
 satisfies 
	
		
			
				(
				𝑃
				𝑆
				)
			

			

				𝑐
			

		
	
 condition by Lemma 2, and it is easy to see that 
	
		
			

				𝐾
			

			

				𝑐
			

		
	
 is a compact set.If 
	
		
			
				𝛾
				(
				𝐾
			

			

				𝑐
			

			
				)
				≤
				𝑟
			

		
	
, then there is a closed and symmetric set 
	
		
			

				𝑈
			

		
	
 with 
	
		
			

				𝐾
			

			

				𝑐
			

			
				⊂
				𝑈
			

		
	
 and 
	
		
			
				𝛾
				(
				𝑈
				)
				≤
				𝑟
			

		
	
 by Lemma 3. Since 
	
		
			
				𝑐
				<
				0
			

		
	
, we can also assume that the closed set 
	
		
			
				𝑈
				⊂
				𝐽
			

			

				0
			

		
	
. Since 
	
		
			

				𝐽
			

		
	
 satisfies 
	
		
			
				(
				𝑃
				𝑆
				)
			

			

				𝑐
			

		
	
 condition for 
	
		
			
				𝑐
				<
				0
			

		
	
, by the Deformation Lemma, there is an odd homeomorphism, 
							
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			
				𝜂
				∶
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
				⟶
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	

						such that 
	
		
			
				𝜂
				(
				𝐽
			

			
				𝑐
				+
				𝛿
			

			
				−
				𝑈
				)
				⊂
				𝐽
			

			
				𝑐
				−
				𝛿
			

		
	
 for some 
	
		
			

				𝛿
			

		
	
 with 
	
		
			
				0
				<
				𝛿
				<
				−
				𝑐
			

		
	
.Since 
	
		
			
				𝑐
				=
				𝑐
			

			
				𝑘
				+
				𝑟
			

			
				=
				i
				n
				f
			

			
				𝐶
				∈
				Σ
			

			

				𝑘
			

			
				s
				u
				p
			

			
				𝑢
				∈
				𝐶
			

			
				𝐽
				(
				𝑢
				)
			

		
	
, there exists an 
	
		
			
				𝐴
				∈
				Σ
			

			
				𝑘
				+
				𝑟
			

		
	
, such that 
							
	
 		
 			
				(
				4
				9
				)
			
 			
				(
				5
				0
				)
			
 		
	

	
		
			
				s
				u
				p
			

			
				𝑢
				∈
				𝐶
			

			
				𝐽
				(
				𝑢
				)
				<
				𝑐
				+
				𝛿
				,
				i
				.
				e
				.
				,
				𝐴
				⊂
				𝐽
			

			
				𝑐
				+
				𝛿
			

			
				,
				
				𝐽
				𝜂
				(
				𝐴
				−
				𝑈
				)
				⊂
				𝜂
			

			
				𝑐
				+
				𝛿
			

			
				
				−
				𝑈
				⊂
				𝐽
			

			
				𝑐
				−
				𝛿
			

			

				.
			

		
	
But by Lemma 3 and 
	
		
			
				𝛾
				(
				𝑈
				)
				≤
				𝑟
			

		
	
, we have 
							
	
 		
 			
				(
				5
				1
				)
			
 		
	

	
		
			
				𝛾
				
			

			
				
			
			
				
				𝛾
				
				𝜂
				𝐴
				−
				𝑈
				≥
				𝛾
				(
				𝐴
				)
				−
				𝛾
				(
				𝑈
				)
				≥
				𝑛
				,
			

			
				
			
			
				
				𝛾
				
				𝐴
				−
				𝑈
			

			
				
			
			
				
				𝐴
				−
				𝑈
				≥
				𝑛
				.
			

		
	

						Hence, 
	
		
			

				𝜂
			

			
				
			
			
				𝐴
				−
				𝑈
				∈
				Σ
			

			

				𝑘
			

		
	
 and 
	
		
			
				s
				u
				p
			

			
				𝑢
				∈
				𝜂
			

			
				
			
			
				𝐴
				−
				𝑈
			

			
				≥
				𝑐
			

			

				𝑘
			

			
				=
				𝑐
			

		
	
, which contradicts to (50). So we have proved that 
	
		
			
				𝛾
				(
				𝐾
			

			

				𝑐
			

			
				)
				≥
				𝑟
				+
				1
			

		
	
.Now if for all 
	
		
			
				𝑘
				∈
				𝑁
			

		
	
, we have 
	
		
			

				Σ
			

			
				𝑘
				+
				1
			

			
				⊂
				Σ
			

			

				𝑘
			

		
	
, 
	
		
			

				𝑐
			

			

				𝑘
			

			
				≤
				𝑐
			

			
				𝑘
				+
				1
			

			
				<
				0
			

		
	
. If all 
	
		
			

				𝑐
			

			

				𝑘
			

		
	
 are distinct, then 
	
		
			
				𝛾
				(
				𝐾
			

			

				𝑐
			

			

				𝑘
			

			
				)
				≥
				1
			

		
	
, and we see that 
	
		
			
				{
				𝑐
			

			

				𝑘
			

			

				}
			

		
	
 is a sequence of distinct critical values of 
	
		
			

				𝐽
			

		
	
; if for some 
	
		
			

				𝑘
			

			

				0
			

		
	
, there is a 
	
		
			
				𝑟
				≥
				1
			

		
	
 such that 
							
	
 		
 			
				(
				5
				2
				)
			
 		
	

	
		
			
				𝑐
				=
				𝑐
			

			

				𝑘
			

			

				0
			

			
				=
				𝑐
			

			

				𝑘
			

			
				0
				+
				1
			

			
				=
				⋅
				⋅
				⋅
				=
				𝑐
			

			

				𝑘
			

			
				0
				+
				𝑟
			

			

				,
			

		
	

						then 
							
	
 		
 			
				(
				5
				3
				)
			
 		
	

	
		
			
				𝛾
				
				𝐾
			

			

				𝑐
			

			
				𝑘
				0
			

			
				
				≥
				𝑟
				+
				1
				,
			

		
	

						which shows that 
	
		
			

				𝐾
			

			

				𝑐
			

			
				𝑘
				0
			

		
	
 contains infinitely many distinct elements.Since 
	
		
			
				𝐽
				(
				𝑢
				)
				=
				𝐼
				(
				𝑢
				)
			

		
	
 if 
	
		
			
				𝐽
				(
				𝑢
				)
				<
				0
			

		
	
, we see that there are infinitely many critical points of 
	
		
			
				𝐼
				(
				𝑢
				)
			

		
	
. The theorem is proved.
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