Positive Solutions of a Kind of Equations Related to the Laplacian and p-Laplacian

Fangfang Zhang and Zhanping Liang

School of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006, China

Correspondence should be addressed to Zhanping Liang; lzp@sxu.edu.cn

Received 10 August 2014; Accepted 21 September 2014; Published 14 October 2014

1. Introduction

In this paper, we study the equation

$$-\Delta u - \Delta_p u = f(x, u), \quad \text{in } \Omega,$$

$$u = 0, \quad \text{on } \partial \Omega,$$

(1)

where $\Delta_p u = \text{div}(|\nabla u|^{p-2} \nabla u)$, $p > 2$, Ω is a smooth bounded domain in \mathbb{R}^N for $N \geq 1$, and f satisfies the following conditions:

(f_1) $f \in C(\overline{\Omega} \times \mathbb{R}, \mathbb{R})$, $f(x, t) \geq 0$ for any $x \in \overline{\Omega}, t > 0$ and $f(x, t) = 0$ for any $x \in \overline{\Omega}, t \leq 0$;

(f_2) for $f_0, f_{\infty} < \infty$, the limits

$$\lim_{t \to 0^+} \frac{f(x, t)}{t} = f_0, \quad \lim_{t \to \infty} \frac{f(x, t)}{t^{p-1}} = f_{\infty}$$

(2)

exist uniformly for $x \in \overline{\Omega}$.

The asymptotic behaviors of f near zero and infinity lead us to define

$$\lambda_1 = \inf \ left \{ \int_{\Omega} |\nabla u|^2 : u \in H^1_0(\Omega), \int_{\Omega} |u|^2 = 1 \right \},$$

$$\mu_1 = \inf \ left \{ \int_{\Omega} |\nabla u|^p : u \in W^{1,p}_0(\Omega), \int_{\Omega} |u|^p = 1 \right \},$$

(3)

where $H^1_0(\Omega)$ and $W^{1,p}_0(\Omega)$ are the usual Sobolev spaces defined as the completion of $C_0^{\infty}(\Omega)$ with respect to the norms $\|u\|_2 = (\int_{\Omega} |\nabla u|^2)^{1/2}$ and $\|u\|_p = (\int_{\Omega} |u|^p)^{1/p}$, respectively. Then it is well known that μ_1 is the first eigenvalue of the nonlinear eigenvalue problem

$$-\Delta_p \phi = \mu |\phi|^{p-2} \phi, \quad \text{in } \Omega,$$

$$\phi = 0, \quad \text{on } \partial \Omega.$$

(4)

Moreover μ_1 is a simple eigenvalue of (4), the associated eigenfunction ϕ_1 can be chosen as positive in Ω, and any eigenfunction corresponding to an eigenvalue larger than μ_1 must change sign. The reader is referred to [1–3] for details.

By a solution u of (1), we mean that u solves (1) in the weak sense; that is, u satisfies

$$\int_{\Omega} \nabla u \cdot \nabla v + \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v = \int_{\Omega} f(x, u) v,$$

$$v \in W^{1,p}_0(\Omega).$$

Moreover, by a positive solution u of (1), we mean that u is a weak solution of (1), $u \neq 0$ and $u(x) \geq 0$ for $x \in \Omega$.

Our main result is the following theorem.

Theorem 1. Suppose that f satisfies (f_1) and (f_2) with $f_0 < \lambda_1, f_{\infty} > \mu_1$. Then (1) has a positive solution.
Assume that $f = g + h$. Equation (1) can be viewed as combination of the following equations:
\begin{align*}
-\Delta u &= g(x,u), \quad \text{in } \Omega, \\
u &= 0, \quad \text{on } \partial \Omega, \\
-\Delta \rho u &= h(x,u), \quad \text{in } \Omega, \\
u &= 0, \quad \text{on } \partial \Omega.
\end{align*}
(6)
In the last decade or so, there was an extensive effort in studying the existence of solutions of (6); see [4–8].

Before concluding this section, we recall a theorem from [9], which will be used to prove our main theorem in this paper.

Theorem 2. Let $(E, \| \cdot \|)$ be a Banach space and $I \subset \mathbb{R}_+$ an interval. Consider the family of C_1 functionals on E,
\begin{equation}
J_\gamma(u) = S(u) - \gamma T(u), \quad \gamma \in I,
\end{equation}
with $J_\gamma(0) = 0$, $\gamma \in I$, T nonnegative and either $S(u) \to \infty$ or $T(u) \to \infty$ as $\|u\| \to \infty$. For any $\gamma \in I$, we set
\begin{equation}
\Gamma_\gamma = \{ \gamma \in C([0,1], E) : \gamma(0) = 0, J_\gamma(\gamma(1)) < 0 \}.
\end{equation}
If for every $\gamma \in I$ the set Γ_γ is nonempty and
\begin{equation}
c_\gamma = \inf_{\gamma \in \Gamma_\gamma} \max_{t \in [0,1]} J_\gamma(\gamma(t)) > 0,
\end{equation}
then for almost every $\gamma \in I$ there exists a sequence $\{u^n_\gamma\} \subset E$ such that
\begin{enumerate}
\item \{u^n_\gamma\} is bounded;
\item $J_\gamma(u^n_\gamma) \to c_\gamma$ as $n \to \infty$;
\item $J_\gamma'(u^n_\gamma) \to 0$ in the dual E^* as $n \to \infty$.
\end{enumerate}

Throughout this paper, we denote by X the Sobolev space $W^{1,p}_0(\Omega)$ with the norm $\|u\|_X = \|u\|_p$, by X^* the dual space of X, by weak convergence in X, and by (\cdot, \cdot) the duality pairing between X and X^*. The letters C_1, C_2, \ldots will denote various positive constants whose exact values are not essential to the analysis of the problem. Let $P = \{u \in X : u(x) \geq 0, a.e. x \in \Omega \}$ and $p^* = \frac{np}{(N-p)}$ if $p < N$ or $p^* = \infty$ if $p \geq N$.

2. Proof of Theorem 1

In this section, we always assume (f_1) and (f_2) hold with $f_0 < \lambda_1$ and $f_\infty > \mu_1$. Hence, there exist $\epsilon_1 > 0, C_{\epsilon_1} > 0$ and $q \in (p, p^*)$ such that
\begin{equation}
F(x,t) \geq \frac{1}{p} (\mu_1 + \epsilon_1) t^p - C_{\epsilon_1}, \quad x \in \Omega, \quad t \geq 0,
\end{equation}
(10)
\begin{equation}
F(x,t) \leq \frac{1}{2} (1 - \epsilon_1) \lambda_1 t^2 + C_{\epsilon_1} t^q, \quad x \in \Omega, \quad t \in \mathbb{R},
\end{equation}
(11)
where $F(x,t) = \int_0^t f(x,s)ds$. In the following, we utilize Theorem 2 to complete the proof of Theorem 1. In the setting of Theorem 2 we have $E = X, I = [\delta, 1]$ with $\mu_1/(\mu_1 + \epsilon_1) < \delta < 1$, and
\begin{align*}
S(u) &= \frac{1}{2} \|u\|^2_2 + \frac{1}{p} \|u\|^p_X, \\
T(u) &= \int_\Omega F(x,u), \\
J_\gamma(u) &= \frac{1}{2} \|u\|^2_2 + \frac{1}{p} \|u\|^p_X - \gamma \int_\Omega F(x,u), \quad u \in X, \quad \gamma \in I.
\end{align*}
(12)
It is easy to verify that
\begin{equation}
\langle J_\gamma'(u), v \rangle = \int_\Omega \nabla u \cdot \nabla v + \int_\Omega |\nabla u|^p \nabla u \cdot \nabla v - \gamma \int_\Omega f(x,u) v,
\end{equation}
(13)
\begin{equation}
u \in X, \quad \gamma \in I.
\end{equation}

Firstly, we show that J_γ satisfies the conditions of Theorem 2 by proving several lemmas.

Lemma 3. $\Gamma_\gamma \neq \emptyset$ for any $\gamma \in I$.

Proof. Let $\phi_1 > 0$ be a μ_1-eigenfunction. For $t > 0$, we have by (10) that
\begin{align*}
J_\gamma(t\phi_1) &= \frac{1}{2} t^2 \|\phi_1\|^2_2 + \frac{1}{p} t^p \|\phi_1\|^p_X - \gamma \int_\Omega F(x,t\phi_1) \\
&\leq \frac{1}{2} t^2 \|\phi_1\|^2_2 + \frac{1}{p} (\mu_1 + \epsilon_1) t^p \int_\Omega |\phi_1|^p \\
&\quad - \frac{1}{p} (\mu_1 + \epsilon_1) \delta t^p \int_\Omega |\phi_1|^p + C_1 \\
&= \frac{1}{2} t^2 \|\phi_1\|^2_2 - \frac{1}{p} C_2 t^p \int_\Omega |\phi_1|^p + C_1,
\end{align*}
(14)
where $C_2 = (\mu_1 + \epsilon_1) \delta - \mu_1$. Noting that $C_2 > 0$, we can choose $t_0 > 0$ large enough so that $J_\gamma(t_0 \phi_1) < 0$, where t_0 is independent of $\gamma \in I$. The proof is completed. \hfill \Box

Lemma 4. There exists a constant $c > 0$ such that $c_\gamma \geq c$ for any $\gamma \in I$.

Proof. For any $u \in X$, it follows from (II) that
\begin{align*}
J_\gamma(u) &= \frac{1}{2} \|u\|^2_2 + \frac{1}{p} \|u\|^p_X - \gamma \int_\Omega F(x,u) \\
&\geq \frac{1}{2} \|u\|^2_2 + \frac{1}{p} \|u\|^p_X - \frac{1}{2} (1 - \epsilon_1) \lambda_1 \int_\Omega |u|^2 - C_{\epsilon_1} \int_\Omega |u|^q \\
&\geq \frac{1}{2} \|u\|^2_2 + \frac{1}{p} \|u\|^p_X - \frac{1}{2} (1 - \epsilon_1) \|u\|^p_2 - C_{\epsilon_1} \int_\Omega |u|^q \\
&\geq \frac{1}{p} \|u\|^p_X - C_{\epsilon_1} \int_\Omega |u|^q.
\end{align*}
(15)

By Sobolev’s embedding theorem, we conclude that there exist $\rho > 0$ and $c > 0$ such that $J_\gamma(u) > 0$ for $\|u\| \in (0, \rho]$ and
\begin{equation}
J_\gamma(u) \geq c, \quad \|u\|_X = \rho.
\end{equation}
(16)
Fix \(v \in I \) and \(y \in \Gamma_v \). By the definition of \(\Gamma_v \), we have that \(\|y(1)\| > \rho \). Hence, there exists \(t_y \in (0, 1) \) such that \(\|y(t_y)\| = \rho \). So
\[
 c_y = \inf_{v \in \Gamma_v} \max_{t \in [0,1]} I_v(y(t)) \geq \inf_{v \in \Gamma_v} \int_0^1 y(t) \geq c. \quad (17)
\]

The proof is completed. \(\square \)

Lemma 5. For any \(v \in I \), if \(\{u_n\} \) is bounded and \(f'(u_n) \to 0 \) in \(X^* \) as \(n \to \infty \), then \(\{u_n\} \) admits a convergent subsequence.

Proof. Given \(v \in I \), assume that \(\{u_n\} \) is bounded, \(f'(u_n) \to 0 \) in \(X^* \) as \(n \to \infty \). By extracting a subsequence, we may suppose that there exists \(u \in X \) such that as \(n \to \infty \)
\[
 u_n \to u \quad \text{in } X, \quad u_n \rightharpoonup u \quad \text{in } L^s(\Omega), \quad s \in [1, p^*]. \quad (18)
\]

It follows from \((f_1)\) and \((f_2)\) that there exist \(C_1, C_2 > 0 \) such that
\[
 f(x,t) \leq C_1 |t| + C_2 |t|^{p-1}, \quad x \in \Omega, \quad t \in \mathbb{R}. \quad (19)
\]

Hence, by Hölder's inequality and Sobolev's embedding theorem, we have
\[
 \int_\Omega f(x,u_n)(u_n - u) \leq C_1 \int_\Omega |u_n| |u_n - u| + C_2 \int_\Omega |u_n|^{p-1} |u_n - u|
\]
\[
 \leq C_1 \left(\int_\Omega |u_n|^2 \right)^{1/2} \left(\int_\Omega |u_n - u|^2 \right)^{1/2}
\]
\[
 + C_2 \left(\int_\Omega |u_n|^p \right)^{(p-1)/p} \left(\int_\Omega |u_n - u|^p \right)^{1/p}
\]
\[
 \leq C_2 \left(\int_\Omega |u_n - u|^2 \right)^{1/2} + C_2 \left(\int_\Omega |u_n - u|^p \right)^{1/p} \to 0,
\]
\[
 n \to \infty. \quad (20)
\]

Similarly, we have
\[
 \int_\Omega f(x,u)(u_n - u) \rightharpoonup 0, \quad n \to \infty. \quad (21)
\]

Noting that
\[
 \langle f'(u_n) - f'(u), u_n - u \rangle = \langle f'(u_n) - f'(u), u_n - u \rangle
\]
\[
 = \int_\Omega \nabla u_n \cdot \nabla (u_n - u) + \int_\Omega |\nabla u_n|^p - |\nabla u|^p - \nabla u \cdot (u_n - u)
\]
\[
 - \int_\Omega |\nabla u|^p \cdot \nabla u \cdot (u_n - u) + \int_\Omega f(x,u_n) (u_n - u) - \int_\Omega f(x,u) (u_n - u)
\]
\[
 = \int_\Omega (|\nabla u_n|^p - |\nabla u|^p) \cdot \nabla (u_n - u)
\]
\[
 + \int_\Omega (|\nabla u_n|^p - |\nabla u|^p) \cdot \nabla u \cdot (u_n - u)
\]
\[
 - \int_\Omega f(x,u_n) (u_n - u) + \int_\Omega f(x,u) (u_n - u), \quad (22)
\]

and the inequality deduced from an inequality in Appendix of [3],
\[
 \int_\Omega (|\nabla u_n|^p - |\nabla u|^p) \cdot \nabla (u_n - u)
\]
\[
 \geq \frac{2}{p(2p-1)} \int_\Omega |\nabla (u_n - u)|^p, \quad (23)
\]

it follows from \((20)\) and \((21)\) that
\[
 \frac{2}{p(2p-1)} \int_\Omega |\nabla (u_n - u)|^p \leq \langle f'(u_n) - f'(u), u_n - u \rangle
\]
\[
 + \int_\Omega f(x,u_n) (u_n - u) - \int_\Omega f(x,u) (u_n - u)
\]
\[
 \to 0, \quad n \to \infty, \quad (24)
\]

where we have used the fact that
\[
 \langle f'(u_n) - f'(u), u_n - u \rangle \to 0, \quad n \to \infty. \quad (25)
\]

Hence \(u_n \to u \) in \(X \). The proof is completed. \(\square \)

Lemma 6. There exists a sequence \(\{v_n\} \subset I \) with \(v_n \to 1^- \) as \(n \to \infty \) and \(\{u_n\} \subset X \) such that \(f_n(v_n) = c_n, f_n'(u_n) = 0 \).

Proof. We only need to show that for almost every \(v \in I \) there exists \(u^* \in X \) such that \(f_v(u^*) = c_v \) and \(f_v'(u^*) = 0 \). By Theorem 2, for almost each \(v \in I \), there exists a bounded sequence \(\{u^*_n\} \subset X \) such that
\[
 f_v(u^*_n) \to c_v, \quad f_v'(u^*_n) \to 0, \quad n \to \infty. \quad (26)
\]
By Lemma 5, we may assume that $u_n^v \to u^v$ in X as $n \to \infty$. Then the continuity of J_v and J'_v implies that $J_v(u^v) = c_v$ and $J'_v(u^v) = 0$. The proof is completed.

Define $(Lu, v) = \int_{\Omega} f(x, u)v, (Ku, v) = \int_{\Omega} |u|^{p-2}uv$, $u, v \in X$. Then we have the following.

Lemma 7. Suppose (f_1) and (f_2) hold, then

$$
\lim_{\|u\|_X \to \infty, u \in P} \frac{Lu - f_\infty Ku}{\|u\|_X^{p-1}} = 0.
$$

Proof. By (f_1), for every $\varepsilon > 0$, there is a constant $C_\varepsilon > 0$ such that

$$
|f(x, t) - f_\infty t^{p-1}| \leq C_\varepsilon + \varepsilon t^{p-1}, \quad x \in \overline{\Omega}, \quad t \geq 0.
$$

For $u \in P \setminus \{0\}$, letting $w = u/\|u\|_X$, by Hölder’s inequality and Sobolev’s embedding theorem, we have

$$
\sup_{1 \leq \varepsilon \leq 1} \int_{\Omega} \left| \frac{Lu - f_\infty Ku}{\|u\|_X^{p-1}} \right| v
\leq \sup_{1 \leq \varepsilon \leq 1} \int_{\Omega} C_\varepsilon \|u\|_X^{-(p-1)} |v| + \varepsilon \|u\|_X^{-(p-1)} |v|
\leq C_5 \|u\|_X^{-(p-1)} + \varepsilon C_5,
$$

where C_5 is independent of ε. The proof is completed.

Proof of Theorem 1. By Lemma 6, there exists a sequence $\{v_n\} \subset I$ with $v_n \to 1^-$ as $n \to \infty$ and $\{u_n\} \subset X$. Since $u_n \to 0$ and $\langle J'_v(u_n) \rangle = 0$, we have $c_n = c > 0$ and $J'_v(u_n) = 0$.\n
By Lemma 4 and (30), we have $c_n > c > 0$ and $\langle J'_v(u_n) \rangle = 0$. Hence $u_n \to 0$ in X. Suppose by contradiction that $\lim_{n \to \infty} \|u_n\|_X = \infty$. Let $w_n = u_n/\|u_n\|_X$.

Hence, we have, for $v \in X$,

$$
\frac{1}{\|u_n\|_X^{p-2}} \int_{\Omega} \nabla w_n \nabla v + \int_{\Omega} |\nabla w_n|^{p-2} \nabla w_n \cdot \nabla v = v_n f_\infty \int_{\Omega} \frac{u_n^{p-1}v - f_\infty u_n^{p-1}v}{\|u_n\|_X^{p-1}}.
$$

Since $\{w_n\}$ is bounded in X, we may assume that $w_n \to w_0 \in P \times X$, $w_n \to w_0$ in $L^p(\Omega)$ and $w_0(x) \to w_0(x)$ a.e. on Ω as $n \to \infty$. Letting $v = w_0 - w_0$ in (31) and $n \to \infty$, we get

$$
\lim_{n \to \infty} \int_{\Omega} |\nabla w_n|^{p-2} \nabla w_n \cdot \nabla (w_n - w_0) = 0.
$$

It follows from [5, Theorem 10] that $w_n \to w_0$ in X as $n \to \infty$. Passing to limit $n \to \infty$ in (31), we obtain by Lemma 7 that

$$
\int_{\Omega} |\nabla w_0|^{p-2} \nabla w_0 \cdot \nabla v = f_\infty \int_{\Omega} w_0^{p-1}v, \quad v \in X.
$$

From (33) and the fact that $\|w_0\|_X = 1$, we know that $f_\infty = \mu_1$, which contradicts the assumption $f_\infty > \mu_1$. Since $\gamma_n \to 1^-$, we can show that

$$
J'_1(u_n) \to 0 \quad \text{in } X^*, \quad n \to \infty.
$$

In fact, for any $v \in X$, it follows from (19), Hölder’s inequality, and Sobolev’s embedding theorem that

$$
\left| \int_{\Omega} f(x, u_n)v \right| \leq C_1 \int_{\Omega} |u_n| |v| + C_2 \int_{\Omega} |u_n|^{p-1} |v|
\leq C_3 \|v\|_X.
$$

Furthermore, (30) implies that

$$
\langle J'_1(u_n), v \rangle + (1 - \gamma_n) \int_{\Omega} f(x, u_n)v = \langle J'_v(u_n), v \rangle = 0, \quad v \in X.
$$

Hence, $J'_1(u_n) \to 0$ in X as $n \to \infty$. By Lemma 5, $\{u_n\}$ has a convergent subsequence. Without loss of generality, we may assume that $u_n \to u$ as $n \to \infty$. According to Lemma 4, and

$$
\left| \int_{\Omega} F(x, u_n) \right| \leq C_8,
$$

we have

$$
J_1(u) = \lim_{n \to \infty} J_1(u_n) = \lim_{n \to \infty} J'_v(u_n) \geq c > 0,
$$

$$
J'_1(u) = \lim_{n \to \infty} J'_1(u_n) = 0.
$$

The standard process shows that u is a positive solution to (1). The proof is completed.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This paper is partially supported by National Natural Science Foundation of China (Grant nos. 11071149, 11301313) and Science Council of Shanxi Province (2012011004-2, 2013021001-4, and 2014021009-1).

References

