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Abstract. 
This paper is devoted to investigating the eigenvalue problems of a class of nonlinear impulsive singular boundary value problem in Banach spaces: 
	
		
			
				𝜇
				𝑥
			

			
				′
				′
			

			
				+
				𝑓
				(
				𝑡
				,
				𝑥
				)
				=
				0
				,
				𝑡
				∈
				(
				0
				,
				1
				)
				,
				𝑡
				≠
				𝑡
			

			

				𝑖
			

		
	
;  
								
	
		
			
				Δ
				𝑥
				|
			

			
				𝑡
				=
				𝑡
			

			

				𝑖
			

			
				=
				𝛼
			

			

				𝑖
			

			
				𝑥
				(
				𝑡
			

			

				𝑖
			

			
				−
				0
				)
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑘
				;
				𝑎
				𝑥
				(
				0
				)
				−
				𝑏
				𝑥
			

			

				′
			

			
				(
				0
				)
				=
				𝜃
				;
				𝑐
				𝑥
				(
				1
				)
				+
				𝑑
				𝑥
			

			

				′
			

			
				(
				1
				)
				=
				𝜃
				,
			

		
	
 where 
	
		
			

				𝜃
			

		
	
 denotes the zero element of Banach space, 
	
		
			
				Δ
				𝑥
				|
			

			
				𝑡
				=
				𝑡
			

			

				𝑖
			

			
				=
				𝑥
				(
				𝑡
			

			

				𝑖
			

			
				+
				0
				)
				−
				𝑥
				(
				𝑡
			

			

				𝑖
			

			
				−
				0
				)
			

		
	
, 
	
		
			

				𝛼
			

			

				𝑖
			

			
				>
				−
				1
			

		
	
, 
	
		
			
				𝑎
				,
				𝑏
				,
				𝑐
				,
				𝑑
				∈
				𝑅
			

			

				+
			

			
				,
				𝛾
				=
				𝑎
				𝑐
				+
				𝑎
				𝑑
				+
				𝑏
				𝑐
				>
				0
			

		
	
, 
	
		
			

				𝜇
			

		
	
 is a parameter, and 
	
		
			
				𝑓
				(
				𝑡
				,
				𝑥
				)
			

		
	
 may be singular at 
	
		
			
				𝑡
				=
				0
				,
				1
			

		
	
 and 
	
		
			
				𝑥
				=
				𝜃
			

		
	
. The arguments are mainly based upon the theory of fixed point index, measure of noncompactness, and the special cone, which is constructed to overcome the singularity.


1. Introduction
Consider the following eigenvalue problems of singular boundary value problem (SBVP) with impulse in Banach space 
	
		
			

				𝐸
			

		
	
:
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				𝜇
				𝑥
			

			
				′
				′
			

			
				+
				𝑓
				(
				𝑡
				,
				𝑥
				)
				=
				0
				,
				𝑡
				∈
				(
				0
				,
				1
				)
				,
				𝑡
				≠
				𝑡
			

			

				𝑖
			

			
				;
				Δ
				𝑥
				|
			

			
				𝑡
				=
				𝑡
			

			

				𝑖
			

			
				=
				𝛼
			

			

				𝑖
			

			
				𝑥
				
				𝑡
			

			

				𝑖
			

			
				
				−
				0
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑘
				;
				𝑎
				𝑥
				(
				0
				)
				−
				𝑏
				𝑥
			

			

				′
			

			
				(
				0
				)
				=
				𝜃
				;
				𝑐
				𝑥
				(
				1
				)
				+
				𝑑
				𝑥
			

			

				′
			

			
				(
				1
				)
				=
				𝜃
				,
			

		
	

					where 
	
		
			

				𝜃
			

		
	
 denotes the zero element of Banach space 
	
		
			

				𝐸
			

		
	
, 
	
		
			
				Δ
				𝑥
				|
			

			
				𝑡
				=
				𝑡
			

			

				𝑖
			

			
				=
				𝑥
				(
				𝑡
			

			

				𝑖
			

			
				+
				0
				)
				−
				𝑥
				(
				𝑡
			

			

				𝑖
			

			
				−
				0
				)
				,
				0
				=
				𝑡
			

			

				0
			

			
				<
				𝑡
			

			

				1
			

			
				<
				𝑡
			

			

				2
			

			
				<
				⋯
				<
				𝑡
			

			

				𝑘
			

			
				<
				𝑡
			

			
				𝑘
				+
				1
			

			
				=
				1
			

		
	
, 
	
		
			

				𝛼
			

			

				𝑖
			

			
				>
				−
				1
			

		
	
, 
	
		
			
				𝑎
				,
				𝑏
				,
				𝑐
				,
				𝑑
				∈
				𝑅
			

			

				+
			

			
				,
				𝛾
				=
				𝑎
				𝑐
				+
				𝑎
				𝑑
				+
				𝑏
				𝑐
				>
				0
			

		
	
, 
	
		
			

				𝜇
			

		
	
 is a parameter, 
	
		
			
				𝑓
				(
				𝑡
				,
				𝑥
				)
			

		
	
 may be singular at 
	
		
			
				𝑡
				=
				0
				,
				1
			

		
	
 and 
	
		
			
				𝑥
				=
				𝜃
			

		
	
.
During the last few decades, the existence of positive solution of nonlinear singular boundary value problems has gained considerable popularity (see [1–12] and references therein). In recent years, there were also a lot of papers which dealt with eigenvalue problems (see [13–27]). Some of them considered singular case (see, for instance, [13–16, 18, 19], etc.).
On the other hand, as we know, the theory of impulsive differential equations has found its extensive applications in realistic mathematical modeling of a wide variety of practical situations such as physics, chemical technology, population dynamics, biotechnology, and economics. It has emerged as an important area of investigation in recent years (see [28–36] and references therein).
To the best of our knowledge, there is no paper studying the eigenvalue problems of the impulsive singular boundary value problem in Banach spaces. The main purpose of this paper is to fill this gap. By using the theory of fixed point index, measure of noncompactness, and the special cone which is constructed to overcome the singularity, we investigate the existence of eigenvalues of (1).
The main features of the present paper are as follows. By virtue of a special transformation, we first convert (1) into another solvable form such that the associated operator can be used to overcome the influence of impulse and parameter 
	
		
			

				𝜇
			

		
	
. Then a special cone is constructed to deal with the singularity of (1).
This paper is organized as follows. In Section 2, we provide some basic definitions, preliminaries facts, and lemmas. Meanwhile, some transformations are introduced to convert (1) into another solvable form. In Section 3, the main results are presented and proved. Finally, an example is worked out to demonstrate the application of the main result.
2. Preliminaries and Conversion of (1)
Let 
	
		
			

				𝑃
			

		
	
 be a normal solid cone of real Banach space 
	
		
			

				𝐸
			

		
	
. Without loss of generality, suppose the normal constant is 1. Let 
	
		
			

				𝑃
			

			

				∗
			

		
	
 denote the dual cone of 
	
		
			

				𝑃
			

		
	
, 
	
		
			
				𝐽
				=
				[
				0
				,
				1
				]
			

		
	
, and 
	
		
			

				𝑃
			

			

				𝑟
			

			
				=
				{
				𝑥
				∈
				𝑃
				∶
				‖
				𝑥
				‖
				<
				𝑟
				}
			

		
	
, 
	
		
			
				
			
			

				𝑃
			

			

				𝑟
			

			
				=
				{
				𝑥
				∈
				𝑃
				∶
				‖
				𝑥
				‖
				≤
				𝑟
				}
				(
				𝑟
				>
				0
				)
			

		
	
. Denoted by 
	
		
			
				𝐶
				[
				𝐽
				,
				𝐸
				]
			

		
	
 the Banach space of all continuous functions 
	
		
			
				𝑥
				∶
				𝐽
				→
				𝐸
			

		
	
 with norm 
	
		
			
				‖
				𝑥
				‖
			

			

				𝑐
			

			
				=
				m
				a
				x
			

			
				𝑡
				∈
				𝐽
			

			
				‖
				𝑥
				(
				𝑡
				)
				‖
			

		
	
.
We define 
	
		
			
				𝑃
				𝐶
				[
				𝐽
				,
				𝐸
				]
				=
				{
				𝑥
				∶
				𝑥
			

		
	
 is a map from 
	
		
			

				𝐽
			

		
	
 into 
	
		
			

				𝐸
			

		
	
 such that 
	
		
			
				𝑥
				(
				𝑡
				)
			

		
	
 is continuous at 
	
		
			
				𝑡
				≠
				𝑡
			

			

				𝑖
			

		
	
 and left continuous at 
	
		
			
				𝑡
				=
				𝑡
			

			

				𝑖
			

		
	
 and its right limit at 
	
		
			
				𝑡
				=
				𝑡
			

			

				𝑖
			

		
	
 
	
		
			

				(
			

		
	
denoted by 
	
		
			
				𝑥
				(
				𝑡
			

			
				+
				𝑖
			

			

				)
			

		
	
) exists for 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑚
				}
			

		
	
, and 
	
		
			
				𝑃
				𝐶
			

			

				1
			

			
				[
				𝐽
				,
				𝐸
				]
				=
				{
				𝑥
				∈
				𝑃
				𝐶
				[
				𝐽
				,
				𝐸
				]
				∶
				𝑥
			

			

				′
			

			
				(
				𝑡
				)
			

		
	
 is continuous at 
	
		
			
				𝑡
				≠
				𝑡
			

			

				𝑖
			

		
	
 and left continuous at 
	
		
			
				𝑡
				=
				𝑡
			

			

				𝑖
			

		
	
 and the right limit at 
	
		
			
				𝑡
				=
				𝑡
			

			

				𝑖
			

		
	
 
	
		
			

				(
			

		
	
denoted by 
	
		
			

				𝑥
			

			

				′
			

			
				(
				𝑡
			

			
				+
				𝑖
			

			

				)
			

		
	
) exists for 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑚
				}
			

		
	
.
Let 
	
		
			
				𝑌
				=
				{
				𝑦
				∈
				𝐶
			

			

				1
			

			
				[
				𝐽
				,
				𝐸
				]
				∶
				𝑎
				𝑦
				(
				0
				)
				−
				𝑏
				𝑦
			

			

				′
			

			
				(
				0
				)
				=
				𝜃
				,
				𝑐
				𝑦
				(
				1
				)
				+
				𝑑
				𝑦
			

			

				′
			

			
				(
				1
				)
				=
				𝜃
				}
			

		
	
, and 
	
		
			
				𝑋
				=
				{
				𝑥
				∈
				𝑃
				𝐶
			

			

				1
			

			
				[
				𝐽
				,
				𝐸
				]
			

		
	
∶ 
	
		
			
				Δ
				𝑥
				|
			

			
				𝑡
				=
				𝑡
			

			

				𝑖
			

			
				=
				𝛼
			

			

				𝑖
			

			
				𝑥
				(
				𝑡
			

			

				𝑖
			

			
				−
				0
				)
				,
				Δ
				𝑥
			

			

				′
			

			

				|
			

			
				𝑡
				=
				𝑡
			

			

				𝑖
			

			
				=
				𝛼
			

			

				𝑖
			

			

				𝑥
			

			

				′
			

			
				(
				𝑡
			

			

				𝑖
			

			
				−
				0
				)
				,
				𝑎
				𝑥
				(
				0
				)
				−
				𝑏
				𝑥
			

			

				′
			

			
				(
				0
				)
				=
				𝜃
				,
				𝑐
				𝑥
				(
				1
				)
				+
				𝑑
				𝑥
			

			

				′
			

			
				(
				1
				)
				=
				𝜃
				}
			

		
	
. It is well known that 
	
		
			

				𝑌
			

		
	
 is a Banach space with the norm 
	
		
			
				‖
				𝑦
				‖
			

			

				1
			

		
	
=
	
		
			
				m
				a
				x
				{
				m
				a
				x
			

			
				𝑡
				∈
				𝐽
			

			
				‖
				𝑦
				(
				𝑡
				)
				‖
			

		
	
, 
	
		
			
				m
				a
				x
			

			
				𝑡
				∈
				𝐽
			

			
				‖
				𝑦
			

			

				′
			

			
				(
				𝑡
				)
				‖
				}
			

		
	
.
Evidently, 
	
		
			
				𝑃
				𝐶
				[
				𝐽
				,
				𝐸
				]
			

		
	
 and 
	
		
			
				𝑃
				𝐶
			

			

				1
			

			
				[
				𝐽
				,
				𝐸
				]
			

		
	
 are Banach spaces with norm 
	
		
			
				‖
				𝑥
				‖
			

			
				𝑃
				𝐶
			

			
				=
				s
				u
				p
			

			
				𝑡
				∈
				𝐽
			

		
	
 
	
		
			
				‖
				𝑥
				(
				𝑡
				)
				‖
			

		
	
 and 
	
		
			
				‖
				𝑥
				‖
			

			
				𝑃
				𝐶
			

			

				1
			

			
				=
				m
				a
				x
				{
				s
				u
				p
			

			
				𝑡
				∈
				𝐽
			

			
				‖
				𝑥
				(
				𝑡
				)
				‖
			

		
	
, 
	
		
			
				s
				u
				p
			

			
				𝑡
				∈
				𝐽
			

			
				‖
				𝑥
			

			

				′
			

			
				(
				𝑡
				)
				‖
				}
			

		
	
, respectively. Furthermore, 
	
		
			

				𝑋
			

		
	
 is a closed subspace of 
	
		
			
				𝑃
				𝐶
			

			

				1
			

			
				[
				𝐽
				,
				𝐸
				]
			

		
	
.
For each 
	
		
			
				𝑦
				∈
				𝑌
			

		
	
, let 
	
		
			
				∏
				𝑥
				(
				𝑡
				)
				=
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				(
				1
				+
				𝛼
			

			

				𝑖
			

			
				)
				𝑦
				(
				𝑡
				)
			

		
	
; it is easy to see 
	
		
			
				𝑥
				∈
				𝑋
			

		
	
. Conversely, for each 
	
		
			
				𝑥
				∈
				𝑋
			

		
	
, let 
	
		
			
				∏
				𝑦
				(
				𝑡
				)
				=
				𝑥
				(
				𝑡
				)
				/
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				(
				1
				+
				𝛼
			

			

				𝑖
			

			

				)
			

		
	
; then 
	
		
			
				𝑦
				∈
				𝑌
			

		
	
.
We convert (1) into another solvable form first.
Lemma 1.  If 
	
		
			
				𝑥
				∈
				𝑋
			

		
	
 is a solution of impulsive SBVP (1), then 
	
		
			
				∏
				𝑦
				(
				𝑡
				)
				=
				𝑥
				(
				𝑡
				)
				/
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				(
				1
				+
				𝛼
			

			

				𝑖
			

			

				)
			

		
	
 satisfies SBVP:
							
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				𝜇
				𝑦
			

			
				′
				′
			

			
				+
				1
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				𝑓
				⎛
				⎜
				⎜
				⎝
				
				𝑡
				,
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				⎞
				⎟
				⎟
				⎠
				𝑦
				(
				𝑡
				)
				=
				0
				,
				𝑡
				∈
				(
				0
				,
				1
				)
				;
				𝑎
				𝑦
				(
				0
				)
				−
				𝑏
				𝑦
			

			

				′
			

			
				(
				0
				)
				=
				𝜃
				;
				𝑐
				𝑦
				(
				1
				)
				+
				𝑑
				𝑦
			

			

				′
			

			
				(
				1
				)
				=
				𝜃
				.
			

		
	

						Conversely, if 
	
		
			
				𝑦
				∈
				𝑌
			

		
	
 is a solution of SBVP (2), then 
	
		
			
				∏
				𝑥
				(
				𝑡
				)
				=
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				(
				1
				+
				𝛼
			

			

				𝑖
			

			
				)
				𝑦
				(
				𝑡
				)
			

		
	
 is a solution of impulsive SBVP (1).
Lemma 2.  
	
		
			
				𝑦
				∈
				𝑌
			

		
	
 is a solution of SBVP (2) if and only if 
	
		
			

				𝑦
			

		
	
 is a solution of the integral equation:
							
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				
				𝜇
				𝑦
				(
				𝑡
				)
				=
			

			

				𝐽
			

			

				1
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				⎛
				⎜
				⎜
				⎝
				
				𝐺
				(
				𝑡
				,
				𝑠
				)
				×
				𝑓
				𝑡
				,
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				⎞
				⎟
				⎟
				⎠
				𝑦
				(
				𝑠
				)
				𝑑
				𝑠
				,
			

		
	

						where
							
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				⎧
				⎪
				⎨
				⎪
				⎩
				𝛾
				𝐺
				(
				𝑡
				,
				𝑠
				)
				=
			

			
				−
				1
			

			
				𝛾
				(
				𝑎
				𝑡
				+
				𝑏
				)
				(
				𝑐
				(
				1
				−
				𝑠
				)
				+
				𝑑
				)
				,
				0
				≤
				𝑡
				≤
				𝑠
				≤
				1
				,
			

			
				−
				1
			

			
				(
				𝑎
				𝑠
				+
				𝑏
				)
				(
				𝑐
				(
				1
				−
				𝑡
				)
				+
				𝑑
				)
				,
				0
				≤
				𝑠
				≤
				𝑡
				≤
				1
				.
			

		
	

By Lemmas 1 and 2, we can obtain the following.
Lemma 3.  
	
		
			
				⋂
				𝑋
				𝑥
				(
				𝑡
				)
				∈
				𝑃
				𝐶
				[
				𝐽
				,
				𝐸
				]
			

		
	
 is a solution of impulsive SBVP (1) if and only if 
	
		
			
				⋂
				𝑋
				𝑥
				∈
				𝑃
				𝐶
				[
				𝐽
				,
				𝐸
				]
			

		
	
 is a solution of the integral equation:
							
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			
				
				𝜇
				𝑥
				(
				𝑡
				)
				=
			

			

				𝐽
			

			

				𝐺
			

			

				∗
			

			
				(
				𝑡
				,
				𝑠
				)
				𝑓
				(
				𝑠
				,
				𝑥
				(
				𝑠
				)
				)
				𝑑
				𝑠
				,
			

		
	

						where
							
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			

				𝐺
			

			

				∗
			

			
				∏
				(
				𝑡
				,
				𝑠
				)
				=
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			

				
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				𝐺
				(
				𝑡
				,
				𝑠
				)
				.
			

		
	

Let 
	
		
			
				𝛼
				(
				⋅
				)
			

		
	
 and 
	
		
			

				𝛼
			

			
				𝑝
				𝑐
			

			
				(
				⋅
				)
			

		
	
 donated the Kuratowski noncompactness measure of bounded sets in 
	
		
			

				𝐸
			

		
	
 and 
	
		
			
				𝑃
				𝐶
				[
				𝐽
				,
				𝐸
				]
			

		
	
, respectively. If nontrivial function 
	
		
			
				𝑥
				∈
				𝑃
				𝐶
				[
				𝐽
				,
				𝐸
				]
			

		
	
 satisfies problem (5) for some 
	
		
			
				𝜇
				≠
				0
			

		
	
, then 
	
		
			

				𝜇
			

		
	
 is called an eigenvalue and 
	
		
			

				𝑥
			

		
	
 is called an eigenfunction of problem (1) corresponding to the eigenvalue 
	
		
			

				𝜇
			

		
	
.
It is well known that the following conclusions hold.
Lemma 4 (see [17]).  Let 
	
		
			

				𝑃
			

		
	
 be a cone in Banach space 
	
		
			

				𝐸
			

		
	
, 
	
		
			

				𝑃
			

			

				𝑟
			

			
				=
				{
				𝑥
				∈
				𝑃
				∶
				‖
				𝑥
				‖
				<
				𝑟
				}
				(
				𝑟
				>
				0
				)
			

		
	
, and 
	
		
			
				
			
			

				𝑃
			

			

				𝑟
			

			
				=
				{
				𝑥
				∈
				𝑃
				∶
				‖
				𝑥
				‖
				≤
				𝑟
				}
			

		
	
. Let operator 
	
		
			
				𝐴
				∶
			

			
				
			
			

				𝑃
			

			

				𝑟
			

			
				→
				𝑃
			

		
	
 be a strict set contraction. If 
	
		
			
				‖
				𝐴
				𝑥
				‖
				≥
				‖
				𝑥
				‖
			

		
	
 and 
	
		
			
				𝐴
				𝑥
				≠
				𝑥
			

		
	
 for 
	
		
			
				𝑥
				∈
				𝜕
				𝑃
			

			

				𝑟
			

		
	
, then 
	
		
			
				𝑖
				(
				𝐴
				,
				𝑃
			

			

				𝑟
			

			
				,
				𝑃
				)
				=
				0
			

		
	
.
Lemma 5 (see [17]).  
	
		
			
				𝐻
				⊂
				𝐶
				[
				𝐽
				,
				𝐸
				]
			

		
	
 is relatively compact if and only if 
	
		
			

				𝐻
			

		
	
 is equicontinuous and for any 
	
		
			
				𝑡
				∈
				𝐽
				,
				𝐻
				(
				𝑡
				)
			

		
	
 is a relatively compact set in 
	
		
			

				𝐸
			

		
	
.
3. Main Results
For convenience, let
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			

				𝜎
			

			

				∗
			

			
				=
				∶
				m
				i
				n
			

			
				1
				≤
				𝑗
				≤
				𝑘
			

			

				
			

			
				1
				≤
				𝑖
				≤
				𝑗
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				,
				𝜎
			

			

				∗
			

			
				=
				∶
				m
				a
				x
			

			
				1
				≤
				𝑗
				≤
				𝑘
			

			

				
			

			
				1
				≤
				𝑖
				≤
				𝑗
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				,
				∏
				Ω
				(
				𝑡
				)
				=
				𝜚
				(
				𝑡
				)
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			

				
			

			
				
			
			

				𝜎
			

			

				∗
			

			
				,
				
				𝜚
				(
				𝑡
				)
				=
				m
				i
				n
				𝑏
				+
				𝑎
				𝑡
			

			
				
			
			
				,
				𝑏
				+
				𝑎
				𝑑
				+
				𝑐
				(
				1
				−
				𝑡
				)
			

			
				
			
			
				
				𝑑
				+
				𝑐
				,
				∀
				𝑡
				∈
				(
				0
				,
				1
				)
				.
			

		
	

For the forthcoming analysis, we list the following assumptions:
	
		
			
				(
				𝐻
			

			

				1
			

			

				)
			

		
	

	
		
			
				𝑓
				∈
				𝐶
				[
				(
				0
				,
				1
				)
				×
				𝑃
				⧵
				{
				𝜃
				}
				,
				𝑃
				]
			

		
	
,
									
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				‖
				𝑓
				(
				𝑡
				,
				𝑥
				)
				‖
				≤
				𝑔
				(
				𝑡
				)
				‖
				𝑙
				(
				𝑥
				)
				‖
				,
				𝑡
				∈
				(
				0
				,
				1
				)
				,
				𝑥
				∈
				𝑃
				⧵
				{
				𝜃
				}
				,
			

		
	

								where 
	
		
			
				𝑔
				∶
				(
				0
				,
				1
				)
				→
				(
				0
				,
				+
				∞
				)
				,
				𝑙
				∈
				𝐶
				[
				𝑃
				⧵
				{
				𝜃
				}
				,
				𝑃
				]
			

		
	
 satisfy 
									
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			

				
			

			
				1
				0
			

			
				[
				]
				𝐺
				(
				𝑠
				,
				𝑠
				)
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑅
				𝑑
				𝑠
				<
				+
				∞
				,
				∀
				𝑅
				>
				𝑟
				>
				0
				,
			

		
	

								where 
	
		
			
				𝑙
				[
				𝑟
				,
				𝑅
				]
				=
				s
				u
				p
			

			
				𝑥
				∈
			

			
				
			
			

				𝑃
			

			

				𝑅
			

			
				⧵
				𝑃
			

			

				𝑟
			

			
				‖
				𝑙
				(
				𝑥
				)
				‖
				<
				+
				∞
			

		
	
.
	
		
			
				(
				𝐻
			

			

				2
			

			

				)
			

		
	
There exists a constant 
	
		
			
				𝐿
				≥
				0
			

		
	
 such that 
									
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				𝛼
				(
				𝑓
				(
				𝑡
				,
				𝐷
				)
				)
				≤
				𝐿
				𝛼
				(
				𝐷
				)
				,
				∀
				𝑡
				∈
				(
				0
				,
				1
				)
				,
				𝐷
				⊂
			

			
				
			
			

				𝑃
			

			

				𝑅
			

			
				⧵
				𝑃
			

			

				𝑟
			

			
				𝜎
				,
				∀
				𝑅
				>
				𝑟
				>
				0
				,
				𝐿
				<
			

			

				∗
			

			
				
			
			
				2
				𝑀
			

			

				0
			

			

				𝜎
			

			

				∗
			

			
				,
				𝑀
			

			

				0
			

			
				=
				m
				a
				x
			

			
				𝑠
				∈
				𝐽
			

			

				𝛾
			

			
				−
				1
			

			
				(
				𝑎
				𝑠
				+
				𝑏
				)
				(
				𝑐
				(
				1
				−
				𝑠
				)
				+
				𝑑
				)
				>
				0
				.
			

		
	

	
		
			
				(
				𝐻
			

			

				3
			

			

				)
			

		
	
There exist 
	
		
			

				𝑢
			

			

				0
			

			
				∈
				𝑃
				⧵
				{
				𝜃
				}
				,
				[
				𝑎
			

			

				0
			

			
				,
				𝑏
			

			

				0
			

			
				]
				⊂
				(
				0
				,
				1
				)
			

		
	
 such that 
									
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				𝑓
				(
				𝑡
				,
				𝑥
				)
				≥
				ℎ
				(
				‖
				𝑥
				‖
				)
				𝑢
			

			

				0
			

			
				,
				𝑡
				∈
				𝐽
			

			

				0
			

			
				=
				
				𝑎
			

			

				0
			

			
				,
				𝑏
			

			

				0
			

			
				
				,
				2
				𝜎
			

			

				∗
			

			
				
			
			
				‖
				‖
				𝑢
			

			

				0
			

			
				‖
				‖
				𝜎
			

			

				∗
			

			
				m
				a
				x
			

			
				𝑡
				∈
				𝐽
			

			

				∫
			

			

				𝑏
			

			

				0
			

			

				𝑎
			

			

				0
			

			
				𝐺
				(
				𝑡
				,
				𝑠
				)
				Ω
				(
				𝑠
				)
				𝑑
				𝑠
				<
				l
				i
				m
				i
				n
				f
			

			
				𝑡
				→
				0
				+
			

			
				ℎ
				(
				𝑡
				)
			

			
				
			
			
				𝑡
				≤
				+
				∞
				,
			

		
	

								where 
	
		
			
				ℎ
				∈
				𝐶
				[
				𝑅
			

			

				+
			

			
				,
				𝑅
			

			

				+
			

			

				]
			

		
	
.
	
		
			
				(
				𝐻
			

			

				4
			

			

				)
			

		
	
There exist 
	
		
			
				𝜙
				∈
				𝑃
			

			

				∗
			

		
	
 and 
	
		
			
				[
				𝑎
			

			

				1
			

			
				,
				𝑏
			

			

				1
			

			
				]
				⊂
				(
				0
				,
				1
				)
			

		
	
 such that 
	
		
			
				𝜙
				(
				𝑥
				)
				>
				0
			

		
	
 for 
	
		
			
				𝑥
				>
				𝜃
			

		
	
 and 
									
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				l
				i
				m
				i
				n
				f
			

			
				‖
				𝑥
				‖
				→
				∞
				,
				𝑥
				∈
				𝑃
			

			
				𝜙
				(
				𝑓
				(
				𝑡
				,
				𝑥
				)
				)
			

			
				
			
			
				𝜙
				(
				𝑥
				)
				=
				𝜉
				(
				𝑡
				)
			

		
	

								uniformly for 
	
		
			
				𝑡
				∈
				𝐽
			

			

				1
			

			
				=
				[
				𝑎
			

			

				1
			

			
				,
				𝑏
			

			

				1
			

			

				]
			

		
	
, and 
	
		
			

				∫
			

			

				𝐽
			

			

				1
			

			
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝜉
				(
				𝑠
				)
				𝑑
				𝑠
				>
				𝜎
			

			

				∗
			

			
				/
				𝜎
			

			

				∗
			

		
	
.
	
		
			
				(
				𝐻
			

			

				5
			

			

				)
			

		
	
There exist 
	
		
			
				𝜙
				∈
				𝑃
			

			

				∗
			

		
	
 and 
	
		
			
				[
				𝑎
			

			

				1
			

			
				,
				𝑏
			

			

				1
			

			
				]
				⊂
				(
				0
				,
				1
				)
			

		
	
 such that 
	
		
			
				𝜙
				(
				𝑥
				)
				>
				0
			

		
	
 for 
	
		
			
				𝑥
				>
				𝜃
			

		
	
 and 
									
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			
				l
				i
				m
				i
				n
				f
			

			
				‖
				𝑥
				‖
				→
				0
				,
				𝑥
				∈
				𝑃
			

			
				𝜙
				(
				𝑓
				(
				𝑡
				,
				𝑥
				)
				)
			

			
				
			
			
				𝜙
				(
				𝑥
				)
				=
				𝜉
				(
				𝑡
				)
			

		
	

								uniformly for 
	
		
			
				𝑡
				∈
				𝐽
			

			

				1
			

			
				=
				[
				𝑎
			

			

				1
			

			
				,
				𝑏
			

			

				1
			

			

				]
			

		
	
, and 
	
		
			

				∫
			

			

				𝐽
			

			

				1
			

			
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝜉
				(
				𝑠
				)
				𝑑
				𝑠
				>
				𝜎
			

			

				∗
			

			
				/
				𝜎
			

			

				∗
			

		
	
.
Define
						
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				[
				]
				𝑄
				=
				{
				𝑥
				∈
				𝑃
				𝐶
				𝐽
				,
				𝑃
				∶
				𝑥
				(
				𝑡
				)
				≥
				Ω
				(
				𝑡
				)
				𝑥
				(
				𝑠
				)
				,
				∀
				𝑡
				,
				𝑠
				∈
				𝐽
				}
				.
			

		
	

					It is easy to check that 
	
		
			

				𝑄
			

		
	
 is a cone in space 
	
		
			
				𝑃
				𝐶
				[
				𝐽
				,
				𝐸
				]
			

		
	
 and 
	
		
			
				𝑄
				⊂
				𝑃
				𝐶
				[
				𝐽
				,
				𝑃
				]
			

		
	
. Let 
	
		
			

				𝑄
			

			

				𝑟
			

			
				=
				{
				𝑥
				∈
				𝑄
				∶
				‖
				𝑥
				‖
				<
				𝑟
				}
			

		
	
. As in [2], we can prove that
						
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				𝐺
				[
				]
				,
				(
				𝑡
				,
				𝜏
				)
				≥
				𝜚
				(
				𝑡
				)
				𝐺
				(
				𝑠
				,
				𝜏
				)
				,
				∀
				𝑡
				,
				𝑠
				,
				𝜏
				∈
				0
				,
				1
			

		
	

					where 
	
		
			
				𝐺
				(
				𝑡
				,
				𝑠
				)
			

		
	
 is defined in Lemma 2. So for all 
	
		
			
				𝑡
				,
				𝑠
				,
				𝜏
				∈
				[
				0
				,
				1
				]
			

		
	
, we have
						
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			

				𝐺
			

			

				∗
			

			
				≥
				∏
				(
				𝑡
				,
				𝑠
				)
				𝜚
				(
				𝑡
				)
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			

				
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝜏
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				⋅
				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝜏
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			

				
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				𝐺
				(
				𝜏
				,
				𝑠
				)
				≥
				Ω
				(
				𝑡
				)
				𝐺
			

			

				∗
			

			
				(
				𝜏
				,
				𝑠
				)
				.
			

		
	

To solve eigenvalues of impulsive SBVP (1), we first consider operator 
	
		
			

				𝐴
			

		
	
 associated with (5) and defined by
						
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			
				
				(
				𝐴
				𝑥
				)
				(
				𝑡
				)
				=
			

			

				𝐽
			

			

				𝐺
			

			

				∗
			

			
				(
				𝑡
				,
				𝑠
				)
				𝑓
				(
				𝑠
				,
				𝑥
				(
				𝑠
				)
				)
				𝑑
				𝑠
				,
				∀
				𝑥
				∈
				𝑄
				⧵
				{
				𝜃
				}
				.
			

		
	

					For 
	
		
			
				∀
				𝑥
				∈
				𝑄
				⧵
				{
				𝜃
				}
			

		
	
, from the definition of 
	
		
			

				𝑄
			

		
	
, we have 
						
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				Ω
				(
				𝑡
				)
				‖
				𝑥
				‖
			

			
				𝑝
				𝑐
			

			
				≤
				‖
				𝑥
				(
				𝑡
				)
				‖
				≤
				‖
				𝑥
				‖
			

			
				𝑝
				𝑐
			

			
				,
				𝑡
				∈
				𝐽
				.
			

		
	

					By 
	
		
			
				(
				𝐻
			

			

				1
			

			

				)
			

		
	
, we know
						
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				‖
				‖
				≤
				
				(
				𝐴
				𝑥
				)
				(
				𝑡
				)
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
			

			
				1
				0
			

			

				1
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				≤
				
				𝐺
				(
				𝑠
				,
				𝑠
				)
				‖
				𝑓
				(
				𝑠
				,
				𝑥
				(
				𝑠
				)
				)
				‖
				𝑑
				𝑠
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
			

			
				1
				0
			

			

				1
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				≤
				𝜎
				×
				𝐺
				(
				𝑠
				,
				𝑠
				)
				𝑔
				(
				𝑠
				)
				‖
				𝑙
				(
				𝑥
				(
				𝑠
				)
				)
				‖
				𝑑
				𝑠
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			

				
			

			
				1
				0
			

			
				
				𝐺
				(
				𝑠
				,
				𝑠
				)
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				‖
				𝑥
				‖
			

			
				𝑝
				𝑐
			

			
				,
				‖
				𝑥
				‖
			

			
				𝑝
				𝑐
			

			
				
				𝑑
				𝑠
				<
				+
				∞
				.
			

		
	

					So the operator 
	
		
			

				𝐴
			

		
	
 is well defined in 
	
		
			
				𝑄
				⧵
				{
				𝜃
				}
			

		
	
.
For the sake of overcoming the singularity, choose 
	
		
			
				𝑒
				∈
				i
				n
				t
				𝑃
			

		
	
 with 
	
		
			
				‖
				𝑒
				‖
				=
				1
			

		
	
 and consider the approximate problem of (17):
						
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				
				𝐴
			

			

				𝑚
			

			
				𝑥
				
				
				(
				𝑡
				)
				=
			

			
				1
				0
			

			

				𝐺
			

			

				∗
			

			
				
				𝑒
				(
				𝑡
				,
				𝑠
				)
				𝑓
				𝑠
				,
				𝑥
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				𝑑
				𝑠
				.
			

		
	

					For any 
	
		
			
				𝑥
				∈
				𝑄
				,
				𝑡
				,
				𝜏
				∈
				𝐽
			

		
	
,
						
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				
				𝐴
			

			

				𝑚
			

			
				𝑥
				
				
				(
				𝑡
				)
				=
			

			
				1
				0
			

			

				𝐺
			

			

				∗
			

			
				
				𝑒
				(
				𝑡
				,
				𝑠
				)
				𝑓
				𝑠
				,
				𝑥
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				
				𝑑
				𝑠
				≥
				Ω
				(
				𝑡
				)
			

			
				1
				0
			

			

				𝐺
			

			

				∗
			

			
				
				𝑒
				(
				𝜏
				,
				𝑠
				)
				𝑓
				𝑠
				,
				𝑥
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				
				𝐴
				𝑑
				𝑠
				=
				Ω
				(
				𝑡
				)
			

			

				𝑚
			

			
				𝑥
				
				(
				𝜏
				)
				.
			

		
	

					Hence 
	
		
			

				𝐴
			

			

				𝑚
			

			
				𝑄
				⊂
				𝑄
			

		
	
.
Lemma 6.  Let conditions 
	
		
			
				(
				𝐻
			

			

				1
			

			

				)
			

		
	
 and 
	
		
			
				(
				𝐻
			

			

				2
			

			

				)
			

		
	
 be satisfied; then for any 
	
		
			
				𝑟
				>
				0
			

		
	
, the operator 
	
		
			

				𝐴
			

			

				𝑚
			

		
	
 is a strict set contraction from 
	
		
			

				𝑄
			

		
	
 into 
	
		
			

				𝑄
			

		
	
.
Proof. Obviously 
	
		
			

				𝐴
			

			

				𝑚
			

			
				𝑄
				⊂
				𝑄
			

		
	
. Now we prove that 
	
		
			

				𝐴
			

			

				𝑚
			

		
	
 is continuous. Let 
	
		
			
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
				‖
			

			
				𝑝
				𝑐
			

			
				→
				0
			

		
	
 as 
	
		
			
				𝑛
				→
				∞
				(
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
				∈
			

			
				
			
			

				𝑄
			

			

				𝑟
			

			

				)
			

		
	
; we have
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				‖
				‖
				
				𝐴
			

			

				𝑚
			

			

				𝑥
			

			

				𝑛
			

			
				
				
				𝐴
				(
				𝑡
				)
				−
			

			

				𝑚
			

			
				𝑥
				
				‖
				‖
				≤
				
				(
				𝑡
				)
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
			

			
				1
				0
			

			

				1
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				×
				‖
				‖
				‖
				𝑓
				
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝑠
				,
				𝑥
			

			

				𝑛
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				
				𝑒
				−
				𝑓
				𝑠
				,
				𝑥
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				‖
				‖
				‖
				≤
				
				𝑑
				𝑠
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
			

			
				1
				0
			

			

				1
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				×
				
				‖
				‖
				‖
				𝑙
				
				𝑥
				𝐺
				(
				𝑠
				,
				𝑠
				)
				𝑔
				(
				𝑠
				)
			

			

				𝑛
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				‖
				‖
				‖
				+
				‖
				‖
				‖
				𝑙
				
				𝑒
				𝑥
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				‖
				‖
				‖
				
				
				≤
				2
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
			

			
				1
				0
			

			

				1
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				[
				]
				𝜎
				𝐺
				(
				𝑠
				,
				𝑠
				)
				𝑔
				(
				𝑠
				)
				×
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
				1
				𝑑
				𝑠
				≤
				2
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			

				
			

			
				1
				0
			

			
				[
				]
				𝐺
				(
				𝑠
				,
				𝑠
				)
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
				1
				𝑑
				𝑠
				.
			

		
	

						So 
	
		
			
				(
				𝐻
			

			

				1
			

			

				)
			

		
	
 and the dominated convergence theorem imply that
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				
				𝐴
			

			

				𝑚
			

			

				𝑥
			

			

				𝑛
			

			
				
				
				𝐴
				(
				𝑡
				)
				=
			

			

				𝑚
			

			
				𝑥
				
				(
				𝑡
				)
				.
			

		
	

						We now show that
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝐴
			

			

				𝑚
			

			

				𝑥
			

			

				𝑛
			

			
				−
				𝐴
			

			

				𝑚
			

			
				𝑥
				‖
				‖
			

			
				𝑝
				𝑐
			

			
				=
				0
				.
			

		
	

						In fact, if (24) is not true, then there exist a positive number 
	
		
			

				𝜀
			

			

				0
			

		
	
 and a sequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				𝑖
			

			
				}
				⊂
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 such that
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				‖
				‖
				𝐴
			

			

				𝑚
			

			

				𝑥
			

			

				𝑛
			

			

				𝑖
			

			
				−
				𝐴
			

			

				𝑚
			

			
				𝑥
				‖
				‖
			

			
				𝑝
				𝑐
			

			
				≥
				𝜀
			

			

				0
			

			
				(
				𝑖
				=
				1
				,
				2
				,
				…
				)
				.
			

		
	

						Since 
	
		
			
				{
				𝐴
			

			

				𝑚
			

			

				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is relatively compact, there is a subsequence of 
	
		
			
				{
				𝐴
			

			

				𝑚
			

			

				𝑥
			

			

				𝑛
			

			

				𝑖
			

			

				}
			

		
	
 which converges to some 
	
		
			

				𝑥
			

			

				0
			

			
				∈
				𝑄
			

		
	
. Without loss of generality, we may assume that 
	
		
			
				{
				𝐴
			

			

				𝑚
			

			

				𝑥
			

			

				𝑛
			

			

				𝑖
			

			

				}
			

		
	
 itself converges to 
	
		
			

				𝑥
			

			

				0
			

		
	
; that is,
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑖
				→
				∞
			

			
				‖
				‖
				𝐴
			

			

				𝑚
			

			

				𝑥
			

			

				𝑛
			

			

				𝑖
			

			
				−
				𝑥
			

			

				0
			

			
				‖
				‖
			

			
				𝑝
				𝑐
			

			
				=
				0
				.
			

		
	

						By virtue of (23) and (26), we have 
	
		
			

				𝑥
			

			

				0
			

			
				=
				𝐴
			

			

				𝑚
			

			

				𝑥
			

		
	
, and so (26) contradicts with (25). Hence (24) holds, and the continuity of 
	
		
			

				𝐴
			

			

				𝑚
			

		
	
 is proved.By 
	
		
			
				(
				𝐻
			

			

				1
			

			

				)
			

		
	
, it is easy to see that 
	
		
			

				𝐴
			

			

				𝑚
			

		
	
 is bounded from 
	
		
			

				𝑄
			

		
	
 into 
	
		
			

				𝑄
			

		
	
.Now we will prove that the operator 
	
		
			

				𝐴
			

			

				𝑚
			

		
	
 is a strict set contraction from 
	
		
			

				𝑄
			

		
	
 into 
	
		
			

				𝑄
			

		
	
. Let
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				
				𝐴
			

			
				𝑚
				(
				𝑛
				)
			

			
				𝑥
				
				
				(
				𝑡
				)
				=
			

			
				1
				−
				(
				1
				/
				𝑛
				)
				1
				/
				𝑛
			

			

				𝐺
			

			

				∗
			

			
				
				𝑒
				(
				𝑡
				,
				𝑠
				)
				𝑓
				𝑠
				,
				𝑥
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				𝑑
				𝑠
				.
			

		
	

						By 
	
		
			
				(
				𝐻
			

			

				1
			

			

				)
			

		
	
, as 
	
		
			
				𝑛
				→
				∞
			

		
	
, we have
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				‖
				‖
				
				𝐴
			

			

				𝑚
			

			
				𝑥
				
				
				𝐴
				(
				𝑡
				)
				−
			

			
				𝑚
				(
				𝑛
				)
			

			
				𝑥
				
				‖
				‖
				≤
				
				(
				𝑡
				)
			

			
				0
				1
				/
				𝑛
			

			

				𝐺
			

			

				∗
			

			
				‖
				‖
				‖
				𝑓
				
				𝑒
				(
				𝑡
				,
				𝑠
				)
				𝑠
				,
				𝑥
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				‖
				‖
				‖
				+
				
				𝑑
				𝑠
			

			
				1
				1
				−
				(
				1
				/
				𝑛
				)
			

			

				𝐺
			

			

				∗
			

			
				‖
				‖
				‖
				𝑓
				
				𝑒
				(
				𝑡
				,
				𝑠
				)
				𝑠
				,
				𝑥
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				‖
				‖
				‖
				𝑑
				𝑠
				⟶
				0
				.
			

		
	

						So for any bounded set 
	
		
			
				𝑈
				⊂
				𝑄
			

		
	
, we have
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				
				𝐴
			

			
				𝑚
				(
				𝑛
				)
			

			
				𝑥
				
				
				𝐴
				(
				𝑡
				)
				=
			

			

				𝑚
			

			
				𝑥
				
				(
				𝑡
				)
				,
				∀
				𝑥
				∈
				𝑈
				,
				𝑡
				∈
				𝐽
				.
			

		
	

						Hence
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			

				𝑑
			

			

				ℎ
			

			
				𝐴
				
				
			

			
				𝑚
				(
				𝑛
				)
			

			
				𝑈
				
				
				𝐴
				(
				𝑡
				)
				,
			

			

				𝑚
			

			
				𝑈
				
				
				(
				𝑡
				)
				⟶
				0
				,
				𝑛
				⟶
				∞
				,
			

		
	

						where 
	
		
			

				𝑑
			

			

				ℎ
			

			
				(
				⋅
				,
				⋅
				)
			

		
	
 denotes the Hausdorff metric, which implies
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				𝛼
				𝐴
				
				
			

			
				𝑚
				(
				𝑛
				)
			

			
				𝑈
				
				
				𝐴
				(
				𝑡
				)
				⟶
				𝛼
				
				
			

			

				𝑚
			

			
				𝑈
				
				
				(
				𝑡
				)
				,
				𝑛
				⟶
				∞
				,
				𝑡
				∈
				𝐽
				.
			

		
	

						For any 
	
		
			
				𝑡
				∈
				𝐽
			

		
	
, by 
	
		
			
				(
				𝐻
			

			

				2
			

			

				)
			

		
	
, we have
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				𝛼
				𝐴
				
				
			

			
				𝑚
				(
				𝑛
				)
			

			
				𝑈
				
				
				⎛
				⎜
				⎜
				⎝
				⎧
				⎪
				⎨
				⎪
				⎩
				
				(
				𝑡
				)
				=
				𝛼
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				×
				
			

			
				1
				−
				(
				1
				/
				𝑛
				)
				1
				/
				𝑛
			

			

				1
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
				𝑒
				𝐺
				(
				𝑡
				,
				𝑠
				)
				×
				𝑓
				𝑠
				,
				𝑥
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				⎫
				⎪
				⎬
				⎪
				⎭
				⎞
				⎟
				⎟
				⎠
				≤
				
				1
				𝑑
				𝑠
				,
				𝑥
				∈
				𝑈
				1
				−
			

			
				
			
			
				
				
				2
				𝑛
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
				×
				𝛼
			

			
				
			
			
				
				1
				𝑐
				𝑜
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
				𝑒
				𝐺
				(
				𝑡
				,
				𝑠
				)
				×
				𝑓
				𝑠
				,
				𝑥
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				
				1
				∶
				𝑠
				∈
			

			
				
			
			
				𝑛
				1
				,
				1
				−
			

			
				
			
			
				𝑛
				
				≤
				
				,
				𝑥
				∈
				𝑈
				
				
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				1
				×
				𝛼
				
				
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
				𝑒
				𝐺
				(
				𝑠
				,
				𝑠
				)
				×
				𝑓
				𝑠
				,
				𝑥
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				
				1
				∶
				𝑠
				∈
			

			
				
			
			
				𝑛
				1
				,
				1
				−
			

			
				
			
			
				𝑛
				
				≤
				𝜎
				,
				𝑥
				∈
				𝑈
				
				
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			

				𝑀
			

			

				0
			

			
				𝛼
				
				𝑓
				
				
				𝐼
				𝑠
				,
				𝑈
			

			

				𝑛
			

			
				
				
				
				,
				𝐼
			

			

				𝑛
			

			
				=
				
				1
			

			
				
			
			
				𝑛
				1
				,
				1
				−
			

			
				
			
			
				𝑛
				
				,
				𝑠
				∈
				𝐼
			

			

				𝑛
			

			
				,
				≤
				𝐿
				𝑀
			

			

				0
			

			

				𝜎
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			
				𝛼
				
				𝑈
				
				𝐼
			

			

				𝑛
			

			
				
				
				≤
				2
				𝐿
				𝑀
			

			

				0
			

			

				𝜎
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			

				𝛼
			

			
				𝑝
				𝑐
			

			
				(
				𝑈
				)
				<
				𝛼
			

			
				𝑝
				𝑐
			

			
				(
				𝑈
				)
				.
			

		
	

						It is easy to show that 
	
		
			

				𝛼
			

			
				𝑝
				𝑐
			

			
				(
				𝐴
			

			

				𝑚
			

			
				(
				𝑈
				)
				)
				=
				s
				u
				p
			

			
				𝑡
				∈
				𝐽
			

			
				𝛼
				(
				(
				𝐴
			

			

				𝑚
			

			
				(
				𝑈
				)
				)
				(
				𝑡
				)
				)
			

		
	
. Therefore, we can have 
	
		
			

				𝛼
			

			
				𝑝
				𝑐
			

			
				(
				𝐴
			

			

				𝑚
			

			
				𝑈
				)
				≤
				2
				𝐿
				𝑀
			

			

				0
			

			
				(
				𝜎
			

			

				∗
			

			
				/
				𝜎
			

			

				∗
			

			
				)
				𝛼
			

			
				𝑝
				𝑐
			

			
				(
				𝑈
				)
				<
				𝛼
			

			
				𝑝
				𝑐
			

			
				(
				𝑈
				)
			

		
	
. Consequently, the operator 
	
		
			

				𝐴
			

			

				𝑚
			

		
	
 is a strict set contraction from 
	
		
			

				𝑄
			

		
	
 into 
	
		
			

				𝑄
			

		
	
. The proof is thus completed.
Theorem 7.  Let conditions 
	
		
			
				(
				𝐻
			

			

				1
			

			
				)
				,
				(
				𝐻
			

			

				2
			

			

				)
			

		
	
, and 
	
		
			
				(
				𝐻
			

			

				3
			

			

				)
			

		
	
 be satisfied; then there exists a positive number 
	
		
			

				𝛿
			

		
	
 such that for any given 
	
		
			
				𝑟
				∈
				(
				0
				,
				𝛿
				)
			

		
	
, the impulsive SBVP (1) has a nontrivial eigenfunction 
	
		
			

				𝑥
			

			

				𝑟
			

			
				∈
				𝑃
				𝐶
				[
				𝐽
				,
				𝑃
				]
			

		
	
 with 
	
		
			
				‖
				𝑥
			

			

				𝑟
			

			

				‖
			

			
				𝑝
				𝑐
			

			
				=
				𝑟
			

		
	
 corresponding to eigenvalue 
	
		
			

				𝜇
			

			

				𝑟
			

			
				≥
				1
			

		
	
.
Proof. By Lemma 6, the operator 
	
		
			

				𝐴
			

			

				𝑚
			

		
	
 is a strict set contraction from 
	
		
			
				
			
			

				𝑄
			

			

				𝑟
			

		
	
 into 
	
		
			

				𝑄
			

		
	
. Observing 
	
		
			
				(
				𝐻
			

			

				3
			

			

				)
			

		
	
, if 
	
		
			
				l
				i
				m
				i
				n
				f
			

			
				𝑡
				→
				0
				+
			

			
				(
				ℎ
				(
				𝑡
				)
				/
				𝑡
				)
				≠
				+
				∞
			

		
	
, we can choose a 
	
		
			

				𝑣
			

			

				0
			

		
	
 with
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				2
				l
				i
				m
				i
				n
				f
			

			
				𝑡
				→
				0
				+
			

			
				ℎ
				(
				𝑡
				)
			

			
				
			
			
				𝑡
				≤
				𝑣
			

			

				0
			

			
				<
				l
				i
				m
				i
				n
				f
			

			
				𝑡
				→
				0
				+
			

			
				ℎ
				(
				𝑡
				)
			

			
				
			
			
				𝑡
				,
			

		
	

						and there is a 
	
		
			
				𝛿
				>
				0
			

		
	
 such that
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				ℎ
				(
				𝑡
				)
				≥
				𝑣
			

			

				0
			

			
				𝑡
				,
				∀
				0
				<
				𝑡
				<
				𝛿
				.
			

		
	

						Choose 
	
		
			
				𝑟
				∈
				(
				0
				,
				𝛿
				)
			

		
	
 and 
	
		
			

				𝑚
			

		
	
 sufficiently large such that 
	
		
			
				(
				1
				/
				𝑚
				)
				<
				𝛿
				−
				𝑟
			

		
	
; we have
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				
				𝐴
			

			

				𝑚
			

			
				𝑥
				
				=
				
				(
				𝑡
				)
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
			

			
				1
				0
			

			

				1
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
				𝑒
				×
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝑓
				𝑠
				,
				𝑥
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				≥
				
				𝑑
				𝑠
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
			

			

				𝑏
			

			

				0
			

			

				𝑎
			

			

				0
			

			

				1
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
				‖
				‖
				‖
				𝑒
				𝐺
				(
				𝑡
				,
				𝑠
				)
				×
				ℎ
				𝑥
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				‖
				‖
				‖
				
				𝑢
			

			

				0
			

			
				≥
				
				𝑑
				𝑠
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
			

			

				𝑏
			

			

				0
			

			

				𝑎
			

			

				0
			

			

				1
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				×
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝑣
			

			

				0
			

			
				‖
				𝑥
				(
				𝑠
				)
				‖
				𝑢
			

			

				0
			

			
				≥
				𝜎
				𝑑
				𝑠
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			

				
			

			

				𝑏
			

			

				0
			

			

				𝑎
			

			

				0
			

			
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝑣
			

			

				0
			

			
				Ω
				(
				𝑠
				)
				‖
				𝑥
				‖
			

			
				𝑃
				𝐶
			

			

				𝑢
			

			

				0
			

			
				𝑑
				𝑠
				.
			

		
	

						So
							
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			
				‖
				‖
				𝐴
			

			

				𝑚
			

			
				𝑥
				‖
				‖
			

			
				𝑃
				𝐶
			

			
				≥
				𝜎
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			

				𝑣
			

			

				0
			

			
				‖
				‖
				𝑢
			

			

				0
			

			
				‖
				‖
				m
				a
				x
			

			
				𝑡
				∈
				𝐽
			

			

				
			

			

				𝑏
			

			

				0
			

			

				𝑎
			

			

				0
			

			
				𝐺
				(
				𝑡
				,
				𝑠
				)
				Ω
				(
				𝑠
				)
				𝑑
				𝑠
				‖
				𝑥
				‖
			

			
				𝑃
				𝐶
			

			
				>
				‖
				𝑥
				‖
			

			
				𝑝
				𝑐
			

			

				.
			

		
	

						By virtue of Lemma 4, we have 
	
		
			
				𝑖
				(
				𝐴
			

			

				𝑚
			

			
				,
				𝑄
			

			

				𝑟
			

			
				,
				𝑄
				)
				=
				0
			

		
	
. Since 
	
		
			
				𝑖
				(
				𝜃
				,
				𝑄
			

			

				𝑟
			

			
				,
				𝑄
				)
				=
				1
			

		
	
, it follows from the homotopy invariance of fixed point index for strict set contraction that there exist 
	
		
			

				𝑥
			

			

				𝑚
			

			
				∈
				𝜕
			

			
				
			
			

				𝑄
			

			

				𝑟
			

		
	
 and 
	
		
			

				𝜆
			

			

				𝑚
			

			
				∈
				(
				0
				,
				1
				)
			

		
	
 such that
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			

				𝑥
			

			

				𝑚
			

			
				=
				𝜆
			

			

				𝑚
			

			

				𝐴
			

			

				𝑚
			

			

				𝑥
			

			

				𝑚
			

			
				,
				i
				.
				e
				.
				𝐴
			

			

				𝑚
			

			

				𝑥
			

			

				𝑚
			

			
				=
				𝜆
			

			
				𝑚
				−
				1
			

			

				𝑥
			

			

				𝑚
			

			

				,
			

		
	

						where 
	
		
			
				𝑚
				≥
				𝑚
			

			

				0
			

			
				=
				[
				1
				/
				(
				𝛿
				−
				𝑟
				)
				]
				+
				1
			

		
	
.Let 
	
		
			
				𝐵
				=
				∶
				{
				𝑥
			

			

				𝑚
			

			
				∶
				𝑚
				≥
				𝑚
			

			

				0
			

			

				}
			

		
	
. Obviously, 
	
		
			

				𝐵
			

		
	
 is uniformly bounded. We shall show that 
	
		
			

				𝐵
			

		
	
 is equicontinuous. By virtue of boundary condition, we need to consider only the following eight cases.Case   1. 
	
		
			
				𝑏
				=
				𝑑
				=
				0
			

		
	
, the boundary value condition is 
	
		
			
				𝑥
				(
				0
				)
				=
				𝑥
				(
				1
				)
				=
				0
			

		
	
. So we need only to show that 
	
		
			
				{
				𝑥
			

			

				𝑚
			

			
				(
				𝑡
				)
				}
			

		
	
 uniformly converge to 
	
		
			

				𝜃
			

		
	
 with respect to 
	
		
			
				𝑚
				≥
				𝑚
			

			

				0
			

		
	
 as 
	
		
			
				𝑡
				→
				0
			

			

				+
			

			
				,
				𝑡
				→
				1
				−
				0
			

		
	
, and 
	
		
			

				𝐵
			

		
	
 is equicontinuous on any closed subinterval of 
	
		
			
				(
				0
				,
				1
				)
			

		
	
.By 
	
		
			
				(
				𝐻
			

			

				1
			

			

				)
			

		
	
, let 
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			
				
				𝜂
				=
				∶
			

			
				1
				0
			

			
				
				1
				𝐺
				(
				𝑠
				,
				𝑠
				)
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				𝑑
				𝑠
				<
				+
				∞
				.
			

		
	

						Using the absolute continuity of integration, for any 
	
		
			
				𝜀
				>
				0
			

		
	
, there exists a 
	
		
			

				𝛿
			

			

				1
			

			
				>
				0
			

		
	
, such that 
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			

				
			

			

				𝑡
			

			

				2
			

			

				𝑡
			

			

				1
			

			
				
				1
				𝐺
				(
				𝑠
				,
				𝑠
				)
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				𝑑
				𝑠
				<
				𝜀
			

		
	

						as 
	
		
			
				|
				𝑡
			

			

				1
			

			
				−
				𝑡
			

			

				2
			

			
				|
				<
				𝛿
			

			

				1
			

			
				,
				𝑡
			

			

				1
			

			
				,
				𝑡
			

			

				2
			

			
				∈
				𝐽
			

		
	
. Since
							
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			

				𝑥
			

			

				𝑚
			

			
				(
				𝑡
				)
				=
				𝜆
			

			

				𝑚
			

			

				
			

			
				1
				0
			

			

				𝐺
			

			

				∗
			

			
				
				(
				𝑡
				,
				𝑠
				)
				𝑓
				𝑠
				,
				𝑥
			

			

				𝑚
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				𝑑
				𝑠
				≤
				𝜆
			

			

				𝑚
			

			

				𝜎
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			
				
				
				(
				1
				−
				𝑡
				)
			

			
				𝑡
				0
			

			
				
				𝑠
				𝑓
				𝑠
				,
				𝑥
			

			

				𝑚
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				
				𝑑
				𝑠
				+
				𝑡
			

			
				1
				𝑡
			

			
				
				(
				1
				−
				𝑠
				)
				𝑓
				𝑠
				,
				𝑥
			

			

				𝑚
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				
				,
				𝑑
				𝑠
			

		
	

						we have
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			

				𝑚
			

			
				(
				‖
				‖
				≤
				𝜎
				𝑡
				)
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			
				
				
				(
				1
				−
				𝑡
				)
			

			
				𝑡
				0
			

			
				‖
				‖
				‖
				𝑙
				
				𝑥
				𝑠
				𝑔
				(
				𝑠
				)
			

			

				𝑚
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				‖
				‖
				‖
				
				𝑑
				𝑠
				+
				𝑡
			

			
				1
				𝑡
			

			
				‖
				‖
				‖
				𝑙
				
				𝑥
				(
				1
				−
				𝑠
				)
				𝑔
				(
				𝑠
				)
			

			

				𝑚
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				‖
				‖
				‖
				
				≤
				𝜎
				𝑑
				𝑠
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			
				
				
				(
				1
				−
				𝑡
				)
			

			
				𝑡
				0
			

			
				
				1
				𝑠
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				
				𝑑
				𝑠
				+
				𝑡
			

			
				1
				𝑡
			

			
				
				Ω
				1
				(
				1
				−
				𝑠
				)
				𝑔
				(
				𝑠
				)
				𝑙
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				
				.
				𝑑
				𝑠
			

		
	

						To prove that 
	
		
			
				{
				𝑥
			

			

				𝑚
			

			
				(
				𝑡
				)
				}
			

		
	
 uniformly converge to 
	
		
			

				𝜃
			

		
	
 with respect to 
	
		
			
				𝑚
				≥
				𝑚
			

			

				0
			

		
	
 as 
	
		
			
				𝑡
				→
				0
			

			

				+
			

		
	
, we need only to show
							
	
 		
 			
				(
				4
				2
				)
			
 			
				(
				4
				3
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑡
				→
				0
			

			

				+
			

			
				
				(
				1
				−
				𝑡
				)
			

			
				𝑡
				0
			

			
				
				1
				𝑠
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				𝑑
				𝑠
				=
				0
				,
				l
				i
				m
			

			
				𝑡
				→
				0
			

			

				+
			

			
				𝑡
				
			

			
				1
				𝑡
			

			
				
				1
				(
				1
				−
				𝑠
				)
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				𝑑
				𝑠
				=
				0
				.
			

		
	

						Notice that
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			
				
				(
				1
				−
				𝑡
				)
			

			
				𝑡
				0
			

			
				
				1
				𝑠
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				≤
				
				𝑑
				𝑠
			

			
				𝑡
				0
			

			
				
				1
				(
				1
				−
				𝑠
				)
				𝑠
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				=
				
				𝑑
				𝑠
			

			
				𝑡
				0
			

			
				
				1
				𝐺
				(
				𝑠
				,
				𝑠
				)
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				𝑑
				𝑠
				.
			

		
	

						This together with (39) implies that (42) holds. For 
	
		
			
				𝜀
				,
				𝛿
			

			

				1
			

		
	
 in (39), choose
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			

				𝛿
			

			

				2
			

			
				
				𝛿
				=
				m
				i
				n
			

			

				1
			

			
				,
				𝜀
				𝛿
			

			

				1
			

			
				
			
			
				𝜂
				
				.
			

		
	

						Then for 
	
		
			
				𝑡
				∈
				(
				0
				,
				𝛿
			

			

				2
			

			

				)
			

		
	
, (39) implies that
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			
				𝑡
				
			

			
				1
				𝑡
			

			
				
				1
				(
				1
				−
				𝑠
				)
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				
				𝑑
				𝑠
				≤
				𝑡
			

			

				𝛿
			

			

				1
			

			

				𝑡
			

			
				
				Ω
				1
				(
				1
				−
				𝑠
				)
				𝑔
				(
				𝑠
				)
				𝑙
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				+
				
				𝑑
				𝑠
			

			
				1
				𝛿
			

			

				1
			

			

				𝑡
			

			
				
			
			
				𝑠
				
				1
				𝑠
				(
				1
				−
				𝑠
				)
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				≤
				
				𝑑
				𝑠
			

			

				𝛿
			

			

				1
			

			

				𝑡
			

			
				
				1
				𝑠
				(
				1
				−
				𝑠
				)
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				+
				𝑡
				𝑑
				𝑠
			

			
				
			
			

				𝛿
			

			

				1
			

			

				
			

			
				1
				𝛿
			

			

				1
			

			
				
				1
				𝑠
				(
				1
				−
				𝑠
				)
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				=
				
				𝑑
				𝑠
			

			

				𝛿
			

			

				1
			

			

				𝑡
			

			
				
				1
				𝐺
				(
				𝑠
				,
				𝑠
				)
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				+
				𝑡
				𝑑
				𝑠
			

			
				
			
			

				𝛿
			

			

				1
			

			

				
			

			
				1
				𝛿
			

			

				1
			

			
				
				1
				𝐺
				(
				𝑠
				,
				𝑠
				)
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				𝑡
				𝑑
				𝑠
				≤
				𝜀
				+
			

			
				
			
			

				𝛿
			

			

				1
			

			

				
			

			
				1
				0
			

			
				
				1
				𝐺
				(
				𝑠
				,
				𝑠
				)
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				𝑑
				𝑠
				≤
				2
				𝜀
				.
			

		
	

						Hence (43) holds. Very similarly, we can obtain that 
	
		
			
				{
				𝑥
			

			

				𝑚
			

			
				(
				𝑡
				)
				}
			

		
	
 uniformly converge to 
	
		
			

				𝜃
			

		
	
 with respect to 
	
		
			
				𝑚
				≥
				𝑚
			

			

				0
			

		
	
 as 
	
		
			
				𝑡
				→
				1
				−
				0
			

		
	
. Now, we show that 
	
		
			

				𝐵
			

		
	
 is equicontinuous on 
	
		
			
				[
				𝜁
				,
				1
				−
				𝜁
				]
			

		
	
 for any 
	
		
			
				[
				𝜁
				,
				1
				−
				𝜁
				]
				⊂
				(
				0
				,
				1
				)
				,
				𝜁
				∈
				(
				0
				,
				1
				/
				2
				)
			

		
	
. Notice that
							
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			

				𝑥
			

			

				𝑚
			

			
				
				𝑡
			

			

				2
			

			
				
				−
				𝑥
			

			

				𝑚
			

			
				
				𝑡
			

			

				1
			

			
				
				=
				𝜆
			

			

				𝑚
			

			

				
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				×
				
				
				1
				−
				𝑡
			

			

				2
			

			
				
				
			

			

				𝑡
			

			

				2
			

			

				0
			

			
				𝑠
				1
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				𝑓
				
				𝑠
				,
				𝑥
			

			

				𝑚
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				𝑑
				𝑠
				+
				𝑡
			

			

				2
			

			

				
			

			
				1
				𝑡
			

			

				2
			

			
				(
				1
				1
				−
				𝑠
				)
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				𝑓
				
				𝑠
				,
				𝑥
			

			

				𝑚
			

			
				(
				𝑒
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				−
				
				𝑑
				𝑠
				1
				−
				𝑡
			

			

				1
			

			
				
				
			

			

				𝑡
			

			

				1
			

			

				0
			

			
				𝑠
				1
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				𝑓
				
				𝑠
				,
				𝑥
			

			

				𝑚
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				𝑑
				𝑠
				−
				𝑡
			

			

				1
			

			

				
			

			
				1
				𝑡
			

			

				1
			

			
				1
				(
				1
				−
				𝑠
				)
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				𝑓
				
				𝑠
				,
				𝑥
			

			

				𝑚
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				
				𝑑
				𝑠
				=
				𝜆
			

			

				𝑚
			

			

				
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				×
				
				
				𝑡
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			
				
				×
				
				−
				
			

			

				𝑡
			

			

				2
			

			

				0
			

			
				𝑠
				1
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				𝑓
				
				𝑠
				,
				𝑥
			

			

				𝑚
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				+
				
				𝑑
				𝑠
			

			
				1
				𝑡
			

			

				2
			

			
				1
				(
				1
				−
				𝑠
				)
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
				×
				𝑓
				𝑠
				,
				𝑥
			

			

				𝑚
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				
				+
				
				𝑑
				𝑠
				1
				−
				𝑡
			

			

				1
			

			
				
				
			

			

				𝑡
			

			

				2
			

			

				𝑡
			

			

				1
			

			
				𝑠
				1
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
				×
				𝑓
				𝑠
				,
				𝑥
			

			

				𝑚
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				𝑑
				𝑠
				−
				𝑡
			

			

				1
			

			

				
			

			

				𝑡
			

			

				2
			

			

				𝑡
			

			

				1
			

			
				1
				(
				1
				−
				𝑠
				)
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
				×
				𝑓
				𝑠
				,
				𝑥
			

			

				𝑚
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				
				.
				𝑑
				𝑠
			

		
	
So for any 
	
		
			

				𝑡
			

			

				1
			

			
				,
				𝑡
			

			

				2
			

			
				∈
				[
				𝜁
				,
				1
				−
				𝜁
				]
				,
				𝑡
			

			

				2
			

			
				>
				𝑡
			

			

				1
			

			
				,
				𝑚
				≥
				𝑚
			

			

				0
			

		
	
, we have
							
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			

				𝑚
			

			
				
				𝑡
			

			

				2
			

			
				
				−
				𝑥
			

			

				𝑚
			

			
				
				𝑡
			

			

				1
			

			
				
				‖
				‖
				≤
				
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				×
				
				
				𝑡
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			
				
				
				
			

			

				𝑡
			

			

				2
			

			

				0
			

			
				𝑠
				1
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				‖
				‖
				‖
				𝑙
				
				𝑥
				×
				𝑔
				(
				𝑠
				)
			

			

				𝑚
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				‖
				‖
				‖
				+
				
				𝑑
				𝑠
			

			
				1
				𝑡
			

			

				2
			

			
				1
				(
				1
				−
				𝑠
				)
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				‖
				‖
				‖
				𝑙
				
				𝑥
				×
				𝑔
				(
				𝑠
				)
			

			

				𝑚
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				‖
				‖
				‖
				
				+
				
				𝑑
				𝑠
				1
				−
				𝑡
			

			

				1
			

			
				
				
			

			

				𝑡
			

			

				2
			

			

				𝑡
			

			

				1
			

			
				𝑠
				1
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				‖
				‖
				‖
				𝑙
				
				𝑥
				×
				𝑔
				(
				𝑠
				)
			

			

				𝑚
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				‖
				‖
				‖
				𝑑
				𝑠
				+
				𝑡
			

			

				1
			

			

				
			

			

				𝑡
			

			

				2
			

			

				𝑡
			

			

				1
			

			
				1
				(
				1
				−
				𝑠
				)
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				‖
				‖
				‖
				𝑙
				
				𝑥
				×
				𝑔
				(
				𝑠
				)
			

			

				𝑚
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				‖
				‖
				‖
				
				≤
				
				𝑑
				𝑠
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				×
				
				
				𝑡
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			
				
				
				1
			

			
				
			
			
				1
				−
				𝑡
			

			

				2
			

			

				
			

			

				𝑡
			

			

				2
			

			

				0
			

			
				1
				(
				1
				−
				𝑠
				)
				𝑠
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
				1
				×
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				+
				1
				𝑑
				𝑠
			

			
				
			
			

				𝑡
			

			

				2
			

			

				
			

			
				1
				𝑡
			

			

				2
			

			
				1
				𝑠
				(
				1
				−
				𝑠
				)
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
				1
				×
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				
				+
				𝑑
				𝑠
				1
				−
				𝑡
			

			

				1
			

			
				
			
			
				1
				−
				𝑡
			

			

				2
			

			

				
			

			

				𝑡
			

			

				2
			

			

				𝑡
			

			

				1
			

			
				1
				𝑠
				(
				1
				−
				𝑠
				)
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
				1
				×
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				+
				
				𝑑
				𝑠
			

			

				𝑡
			

			

				2
			

			

				𝑡
			

			

				1
			

			
				1
				𝑠
				(
				1
				−
				𝑠
				)
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
				1
				×
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				
				≤
				
				𝑑
				𝑠
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				×
				
				
				𝑡
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			
				
				
				1
			

			
				
			
			
				1
				−
				𝑡
			

			

				2
			

			

				
			

			

				𝑡
			

			

				2
			

			

				0
			

			
				1
				𝐺
				(
				𝑠
				,
				𝑠
				)
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
				1
				×
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				+
				1
				𝑑
				𝑠
			

			
				
			
			

				𝑡
			

			

				2
			

			

				
			

			
				1
				𝑡
			

			

				2
			

			
				1
				𝐺
				(
				𝑠
				,
				𝑠
				)
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
				1
				×
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				
				+
				𝑑
				𝑠
				1
				−
				𝑡
			

			

				1
			

			
				
			
			
				1
				−
				𝑡
			

			

				2
			

			

				
			

			

				𝑡
			

			

				2
			

			

				𝑡
			

			

				1
			

			
				1
				𝐺
				(
				𝑠
				,
				𝑠
				)
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
				1
				×
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				+
				
				𝑑
				𝑠
			

			

				𝑡
			

			

				2
			

			

				𝑡
			

			

				1
			

			
				1
				𝐺
				(
				𝑠
				,
				𝑠
				)
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
				1
				×
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				
				≤
				
				𝑑
				𝑠
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				×
				
				
				𝑡
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			
				
				
				1
			

			
				
			
			
				𝜁
				
			

			

				𝑡
			

			

				2
			

			

				0
			

			
				𝐺
				1
				(
				𝑠
				,
				𝑠
				)
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
				1
				×
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				+
				1
				𝑑
				𝑠
			

			
				
			
			
				𝜁
				
			

			
				1
				𝑡
			

			

				2
			

			
				1
				𝐺
				(
				𝑠
				,
				𝑠
				)
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
				1
				×
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				
				+
				
				1
				−
				𝜁
			

			
				
			
			
				𝜁
				
				
				+
				1
			

			

				𝑡
			

			

				2
			

			

				𝑡
			

			

				1
			

			
				1
				𝐺
				(
				𝑠
				,
				𝑠
				)
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
				1
				×
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				
				≤
				𝜎
				𝑑
				𝑠
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			
				
				
				𝑡
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			
				
				2
				𝜂
			

			
				
			
			
				𝜁
				+
				1
			

			
				
			
			
				𝜁
				
			

			

				𝑡
			

			

				2
			

			

				𝑡
			

			

				1
			

			
				
				1
				𝐺
				(
				𝑠
				,
				𝑠
				)
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				
				.
				𝑑
				𝑠
			

		
	

						This together with (39) implies that 
	
		
			

				𝐵
			

		
	
 is equicontinuous on 
	
		
			

				𝐽
			

		
	
.Case   2. 
	
		
			
				𝑏
				=
				0
				,
				𝑑
				≠
				0
				,
				𝑐
				≠
				0
			

		
	
, the boundary value condition is 
	
		
			
				𝑥
				(
				0
				)
				=
				0
				,
				𝑐
				𝑥
				(
				1
				)
				+
				𝑑
				𝑥
			

			

				′
			

			
				(
				1
				)
				=
				0
			

		
	
. We need to show that 
	
		
			
				{
				𝑥
			

			

				𝑚
			

			
				(
				𝑡
				)
				}
			

		
	
 uniformly converge to 
	
		
			

				𝜃
			

		
	
 with respect to 
	
		
			
				𝑚
				≥
				𝑚
			

			

				0
			

		
	
 as 
	
		
			
				𝑡
				→
				0
			

			

				+
			

		
	
. This can be obtained by the similar way in Case 1, so we omit it. Next, we show 
	
		
			

				𝐵
			

		
	
 is equicontinuous on 
	
		
			
				[
				𝜄
				,
				1
				]
			

		
	
 for any 
	
		
			
				𝜄
				∈
				(
				0
				,
				1
				)
			

		
	
. In fact, for any 
	
		
			

				𝑡
			

			

				1
			

			
				,
				𝑡
			

			

				2
			

			
				∈
				[
				𝜄
				,
				1
				]
				,
				𝑡
			

			

				2
			

			
				>
				𝑡
			

			

				1
			

			
				,
				𝑚
				≥
				𝑚
			

			

				0
			

		
	
, we have
							
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			

				𝑚
			

			
				
				𝑡
			

			

				2
			

			
				
				−
				𝑥
			

			

				𝑚
			

			
				
				𝑡
			

			

				1
			

			
				
				‖
				‖
				≤
				
			

			

				𝑡
			

			

				1
			

			

				0
			

			
				|
				|
				𝐺
			

			

				∗
			

			
				
				𝑡
			

			

				2
			

			
				
				,
				𝑠
				−
				𝐺
			

			

				∗
			

			
				
				𝑡
			

			

				1
			

			
				
				|
				|
				‖
				‖
				‖
				𝑓
				
				,
				𝑠
				𝑠
				,
				𝑥
			

			

				𝑚
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				‖
				‖
				‖
				+
				
				𝑑
				𝑠
			

			

				𝑡
			

			

				2
			

			

				𝑡
			

			

				1
			

			
				|
				|
				𝐺
			

			

				∗
			

			
				
				𝑡
			

			

				2
			

			
				
				,
				𝑠
				−
				𝐺
			

			

				∗
			

			
				
				𝑡
			

			

				1
			

			
				
				|
				|
				‖
				‖
				‖
				𝑓
				
				,
				𝑠
				𝑠
				,
				𝑥
			

			

				𝑚
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				‖
				‖
				‖
				+
				
				𝑑
				𝑠
			

			
				1
				𝑡
			

			

				2
			

			
				|
				|
				𝐺
			

			

				∗
			

			
				
				𝑡
			

			

				2
			

			
				
				,
				𝑠
				−
				𝐺
			

			

				∗
			

			
				
				𝑡
			

			

				1
			

			
				
				|
				|
				‖
				‖
				‖
				𝑓
				
				,
				𝑠
				𝑠
				,
				𝑥
			

			

				𝑚
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				‖
				‖
				‖
				≤
				
				𝑡
				𝑑
				𝑠
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			
				
				𝑐
			

			
				
			
			
				𝜎
				𝑐
				(
				1
				−
				𝑠
				)
				+
				𝑑
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			
				×
				
			

			

				𝑡
			

			

				1
			

			

				0
			

			
				𝑠
				(
				𝑐
				(
				1
				−
				𝑠
				)
				+
				𝑑
				)
			

			
				
			
			
				‖
				‖
				‖
				𝑙
				
				𝑥
				𝑐
				+
				𝑑
				𝑔
				(
				𝑠
				)
			

			

				𝑚
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				‖
				‖
				‖
				𝜎
				𝑑
				𝑠
				+
				2
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			

				
			

			

				𝑡
			

			

				2
			

			

				𝑡
			

			

				1
			

			
				‖
				‖
				‖
				𝑙
				
				𝑥
				𝐺
				(
				𝑠
				,
				𝑠
				)
				𝑔
				(
				𝑠
				)
			

			

				𝑚
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				‖
				‖
				‖
				+
				
				𝑡
				𝑑
				𝑠
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			
				
				1
			

			
				
			
			
				𝑠
				𝜎
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			
				×
				
			

			
				1
				𝑡
			

			

				2
			

			
				𝑠
				(
				𝑐
				(
				1
				−
				𝑠
				)
				+
				𝑑
				)
			

			
				
			
			
				𝑔
				‖
				‖
				‖
				𝑙
				
				𝑥
				𝑐
				+
				𝑑
				(
				𝑠
				)
			

			

				𝑚
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				‖
				‖
				‖
				≤
				
				𝑡
				𝑑
				𝑠
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			
				
				𝑐
			

			
				
			
			
				𝑑
				𝜎
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			

				
			

			

				𝑡
			

			

				1
			

			

				0
			

			
				
				1
				𝐺
				(
				𝑠
				,
				𝑠
				)
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				𝜎
				𝑑
				𝑠
				+
				2
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			

				
			

			

				𝑡
			

			

				2
			

			

				𝑡
			

			

				1
			

			
				
				1
				𝐺
				(
				𝑠
				,
				𝑠
				)
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				+
				
				𝑡
				𝑑
				𝑠
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			
				
				1
			

			
				
			
			
				𝜄
				𝜎
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			

				
			

			
				1
				𝑡
			

			

				2
			

			
				
				1
				𝐺
				(
				𝑠
				,
				𝑠
				)
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				≤
				
				𝑡
				𝑑
				𝑠
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			
				
				𝜂
				𝜎
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			
				
				𝑐
			

			
				
			
			
				𝑑
				+
				1
			

			
				
			
			
				𝜄
				
				𝜎
				+
				2
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			

				
			

			

				𝑡
			

			

				2
			

			

				𝑡
			

			

				1
			

			
				
				1
				𝐺
				(
				𝑠
				,
				𝑠
				)
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				𝑑
				𝑠
				.
			

		
	

						This together with (39) implies that 
	
		
			

				𝐵
			

		
	
 is equicontinuous on 
	
		
			

				𝐽
			

		
	
.Case   3. 
	
		
			
				𝑏
				=
				0
				,
				𝑑
				≠
				0
				,
				𝑐
				=
				0
			

		
	
, the boundary value condition is 
	
		
			
				𝑥
				(
				0
				)
				=
				0
				,
				𝑥
			

			

				′
			

			
				(
				1
				)
				=
				0
			

		
	
. The equicontinuity of 
	
		
			

				𝐵
			

		
	
 on 
	
		
			

				𝐽
			

		
	
 of this case can be obtained by the same way of Case 2, so we omit it.Case   4. 
	
		
			
				𝑑
				=
				0
				,
				𝑏
				≠
				0
				,
				𝑎
				≠
				0
			

		
	
, the boundary value condition is 
	
		
			
				𝑎
				𝑥
				(
				0
				)
				−
				𝑏
				𝑥
			

			

				′
			

			
				(
				0
				)
				=
				0
				,
				𝑥
				(
				1
				)
				=
				0
			

		
	
. Similarly, by Case 1, we can get that 
	
		
			
				{
				𝑥
			

			

				𝑚
			

			
				(
				𝑡
				)
				}
			

		
	
 uniformly converge to 
	
		
			

				𝜃
			

		
	
 with respect to 
	
		
			
				𝑚
				≥
				𝑚
			

			

				0
			

		
	
 as 
	
		
			
				𝑡
				→
				1
			

			

				−
			

		
	
. For any 
	
		
			
				𝜍
				∈
				(
				0
				,
				1
				)
			

		
	
, we need to show that 
	
		
			

				𝐵
			

		
	
 is equicontinuous on 
	
		
			
				[
				0
				,
				𝜍
				]
			

		
	
. In fact, for any 
	
		
			

				𝑡
			

			

				1
			

			
				,
				𝑡
			

			

				2
			

			
				∈
				[
				0
				,
				𝜍
				]
				,
				𝑡
			

			

				2
			

			
				>
				𝑡
			

			

				1
			

			
				,
				𝑚
				≥
				𝑚
			

			

				0
			

		
	
, we have
							
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			

				𝑚
			

			
				
				𝑡
			

			

				2
			

			
				
				−
				𝑥
			

			

				𝑚
			

			
				
				𝑡
			

			

				1
			

			
				
				‖
				‖
				≤
				
			

			

				𝑡
			

			

				1
			

			

				0
			

			
				|
				|
				𝐺
			

			

				∗
			

			
				
				𝑡
			

			

				2
			

			
				
				,
				𝑠
				−
				𝐺
			

			

				∗
			

			
				
				𝑡
			

			

				1
			

			
				
				|
				|
				‖
				‖
				‖
				𝑓
				
				,
				𝑠
				𝑠
				,
				𝑥
			

			

				𝑚
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				‖
				‖
				‖
				+
				
				𝑑
				𝑠
			

			

				𝑡
			

			

				2
			

			

				𝑡
			

			

				1
			

			
				|
				|
				𝐺
			

			

				∗
			

			
				
				𝑡
			

			

				2
			

			
				
				,
				𝑠
				−
				𝐺
			

			

				∗
			

			
				
				𝑡
			

			

				1
			

			
				
				|
				|
				‖
				‖
				‖
				𝑓
				
				,
				𝑠
				𝑠
				,
				𝑥
			

			

				𝑚
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				‖
				‖
				‖
				+
				
				𝑑
				𝑠
			

			
				1
				𝑡
			

			

				2
			

			
				|
				|
				𝐺
			

			

				∗
			

			
				
				𝑡
			

			

				2
			

			
				
				,
				𝑠
				−
				𝐺
			

			

				∗
			

			
				
				𝑡
			

			

				1
			

			
				
				|
				|
				‖
				‖
				‖
				𝑓
				
				,
				𝑠
				𝑠
				,
				𝑥
			

			

				𝑚
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				‖
				‖
				‖
				≤
				
				𝑡
				𝑑
				𝑠
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			
				
				1
			

			
				
			
			
				𝜎
				1
				−
				𝑠
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			

				
			

			

				𝑡
			

			

				1
			

			

				0
			

			
				
				1
				𝐺
				(
				𝑠
				,
				𝑠
				)
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				𝜎
				𝑑
				𝑠
				+
				2
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			

				
			

			

				𝑡
			

			

				2
			

			

				𝑡
			

			

				1
			

			
				𝐺
				
				Ω
				1
				(
				𝑠
				,
				𝑠
				)
				𝑔
				(
				𝑠
				)
				𝑙
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				+
				
				𝑡
				𝑑
				𝑠
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			
				
				𝑎
			

			
				
			
			
				𝜎
				𝑎
				𝑠
				+
				𝑏
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			

				
			

			
				1
				𝑡
			

			

				2
			

			
				
				1
				𝐺
				(
				𝑠
				,
				𝑠
				)
				𝑔
				(
				𝑠
				)
				×
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				≤
				
				𝑡
				𝑑
				𝑠
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			
				
				1
			

			
				
			
			
				𝜎
				1
				−
				𝜍
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			

				
			

			

				𝑡
			

			

				1
			

			

				0
			

			
				
				1
				𝐺
				(
				𝑠
				,
				𝑠
				)
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				𝜎
				𝑑
				𝑠
				+
				2
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			

				
			

			

				𝑡
			

			

				2
			

			

				𝑡
			

			

				1
			

			
				𝐺
				
				Ω
				1
				(
				𝑠
				,
				𝑠
				)
				𝑔
				(
				𝑠
				)
				𝑙
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				+
				
				𝑡
				𝑑
				𝑠
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			
				
				𝑏
			

			
				
			
			
				𝑎
				𝜎
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			

				
			

			
				1
				𝑡
			

			

				2
			

			
				
				1
				𝐺
				(
				𝑠
				,
				𝑠
				)
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				≤
				
				𝑡
				𝑑
				𝑠
			

			

				2
			

			
				−
				𝑡
			

			

				1
			

			
				
				𝜂
				𝜎
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			
				
				1
			

			
				
			
			
				+
				𝑏
				1
				−
				𝜍
			

			
				
			
			
				𝑎
				
				𝜎
				+
				2
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			

				
			

			

				𝑡
			

			

				2
			

			

				𝑡
			

			

				1
			

			
				
				1
				𝐺
				(
				𝑠
				,
				𝑠
				)
				𝑔
				(
				𝑠
				)
				𝑙
				Ω
				(
				𝑠
				)
				𝑟
				,
				𝑟
				+
			

			
				
			
			

				𝑚
			

			

				0
			

			
				
				𝑑
				𝑠
				.
			

		
	

						This together with (39) implies that 
	
		
			

				𝐵
			

		
	
 is equicontinuous on 
	
		
			

				𝐽
			

		
	
.Case   5. 
	
		
			
				𝑑
				=
				0
				,
				𝑏
				≠
				0
				,
				𝑎
				=
				0
			

		
	
, the boundary value condition is 
	
		
			

				𝑥
			

			

				′
			

			
				(
				0
				)
				=
				0
				,
				𝑥
				(
				1
				)
				=
				0
			

		
	
.Case   6. 
	
		
			
				𝑎
				=
				0
				,
				𝑏
				𝑑
				≠
				0
				,
				𝑐
				≠
				0
			

		
	
, the boundary value condition is 
	
		
			

				𝑥
			

			

				′
			

			
				(
				0
				)
				=
				0
				,
				𝑐
				𝑥
				(
				1
				)
				+
				𝑑
				𝑥
			

			

				′
			

			
				(
				1
				)
				=
				0
			

		
	
.Case   7. 
	
		
			
				𝑎
				≠
				0
				,
				𝑏
				𝑑
				≠
				0
				,
				𝑐
				=
				0
			

		
	
, the boundary value condition is 
	
		
			
				𝑎
				𝑥
				(
				0
				)
				−
				𝑏
				𝑥
			

			

				′
			

			
				(
				0
				)
				=
				0
				,
				𝑥
			

			

				′
			

			
				(
				1
				)
				=
				0
			

		
	
.Case   8. 
	
		
			
				𝑏
				𝑑
				≠
				0
				,
				𝑎
				𝑐
				≠
				0
			

		
	
, the boundary value condition is 
	
		
			
				𝑎
				𝑥
				(
				0
				)
				−
				𝑏
				𝑥
			

			

				′
			

			
				(
				0
				)
				=
				0
				,
				𝑐
				𝑥
				(
				1
				)
				+
				𝑑
				𝑥
			

			

				′
			

			
				(
				1
				)
				=
				0
			

		
	
.By the very similar methods in Cases 2 and 4, we can prove that 
	
		
			

				𝐵
			

		
	
 is equicontinuous on 
	
		
			

				𝐽
			

		
	
 in Cases 5–8. Hence, the proofs are omitted. Next we show that 
	
		
			

				𝐵
			

		
	
 is relatively compact. It is easy to see that
							
	
 		
 			
				(
				5
				1
				)
			
 		
	

	
		
			
				𝛼
				⎛
				⎜
				⎜
				⎝
				⎧
				⎪
				⎨
				⎪
				⎩
				
				(
				𝐵
				(
				𝑡
				)
				)
				≤
				𝛼
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
			

			
				1
				0
			

			

				1
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
				𝐺
				(
				𝑡
				,
				𝑠
				)
				×
				𝑓
				𝑠
				,
				𝑥
			

			

				𝑚
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				𝑑
				𝑠
				∶
				𝑚
				≥
				𝑚
			

			

				0
			

			
				⎫
				⎪
				⎬
				⎪
				⎭
				⎞
				⎟
				⎟
				⎠
				
				≤
				2
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
			

			
				1
				0
			

			

				1
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				𝑓
				
				𝐺
				(
				𝑡
				,
				𝑠
				)
				×
				𝛼
				
				
				𝑠
				,
				𝑥
			

			

				𝑚
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				∶
				𝑚
				≥
				𝑚
			

			

				0
			

			
				𝜎
				
				
				𝑑
				𝑠
				≤
				2
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			
				𝐿
				
			

			
				1
				0
			

			
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝛼
				(
				𝐵
				(
				𝑠
				)
				)
				𝑑
				𝑠
				.
			

		
	

						Hence, we have
							
	
 		
 			
				(
				5
				2
				)
			
 		
	

	
		
			

				𝛼
			

			
				𝑝
				𝑐
			

			
				𝜎
				(
				𝐵
				)
				≤
				2
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			
				𝐿
				
			

			
				1
				0
			

			
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝑑
				𝑠
				𝛼
			

			
				𝑝
				𝑐
			

			
				𝜎
				(
				𝐵
				)
				≤
				2
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			
				𝐿
				
			

			
				1
				0
			

			
				𝐺
				(
				𝑠
				,
				𝑠
				)
				𝑑
				𝑠
				𝛼
			

			
				𝑝
				𝑐
			

			
				(
				𝐵
				)
				≤
				2
				𝐿
				𝑀
			

			

				0
			

			

				𝜎
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			

				𝛼
			

			
				𝑝
				𝑐
			

			
				(
				𝐵
				)
				.
			

		
	

						Observing 
	
		
			
				𝐿
				<
				𝜎
			

			

				∗
			

			
				/
				2
				𝑀
			

			

				0
			

			

				𝜎
			

			

				∗
			

		
	
, so 
	
		
			

				𝛼
			

			
				𝑝
				𝑐
			

			
				(
				𝐵
				)
				=
				0
			

		
	
, which means 
	
		
			

				𝐵
			

		
	
 is relatively compact.It follows from Lemma 5 that there is a convergent subsequence of 
	
		
			
				{
				𝑥
			

			

				𝑚
			

			

				}
			

		
	
, and without loss of generality, we may assume that 
	
		
			
				{
				𝑥
			

			

				𝑚
			

			

				}
			

		
	
 itself converges to some 
	
		
			

				𝑥
			

			

				𝑟
			

			
				∈
				𝜕
			

			
				
			
			

				𝑄
			

			

				𝑟
			

		
	
, and 
	
		
			
				l
				i
				m
			

			
				𝑚
				→
				∞
			

			

				𝜆
			

			

				𝑚
			

			
				=
				𝜆
			

			

				𝑟
			

			
				∈
				[
				0
				,
				1
				]
			

		
	
. Hence (40) and the dominated convergence theorem imply that
							
	
 		
 			
				(
				5
				3
				)
			
 		
	

	
		
			

				𝑥
			

			

				𝑟
			

			
				(
				𝑡
				)
				=
				𝜆
			

			

				𝑟
			

			

				
			

			
				1
				0
			

			

				𝐺
			

			

				∗
			

			
				
				(
				𝑡
				,
				𝑠
				)
				𝑓
				𝑠
				,
				𝑥
			

			

				𝑟
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
				=
				𝜆
			

			

				𝑟
			

			
				𝐴
				𝑥
			

			

				𝑟
			

			
				(
				𝑡
				)
				,
				𝑡
				∈
				𝐽
				.
			

		
	

						Obviously, 
	
		
			

				𝜆
			

			

				𝑟
			

			
				>
				0
			

		
	
. Consequently, 
	
		
			
				𝐴
				𝑥
			

			

				𝑟
			

			
				=
				𝜆
			

			
				𝑟
				−
				1
			

			

				𝑥
			

			

				𝑟
			

			
				=
				𝜇
			

			

				𝑟
			

			

				𝑥
			

			

				𝑟
			

		
	
, where 
	
		
			

				𝜇
			

			

				𝑟
			

			
				=
				𝜆
			

			
				𝑟
				−
				1
			

			
				≥
				1
			

		
	
.The case 
	
		
			
				l
				i
				m
				i
				n
				f
			

			
				𝑡
				→
				0
				+
			

			
				(
				ℎ
				(
				𝑡
				)
				/
				𝑡
				)
				=
				+
				∞
			

		
	
 can be proved similarly, so it is omitted. Then the theorem is proved.
Theorem 8.  Let conditions 
	
		
			
				(
				𝐻
			

			

				1
			

			
				)
				,
				(
				𝐻
			

			

				2
			

			

				)
			

		
	
, and 
	
		
			
				(
				𝐻
			

			

				4
			

			

				)
			

		
	
 be satisfied; then there exists a positive number 
	
		
			

				𝑀
			

		
	
 such that for any given 
	
		
			
				𝑟
				>
				𝑀
				/
				m
				i
				n
			

			
				𝑡
				∈
				𝐽
			

			
				Ω
				(
				𝑡
				)
			

		
	
, the impulsive SBVP (1) has a nontrivial eigenfunction 
	
		
			

				𝑥
			

			

				𝑟
			

			
				∈
				𝑃
				𝐶
				[
				𝐽
				,
				𝑃
				]
			

		
	
 with 
	
		
			
				‖
				𝑥
			

			

				𝑟
			

			

				‖
			

			
				𝑃
				𝐶
			

			
				=
				𝑟
			

		
	
 corresponding to eigenvalue 
	
		
			

				𝜇
			

			

				𝑟
			

			
				≥
				1
			

		
	
.
Proof. By 
	
		
			
				(
				𝐻
			

			

				4
			

			

				)
			

		
	
, there exist 
	
		
			

				𝜀
			

			

				0
			

			
				>
				0
			

		
	
 and 
	
		
			
				𝑀
				>
				0
			

		
	
 such that
							
	
 		
 			
				(
				5
				4
				)
			
 		
	

	
		
			

				
			

			

				𝑏
			

			

				1
			

			

				𝑎
			

			

				1
			

			
				
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝜉
				(
				𝑠
				)
				−
				𝜀
			

			

				0
			

			
				
				𝜎
				𝑑
				𝑠
				>
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			

				,
			

		
	

						and 
	
		
			
				𝜙
				(
				𝑓
				(
				𝑡
				,
				𝑥
				)
				)
				≥
				(
				𝜉
				(
				𝑡
				)
				−
				𝜀
			

			

				0
			

			
				)
				𝜙
				(
				𝑥
				)
			

		
	
 for 
	
		
			
				𝑡
				∈
				𝐽
			

			

				1
			

		
	
=
	
		
			
				[
				𝑎
			

			

				1
			

			
				,
				𝑏
			

			

				1
			

			
				]
				,
				𝑥
				∈
				𝑃
			

		
	
 with 
	
		
			
				‖
				𝑥
				‖
				>
				𝑀
			

		
	
.Choose 
	
		
			
				𝑟
				>
				𝑀
				/
				m
				i
				n
			

			
				𝑡
				∈
				𝐽
			

			
				Ω
				(
				𝑡
				)
			

		
	
. If there exists 
	
		
			

				𝑥
			

			

				0
			

			
				∈
				𝜕
			

			
				
			
			

				𝑄
			

		
	
 such that 
	
		
			

				𝑥
			

			

				0
			

			
				≥
				𝐴
			

			

				𝑚
			

			

				𝑥
			

			

				0
			

		
	
, then
							
	
 		
 			
				(
				5
				5
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			

				0
			

			
				(
				‖
				‖
				‖
				‖
				𝑥
				𝑠
				)
				≥
				Ω
				(
				𝑠
				)
			

			

				0
			

			
				‖
				‖
			

			
				𝑝
				𝑐
			

			
				=
				Ω
				(
				𝑠
				)
				𝑟
				>
				𝑀
				,
				𝑠
				∈
				𝐽
				.
			

		
	

						Hence, for 
	
		
			
				𝑡
				∈
				𝐽
			

			

				1
			

		
	
, we have
							
	
 		
 			
				(
				5
				6
				)
			
 		
	

	
		
			
				𝜙
				
				𝑥
			

			

				0
			

			
				
				≥
				
				(
				𝑡
				)
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
			

			
				1
				0
			

			

				1
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
				𝑓
				
				×
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝜙
				𝑠
				,
				𝑥
			

			

				0
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				≥
				
				
				
				𝑑
				𝑠
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
			

			

				𝐽
			

			

				1
			

			

				1
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
				×
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝜉
				(
				𝑠
				)
				−
				𝜀
			

			

				0
			

			
				
				𝜙
				
				𝑥
			

			

				0
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				≥
				
				𝑑
				𝑠
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
			

			

				𝐽
			

			

				1
			

			

				1
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
				×
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝜉
				(
				𝑠
				)
				−
				𝜀
			

			

				0
			

			
				
				𝜙
				
				𝑥
			

			

				0
			

			
				
				≥
				𝜎
				(
				𝑠
				)
				𝑑
				𝑠
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			

				
			

			

				𝐽
			

			

				1
			

			
				
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝜉
				(
				𝑠
				)
				−
				𝜀
			

			

				0
			

			
				
				𝜙
				
				𝑥
			

			

				0
			

			
				
				(
				𝑠
				)
				𝑑
				𝑠
				.
			

		
	

						Obviously, 
							
	
 		
 			
				(
				5
				7
				)
			
 		
	

	
		
			
				i
				n
				f
			

			
				𝑡
				∈
				𝐽
			

			

				1
			

			
				‖
				‖
				𝑥
			

			

				0
			

			
				(
				‖
				‖
				‖
				‖
				𝑥
				𝑡
				)
				≥
				Ω
				(
				𝑡
				)
			

			

				0
			

			
				‖
				‖
			

			
				𝑃
				𝐶
			

			
				=
				Ω
				(
				𝑡
				)
				𝑟
				>
				0
				.
			

		
	

						The continuity of 
	
		
			

				𝑥
			

			

				0
			

			
				(
				𝑡
				)
			

		
	
 implies that 
	
		
			
				𝜙
				(
				𝑥
			

			

				0
			

			
				(
				𝑡
				)
				)
			

		
	
 is continuous on 
	
		
			

				𝐽
			

			

				1
			

		
	
. Hence, this together with (57) and 
	
		
			
				(
				𝐻
			

			

				4
			

			

				)
			

		
	
 implies that 
	
		
			
				m
				i
				n
			

			
				𝑡
				∈
				𝐽
			

			

				1
			

			
				𝜙
				(
				𝑥
			

			

				0
			

			
				(
				𝑡
				)
				)
				>
				0
			

		
	
. Observing (54) and (56), we can obtain a contradiction. Applying Lemma 4, we know that the fixed point index 
	
		
			
				𝑖
				(
				𝐴
			

			

				𝑚
			

			
				,
				𝑄
			

			

				𝑟
			

			
				,
				𝑄
				)
				=
				0
			

		
	
. Since 
	
		
			
				𝑖
				(
				𝜃
				,
				𝑄
			

			

				𝑟
			

			
				,
				𝑄
				)
				=
				1
			

		
	
, it follows from the homotopy invariance of fixed point index for strict set contraction that there exist 
	
		
			

				𝑥
			

			

				𝑚
			

			
				∈
				𝜕
			

			
				
			
			

				𝑄
			

			

				𝑟
			

		
	
 and 
	
		
			
				0
				<
				𝜆
			

			

				𝑚
			

			
				<
				1
			

		
	
 such that
							
	
 		
 			
				(
				5
				8
				)
			
 		
	

	
		
			

				𝑥
			

			

				𝑚
			

			
				=
				𝜆
			

			

				𝑚
			

			

				𝐴
			

			

				𝑚
			

			

				𝑥
			

			

				𝑚
			

			
				,
				i
				.
				e
				.
				𝐴
			

			

				𝑚
			

			

				𝑥
			

			

				𝑚
			

			
				=
				𝜆
			

			
				𝑚
				−
				1
			

			

				𝑥
			

			

				𝑚
			

			
				=
				𝜇
			

			

				𝑚
			

			

				𝑥
			

			

				𝑚
			

			

				,
			

		
	

						where 
	
		
			

				𝜇
			

			

				𝑚
			

			
				=
				𝜆
			

			
				𝑚
				−
				1
			

			
				>
				1
			

		
	
. The rest of the proof is completely similar to that of Theorem 7. So it is omitted.
Theorem 9.  Let conditions 
	
		
			
				(
				𝐻
			

			

				1
			

			
				)
				,
				(
				𝐻
			

			

				2
			

			

				)
			

		
	
, and 
	
		
			
				(
				𝐻
			

			

				5
			

			

				)
			

		
	
 be satisfied; then there exists a positive number 
	
		
			

				𝛿
			

		
	
 such that for any given 
	
		
			
				𝑟
				∈
				(
				0
				,
				𝛿
				)
			

		
	
, the impulsive SBVP (1) has a nontrivial eigenfunction 
	
		
			

				𝑥
			

			

				𝑟
			

			
				∈
				𝑃
				𝐶
				[
				𝐽
				,
				𝑃
				]
			

		
	
 with 
	
		
			
				‖
				𝑥
			

			

				𝑟
			

			

				‖
			

			
				𝑃
				𝐶
			

			
				=
				𝑟
			

		
	
 corresponding to eigenvalue 
	
		
			

				𝜇
			

			

				𝑟
			

			
				≥
				1
			

		
	
.
Proof. By 
	
		
			
				(
				𝐻
			

			

				5
			

			

				)
			

		
	
, there exist 
	
		
			

				𝜀
			

			

				1
			

			
				>
				0
			

		
	
 and 
	
		
			
				𝛿
				>
				0
			

		
	
 such that
							
	
 		
 			
				(
				5
				9
				)
			
 		
	

	
		
			

				
			

			

				𝐽
			

			

				1
			

			
				
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝜉
				(
				𝑠
				)
				−
				𝜀
			

			

				1
			

			
				
				𝑑
				𝑠
				>
				1
				,
			

		
	

						and 
	
		
			
				𝜙
				(
				𝑓
				(
				𝑡
				,
				𝑥
				)
				)
				≥
				(
				𝜉
				(
				𝑡
				)
				−
				𝜀
			

			

				1
			

			
				)
				𝜙
				(
				𝑥
				)
			

		
	
 for 
	
		
			
				𝑡
				∈
				𝐽
			

			

				1
			

			
				=
				[
				𝑎
			

			

				1
			

			
				,
				𝑏
			

			

				1
			

			
				]
				,
				𝑥
				∈
				𝑃
			

		
	
 with 
	
		
			
				‖
				𝑥
				‖
				<
				𝛿
			

		
	
. Choose 
	
		
			
				𝑟
				∈
				(
				0
				,
				𝛿
				)
			

		
	
 and 
	
		
			

				𝑚
			

		
	
 such that 
	
		
			
				(
				1
				/
				𝑚
				)
				<
				𝛿
				−
				𝑟
			

		
	
. If there exists 
	
		
			

				𝑥
			

			

				0
			

			
				∈
				𝜕
			

			
				
			
			

				𝑄
			

			

				𝑟
			

		
	
 such that 
	
		
			

				𝑥
			

			

				0
			

			
				≥
				𝐴
			

			

				𝑚
			

			

				𝑥
			

			

				0
			

		
	
, then for 
	
		
			
				𝑡
				∈
				𝐽
			

			

				1
			

		
	
, we have
							
	
 		
 			
				(
				6
				0
				)
			
 		
	

	
		
			
				𝜙
				
				𝑥
			

			

				0
			

			
				
				≥
				
				(
				𝑡
				)
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
			

			
				1
				0
			

			

				1
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
				𝑓
				
				×
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝜙
				𝑠
				,
				𝑥
			

			

				0
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				≥
				
				
				
				𝑑
				𝑠
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
			

			

				𝐽
			

			

				1
			

			

				1
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
				×
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝜉
				(
				𝑠
				)
				−
				𝜀
			

			

				1
			

			
				
				𝜙
				
				𝑥
			

			

				0
			

			
				𝑒
				(
				𝑠
				)
				+
			

			
				
			
			
				𝑚
				
				≥
				
				𝑑
				𝑠
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑡
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
			

			

				𝐽
			

			

				1
			

			

				1
			

			
				
			
			

				∏
			

			
				0
				<
				𝑡
			

			

				𝑖
			

			
				<
				𝑠
			

			
				
				1
				+
				𝛼
			

			

				𝑖
			

			
				
				
				×
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝜉
				(
				𝑠
				)
				−
				𝜀
			

			

				1
			

			
				
				𝜙
				
				𝑥
			

			

				0
			

			
				
				≥
				𝜎
				(
				𝑠
				)
				𝑑
				𝑠
			

			

				∗
			

			
				
			
			

				𝜎
			

			

				∗
			

			

				
			

			

				𝐽
			

			

				1
			

			
				
				𝐺
				(
				𝑡
				,
				𝑠
				)
				𝜉
				(
				𝑠
				)
				−
				𝜀
			

			

				1
			

			
				
				𝜙
				
				𝑥
			

			

				0
			

			
				
				𝑑
				𝑠
				.
			

		
	

						Obviously, 
							
	
 		
 			
				(
				6
				1
				)
			
 		
	

	
		
			
				i
				n
				f
			

			
				𝑡
				∈
				𝐽
			

			

				1
			

			
				‖
				‖
				𝑥
			

			

				0
			

			
				(
				‖
				‖
				‖
				‖
				𝑥
				𝑡
				)
				≥
				Ω
				(
				𝑡
				)
			

			

				0
			

			
				‖
				‖
			

			
				𝑃
				𝐶
			

			
				=
				Ω
				(
				𝑡
				)
				𝑟
				>
				0
				.
			

		
	

						The continuity of 
	
		
			

				𝑥
			

			

				0
			

			
				(
				𝑡
				)
			

		
	
 implies that 
	
		
			
				𝜙
				(
				𝑥
			

			

				0
			

			
				(
				𝑡
				)
				)
			

		
	
 is continuous on 
	
		
			

				𝐽
			

			

				1
			

		
	
. Hence, this together with (61) and 
	
		
			
				(
				𝐻
			

			

				5
			

			

				)
			

		
	
 implies that 
	
		
			
				m
				i
				n
			

			
				𝑡
				∈
				𝐽
			

			

				1
			

			
				𝜙
				(
				𝑥
			

			

				0
			

			
				(
				𝑡
				)
				)
				>
				0
			

		
	
. Observing (59) and (60), then we can obtain a contradiction. Applying Lemma 4, we know that the fixed point index 
	
		
			
				𝑖
				(
				𝐴
			

			

				𝑚
			

			
				,
				𝑄
			

			

				𝑟
			

			
				,
				𝑄
				)
				=
				0
			

		
	
. Since 
	
		
			
				𝑖
				(
				𝜃
				,
				𝑄
			

			

				𝑟
			

			
				,
				𝑄
				)
				=
				1
			

		
	
, it follows from the homotopy invariance of fixed point index for strict set contraction that there exist 
	
		
			

				𝑥
			

			

				𝑚
			

			
				∈
				𝜕
			

			
				
			
			

				𝑄
			

			

				𝑟
			

		
	
 and 
	
		
			
				0
				<
				𝜆
			

			

				𝑚
			

			
				<
				1
			

		
	
 such that
							
	
 		
 			
				(
				6
				2
				)
			
 		
	

	
		
			

				𝑥
			

			

				𝑚
			

			
				=
				𝜆
			

			

				𝑚
			

			

				𝐴
			

			

				𝑚
			

			

				𝑥
			

			

				𝑚
			

			
				,
				i
				.
				e
				.
				𝐴
			

			

				𝑚
			

			

				𝑥
			

			

				𝑚
			

			
				=
				𝜆
			

			
				𝑚
				−
				1
			

			

				𝑥
			

			

				𝑚
			

			
				=
				𝜇
			

			

				𝑚
			

			

				𝑥
			

			

				𝑚
			

			

				,
			

		
	

						where 
	
		
			

				𝜇
			

			

				𝑚
			

			
				=
				𝜆
			

			
				𝑚
				−
				1
			

			
				>
				1
			

		
	
. The rest of the proof is completely similar to that of Theorem 7. So it is omitted.
Example 10. Consider the following impulsive SBVP:
							
	
 		
 			
				(
				6
				3
				)
			
 		
	

	
		
			
				𝜇
				𝑥
			

			
				′
				′
			

			

				𝑛
			

			
				+
				𝜋
			

			
				
			
			

				√
			

			
				
			
			
				
				1
				𝑡
				(
				1
				−
				𝑡
				)
			

			
				
			
			
				
				√
				3
				𝑛
			

			
				
			
			
				𝑡
				𝑥
			

			

				𝑛
			

			
				+
				𝑒
			

			
				2
				+
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				+
				a
				r
				c
				t
				a
				n
				𝑡
			

			
				
			
			

				√
			

			
				
			
			
				
				1
				𝑛
				‖
				𝑥
				‖
				=
				0
				,
				𝑡
				∈
				(
				0
				,
				1
				)
				,
				𝑡
				≠
			

			
				
			
			
				5
				;
				Δ
				𝑥
			

			

				𝑛
			

			

				|
			

			
				𝑡
				=
				1
				/
				5
			

			
				=
				2
			

			
				
			
			
				5
				𝑥
			

			

				𝑛
			

			
				,
				2
				𝑥
			

			

				𝑛
			

			
				(
				0
				)
				−
				𝑥
			

			

				′
			

			

				𝑛
			

			
				𝑥
				(
				0
				)
				=
				𝜃
				;
			

			

				𝑛
			

			
				(
				1
				)
				=
				𝜃
				,
				(
				𝑛
				=
				1
				,
				2
				,
				3
				,
				…
				)
				.
			

		
	

Conclusion. There exists a positive number 
	
		
			

				𝛿
			

		
	
 such that for any given 
	
		
			
				𝑟
				∈
				(
				0
				,
				𝛿
				)
			

		
	
, impulsive SBVP (63) has a nontrivial, nonnegative eigenfunction 
	
		
			

				𝑥
			

			
				𝑟
				𝑛
			

			
				(
				𝑛
				=
				1
				,
				2
				,
				3
				,
				…
				)
			

		
	
 satisfying 
	
		
			
				s
				u
				p
			

			

				𝑛
			

			

				𝑥
			

			
				𝑟
				𝑛
			

			
				(
				𝑡
				)
				<
				∞
			

		
	
 for 
	
		
			
				0
				≤
				𝑡
				≤
				1
			

		
	
 and 
	
		
			
				m
				a
				x
			

			
				𝑡
				∈
				[
				0
				,
				1
				]
			

			
				s
				u
				p
			

			

				𝑛
			

			

				𝑥
			

			
				𝑟
				𝑛
			

			
				(
				𝑡
				)
				=
				𝑟
			

		
	
 corresponding to 
	
		
			

				𝜇
			

			

				𝑟
			

			
				≥
				1
			

		
	
.
Proof. Let 
	
		
			
				𝐸
				=
				𝑙
			

			

				∞
			

			
				=
				{
				𝑥
				=
				(
				𝑥
			

			

				1
			

			
				,
				…
				,
				𝑥
			

			

				𝑛
			

			
				,
				…
				)
				∶
				s
				u
				p
			

			

				𝑛
			

			
				|
				𝑥
			

			

				𝑛
			

			
				|
				<
				∞
				}
			

		
	
 with norm 
	
		
			
				‖
				𝑥
				‖
				=
				s
				u
				p
			

			

				𝑛
			

			
				|
				𝑥
			

			

				𝑛
			

			

				|
			

		
	
 and 
	
		
			
				𝑃
				=
				{
				𝑥
				=
				(
				𝑥
			

			

				1
			

			
				,
				…
				,
				𝑥
			

			

				𝑛
			

			
				,
				…
				)
				∈
				𝑙
			

			

				∞
			

			
				∶
				𝑥
			

			

				𝑛
			

			
				≥
				0
				,
				𝑛
				=
				1
				,
				2
				,
				3
				,
				…
				}
			

		
	
. Then, 
	
		
			

				𝑃
			

		
	
 is a normal solid cone of 
	
		
			

				𝐸
			

		
	
 with normal constant 1, and system (63) can be regarded as an impulsive SBVP in 
	
		
			
				𝐸
				=
				𝑙
			

			

				∞
			

		
	
 of the form (1), where 
	
		
			
				𝑥
				(
				𝑡
				)
				=
				(
				𝑥
			

			

				1
			

			
				(
				𝑡
				)
				,
				𝑥
			

			

				2
			

			
				(
				𝑡
				)
				,
				𝑥
			

			

				3
			

			
				(
				𝑡
				)
				,
				…
				)
				,
				𝑓
				(
				𝑡
				,
				𝑥
				)
				=
				(
				𝑓
			

			

				1
			

			
				,
				𝑓
			

			

				2
			

			
				,
				𝑓
			

			

				3
			

			
				,
				…
				)
			

		
	
, and
							
	
 		
 			
				(
				6
				4
				)
			
 		
	

	
		
			

				𝑓
			

			

				𝑛
			

			
				𝜋
				(
				𝑡
				,
				𝑥
				)
				=
			

			
				
			
			

				√
			

			
				
			
			
				
				1
				𝑡
				(
				1
				−
				𝑡
				)
			

			
				
			
			
				
				√
				3
				𝑛
			

			
				
			
			
				𝑡
				𝑥
			

			

				𝑛
			

			
				+
				𝑒
			

			
				2
				+
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				+
				a
				r
				c
				t
				a
				n
				𝑡
			

			
				
			
			

				√
			

			
				
			
			
				
				.
				𝑛
				‖
				𝑥
				‖
			

		
	

						It is easy to see that 
	
		
			
				𝑓
				(
				𝑡
				,
				𝑥
				)
			

		
	
 is singular at 
	
		
			
				𝑡
				=
				0
				,
				1
			

		
	
 and 
	
		
			
				𝑥
				=
				𝜃
			

		
	
.Let 
	
		
			
				√
				𝑔
				(
				𝑡
				)
				=
				𝜋
				/
			

			
				
			
			
				𝑡
				(
				1
				−
				𝑡
				)
			

		
	
 and 
	
		
			
				𝑙
				(
				𝑥
				)
				=
				(
				𝑙
			

			

				1
			

			
				(
				𝑥
				)
				,
				𝑙
			

			

				2
			

			
				(
				𝑥
				)
				,
				𝑙
			

			

				3
			

			
				(
				𝑥
				)
				,
				…
				)
			

		
	
, where
							
	
 		
 			
				(
				6
				5
				)
			
 		
	

	
		
			

				𝑙
			

			

				𝑛
			

			
				1
				(
				𝑥
				)
				=
			

			
				
			
			
				
				𝑥
				3
				𝑛
			

			

				𝑛
			

			
				+
				𝑒
			

			
				2
				+
				𝑥
			

			
				𝑛
				+
				1
			

			
				
				+
				𝜋
			

			
				
			
			
				4
				√
			

			
				
			
			
				.
				𝑛
				‖
				𝑥
				‖
			

		
	

						So we have
							
	
 		
 			
				(
				6
				6
				)
			
 		
	

	
		
			
				𝑙
				[
				]
				‖
				𝑓
				(
				𝑡
				,
				𝑥
				)
				‖
				≤
				𝑔
				(
				𝑡
				)
				‖
				𝑙
				(
				𝑥
				)
				‖
				,
				𝑡
				∈
				(
				0
				,
				1
				)
				,
				𝑥
				∈
				𝑃
				⧵
				{
				𝜃
				}
				,
				𝑟
				,
				𝑅
				=
				s
				u
				p
			

			
				𝑥
				∈
			

			
				
			
			

				𝑃
			

			

				𝑅
			

			
				⧵
				𝑃
			

			

				𝑟
			

			
				‖
				𝑙
				(
				𝑥
				)
				‖
				<
				𝑅
				+
				𝑒
			

			
				2
				+
				𝑅
			

			
				+
				𝜋
			

			
				
			
			
				4
				𝑟
				<
				+
				∞
				,
				∀
				𝑅
				>
				𝑟
				>
				0
				.
			

		
	

						By virtue of 
	
		
			

				∫
			

			
				1
				0
			

			
				√
				(
				𝜋
				/
			

			
				
			
			
				𝑡
				(
				1
				−
				𝑡
				)
				)
				𝑑
				𝑡
				=
				𝜋
			

			

				2
			

		
	
, 
	
		
			
				𝐺
				(
				𝑠
				,
				𝑠
				)
				=
				(
				1
				/
				3
				)
				(
				1
				+
				2
				𝑠
				)
				(
				1
				−
				𝑠
				)
			

		
	
, and
							
	
 		
 			
				(
				6
				7
				)
			
 		
	

	
		
			

				𝑀
			

			

				0
			

			
				=
				m
				a
				x
			

			
				𝑠
				∈
				𝐽
			

			
				3
				𝐺
				(
				𝑠
				,
				𝑠
				)
				=
			

			
				
			
			
				8
				,
				
				Ω
				(
				𝑠
				)
				=
				m
				i
				n
				1
				+
				2
				𝑠
			

			
				
			
			
				3
				
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						which means that condition 
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						that is, condition 
	
		
			
				(
				𝐻
			

			

				3
			

			

				)
			

		
	
 is satisfied.Hence, our conclusion follows from Theorem 7.
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